Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

A New Insight into the Synthesis and Biological Activities of Pyrazole based Derivatives

Author(s): Satbir Mor*, Mohini Khatri, Ravinder Punia, Savita Nagoria and Suchita Sindhu

Volume 19, Issue 6, 2022

Published on: 04 February, 2022

Page: [717 - 778] Pages: 62

DOI: 10.2174/1570193X19666220118111614

Price: $65

Abstract

This review aims to collate literature work reported by researchers (from 1994 to 2021) to provide an overview of the available methodologies for the synthesis and diverse pharmacological activities exhibited by pyrazole based molecules. This review highlights recent reports on various routes of synthesis and potential biological evaluation studies viz. anticancer, AT (II) inhibitory, antiinflammatory activities, HIV-1-RT inhibitory, antihypertensive, herbicidal, antitubercular, insecticidal, antiviral, antimicrobial, and COX-2 inhibitory activity, etc., of pyrazole derivatives and also presents recent efforts made on this heterocyclic moiety.

Keywords: Pyrazole, 1, 3-dicarbonyl compounds, α, β-unsaturated compounds, 3-dipolar cycloaddition, pharmacological activities, anticancer, anti-inflammatory, herbicidal.

Graphical Abstract
[1]
Eicher, T.; Hauptmann, S. The chemistry of heterocycles: Structures, reactions, syntheses, and applications, 2nd ed.; Wiley- VCH GmbH & Co. KGaA: Weinheim, 2003.
[http://dx.doi.org/10.1002/352760183X]
[2]
Dhawan, S.N.; Mor, S.; Sharma, K.; Chawla, A.D.; Saini, A.; Gupta, S.C. On the mechanism of formation of pyrazoles from 1,3-diketones and hydrazines: isolation of hydroxypyrazoline intermediates. Indian J. Chem., 1994, 33B, 38-42.
[3]
Penning, T.D.; Talley, J.J.; Bertenshaw, S.R.; Carter, J.S.; Collins, P.W.; Docter, S.; Graneto, M.J.; Lee, L.F.; Malecha, J.W.; Miyashiro, J.M.; Rogers, R.S.; Rogier, D.J.; Yu, S.S.; Anderson, G.D.; Burton, E.G.; Cogburn, J.N.; Gregory, S.A.; Koboldt, C.M.; Perkins, W.E.; Seibert, K.; Veenhuizen, A.W.; Zhang, Y.Y.; Isakson, P.C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem., 1997, 40(9), 1347-1365.
[http://dx.doi.org/10.1021/jm960803q] [PMID: 9135032]
[4]
Lan, R.; Liu, Q.; Fan, P.; Lin, S.; Fernando, S.R.; McCallion, D.; Pertwee, R.; Makriyannis, A. Structure-activity relationships of pyrazole derivatives as cannabinoid receptor antagonists. J. Med. Chem., 1999, 42(4), 769-776.
[http://dx.doi.org/10.1021/jm980363y] [PMID: 10052983]
[5]
Varano, F.; Catarzi, D.; Colotta, V.; Filacchioni, G.; Galli, A.; Costagli, C.; Carlà, V. Synthesis and biological evaluation of a new set of pyrazolo[1,5-c]quinazoline-2-carboxylates as novel excitatory amino acid antagonists. J. Med. Chem., 2002, 45(5), 1035-1044.
[http://dx.doi.org/10.1021/jm010995b] [PMID: 11855983]
[6]
Katoch-Rouse, R.; Pavlova, O.A.; Caulder, T.; Hoffman, A.F.; Mukhin, A.G.; Horti, A.G. Synthesis, structure-activity relationship, and evaluation of SR141716 analogues: development of central cannabinoid receptor ligands with lower lipophilicity. J. Med. Chem., 2003, 46(4), 642-645.
[http://dx.doi.org/10.1021/jm020157x] [PMID: 12570386]
[7]
van Herk, T.; Brussee, J.; van den Nieuwendijk, A.M.C.H.; van der Klein, P.A.M.; IJzerman, A.P.; Stannek, C.; Burmeister, A.; Lorenzen, A. Pyrazole derivatives as partial agonists for the nicotinic acid receptor. J. Med. Chem., 2003, 46(18), 3945-3951.
[http://dx.doi.org/10.1021/jm030888c] [PMID: 12930155]
[8]
Shen, D-M.; Shu, M.; Chapman, K.T. Versatile and efficient solid-phase syntheses of pyrazoles and isoxazoles. Org. Lett., 2000, 2(18), 2789-2792.
[http://dx.doi.org/10.1021/ol006197h] [PMID: 10964366]
[9]
Stauffer, S.R.; Coletta, C.J.; Tedesco, R.; Nishiguchi, G.; Carlson, K.; Sun, J.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Pyrazole ligands: structure-affinity/activity relationships and estrogen receptor-α-selective agonists. J. Med. Chem., 2000, 43(26), 4934-4947.
[http://dx.doi.org/10.1021/jm000170m] [PMID: 11150164]
[10]
Wang, X.; Tan, J.; Grozinger, K. Cross-coupling of 1-aryl-5-bromopyrazoles: Regioselective synthesis of 3,5-disubstituted 1-arylpyrazoles. Tetrahedron Lett., 2000, 41, 4713-4716.
[http://dx.doi.org/10.1016/S0040-4039(00)00704-8]
[11]
Wang, Z-X.; Qin, H-L. Solventless syntheses of pyrazole derivatives. Green Chem., 2004, 6, 90-92.
[http://dx.doi.org/10.1039/b312833d]
[12]
Dodd, D.S.; Martinez, R.L.; Kamau, M.; Ruan, Z.; Van Kirk, K.; Cooper, C.B.; Hermsmeier, M.A.; Traeger, S.C.; Poss, M.A. Solid-phase synthesis of 5-substituted amino pyrazoles. J. Comb. Chem., 2005, 7(4), 584-588.
[http://dx.doi.org/10.1021/cc049814s] [PMID: 16004502]
[13]
Singh, S.K.; Saibaba, V.; Rao, Y.K. Cyclodehydration reaction in water medium leads to library/multigram synthesis of 1,5-diarylpyrazoles. Indian J. Chem., 2005, 44B, 1115-1118.
[http://dx.doi.org/10.1002/chin.200538131]
[14]
Gosselin, F.; O’Shea, P.D.; Webster, R.A.; Reamer, R.A.; Tillyer, R.D.; Grabowski, E.J.J. Highly regioselective synthesis of 1-aryl-3,4,5-substituted pyrazoles. Synlett, 2006, 19, 3267-3270.
[http://dx.doi.org/10.1055/s-2006-956487]
[15]
Heller, S.T.; Natarajan, S.R. 1,3-diketones from acid chlorides and ketones: A rapid and general one-pot synthesis of pyrazoles. Org. Lett., 2006, 8(13), 2675-2678.
[http://dx.doi.org/10.1021/ol060570p] [PMID: 16774229]
[16]
Humphries, P.S.; Finefield, J.M. Microwave-assisted synthesis utilizing supported reagents: A rapid and versatile synthesis of 1,5-diarylpyrazoles. Tetrahedron Lett., 2006, 47, 2443-2446.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.100]
[17]
Ming, L.; Lirong, W.; Xiao, W.; Changsheng, Y.; Weijun, F.; Guilong, Z.; Fangzhong, H.; Huazheng, Y. Use of polyfunctionalized ethylene synthons: Convenient synthesis of biologically active trifluoromethyl containing N-substituted-benzoylpyrazoles and triazole. Indian J. Chem., 2006, 45B, 483-488.
[18]
Fustero, S.; Román, R.; Sanz-Cervera, J.F.; Simón-Fuentes, A.; Cuñat, A.C.; Villanova, S.; Murguía, M. Improved regioselectivity in pyrazole formation through the use of fluorinated alcohols as solvents: synthesis and biological activity of fluorinated tebufenpyrad analogs. J. Org. Chem., 2008, 73(9), 3523-3529.
[http://dx.doi.org/10.1021/jo800251g] [PMID: 18399658]
[19]
Lehmann, F.; Holm, M.; Laufer, S. Three-component combinatorial synthesis of novel dihydropyrano[2,3-c]pyrazoles. J. Comb. Chem., 2008, 10(3), 364-367.
[http://dx.doi.org/10.1021/cc800028m] [PMID: 18407695]
[20]
Breen, J.R.; Sandford, G.; Yufit, D.S.; Howard, J.A.K.; Fray, J.; Patel, B. Continuous gas/liquid-liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination. Beilstein J. Org. Chem., 2011, 7, 1048-1054.
[http://dx.doi.org/10.3762/bjoc.7.120] [PMID: 21915207]
[21]
Kamal, A.; Sastry, K.N.V.; Chandrasekhar, D.; Mani, G.S.; Adiyala, P.R.; Nanubolu, J.B.; Singarapu, K.K.; Maurya, R.A. One-pot, three-component approach to the synthesis of 3,4,5-trisubstituted pyrazoles. J. Org. Chem., 2015, 80(9), 4325-4335.
[http://dx.doi.org/10.1021/jo502946g] [PMID: 25849582]
[22]
Seydimemet, M.; Ablajan, K.; Hamdulla, M.; Li, W.; Omar, A.; Obul, M. L-Proline catalysed four-component one-pot synthesis of coumarin-containing dihydropyrano[2,3-c]pyrazoles under ultrasonic irradiation. Tetrahedron, 2016, 72, 7599-7605.
[http://dx.doi.org/10.1016/j.tet.2016.10.016]
[23]
Bhosle, M.R.; Khillare, L.D.; Dhumal, S.T.; Mane, R.A. A facile synthesis of 6-amino-2H, 4H –pyrano[2,3-c]pyrazole-5-carbonitriles in deep eutectic solvent. Chin. Chem. Lett., 2016, 27, 370-374.
[http://dx.doi.org/10.1016/j.cclet.2015.12.005]
[24]
Komendantova, A.S.; Lyssenko, K.A.; Zavarzin, I.V.; Volkova, Y.A. Iodine-promoted synthesis of pyrazoles from 1,3-dicarbonyl compounds and oxamic acid thiohydrazides. Org. Chem. Front., 2020, 7, 1640-1646.
[http://dx.doi.org/10.1039/D0QO00476F]
[25]
Xu, Y.; Chen, Q.; Tian, Y.; Wu, W. You, Yi; Weng, Z. Silver-catalyzed synthesis of 5-aryl-3-trifluoromethyl pyrazoles. Tetrahedron Lett., 2020, 61, 151455.
[http://dx.doi.org/10.1016/j.tetlet.2019.151455]
[26]
Upadhyay, A.; Sharma, L.K.; Singh, V.K.; Dubey, R.; Kumar, N.; Singh, R.K.P. Electrochemically induced one pot synthesis of 1,4-dihydropyrano[2,3-c]-pyrazole-5-carbonitrile derivatives via a four component-tandem strategy. Tetrahedron Lett., 2017, 58, 1245-1249.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.049]
[27]
Cheng, J.; Li, W.; Duan, Y.; Cheng, Y.; Yu, S.; Zhu, C. Relay visible-light photoredox catalysis: synthesis of pyrazole derivatives via formal [4+1] annulation and aromatization. Org. Lett., 2017, 19(1), 214-217.
[http://dx.doi.org/10.1021/acs.orglett.6b03497] [PMID: 27996274]
[28]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2017, 125, 101-116.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.021] [PMID: 27657808]
[29]
Huang, Y.R.; Katzenellenbogen, J.A. Regioselective synthesis of 1,3,5-triaryl-4-alkylpyrazoles: novel ligands for the estrogen receptor. Org. Lett., 2000, 2(18), 2833-2836.
[http://dx.doi.org/10.1021/ol0062650] [PMID: 10964377]
[30]
Pinto, D.C.G.A.; Silva, A.M.S.; Lévai, A.; Cavaleiro, J.A.S.; Patonay, T.; Elguero, J. Synthesis of 3-benzoyl-4-styryl-2-pyrazolines and their oxidation to the corresponding pyrazoles. Eur. J. Org. Chem., 2000, 14, 2593-2599.
[http://dx.doi.org/10.1002/1099-0690(200007)2000:14<2593:AID-EJOC2593>3.0.CO;2-Y]
[31]
Baldwin, J.E.; Pritchard, G.J.; Rathmell, R.E. The reactions of diacetylenic ketones with nitrogen nucleophiles; facile preparation of alkynyl substitutes pyrimidines and pyrazoles. J. Chem. Soc., Perkin Trans. 1, 2001, 1, 2906-2908.
[http://dx.doi.org/10.1039/b108645f]
[32]
Katritzky, A.R.; Wang, M.; Zhang, S.; Voronkov, M.V.; Steel, P.J. Regioselective synthesis of polysubstituted pyrazoles and isoxazoles. J. Org. Chem., 2001, 66(20), 6787-6791.
[http://dx.doi.org/10.1021/jo0101407] [PMID: 11578235]
[33]
Chang, K-T.; Choi, Y.H.; Kim, S-H.; Yoon, Y-J.; Lee, W.S. Regioselective synthesis of pyrazoles via the ring cleavage of 3-substituted N-alkylated 3-hydroxyisoindolin-1-ones. J. Chem. Soc., Perkin Trans. 1, 2002, 2, 207-210.
[34]
Bishop, B.C.; Brands, K.M.J.; Gibb, A.D.; Kennedy, D.J. Regioselective synthesis of 1,3,5-substituted pyrazoles from acetylenic ketones and hydrazines. Synthesis, 2004, 1, 43-52.
[35]
Bhat, B.A.; Puri, S.C.; Qurishi, M.A.; Dhar, K.L.; Qazi, G.N. Synthesis of 3,5-diphenyl-1H-pyrazoles. Synth. Commun., 2005, 35, 1135-1142.
[http://dx.doi.org/10.1081/SCC-200054225]
[36]
Persson, T.; Nielsen, J. Synthesis of N-methoxy-N-methyl-β-enaminoketoesters: New synthetic precursors for the regioselective synthesis of heterocyclic compounds. Org. Lett., 2006, 8(15), 3219-3222.
[http://dx.doi.org/10.1021/ol0611088] [PMID: 16836370]
[37]
Liu, H-L.; Jiang, H-F.; Zhang, M.; Yao, W-J.; Zhu, Q-H.; Tang, Z. One pot three-component synthesis of pyrazoles through a tandem coupling-cyclocondensation sequence. Tetrahedron Lett., 2008, 49, 3805-3809.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.153]
[38]
Aggarwal, R.; Kumar, R. Iodobenzene diacetate mediated oxidation of N-substituted hydrazones of chalcones: An efficient regioselective synthesis of 1,3,5-trisubstituted pyrazoles. Synth. Commun., 2009, 39, 2169-2177.
[http://dx.doi.org/10.1080/00397910802640038]
[39]
Zora, M.; Kivrak, A. Synthesis of pyrazoles via CuI-mediated electrophilic cyclizations of α,β-alkynic hydrazones. J. Org. Chem., 2011, 76(22), 9379-9390.
[http://dx.doi.org/10.1021/jo201685p] [PMID: 21992574]
[40]
Zora, M.; Kivrak, A.; Yazici, C. Synthesis of pyrazoles via electrophilic cyclization. J. Org. Chem., 2011, 76(16), 6726-6742.
[http://dx.doi.org/10.1021/jo201119e] [PMID: 21739980]
[41]
Goyal, A.; Jain, S. Synthesis and antibacterial screening of some 1-phenyl-3-(4-(3-propanoloxy)phenyl)-5-aryl-1H-pyrazoles. Der. Chemica. Sinica., 2012, 3, 249-254.
[42]
Markovic, V.; Joksovic, M.D. Synthesis of N-Unsubstituted pyrazoles: Semicarbazide Hydrochloride as an alternative to hydrazine for preparation of pyrazole-3-carboxylate derivatives and 3,5-disubstituted pyrazoles. Green Chem., 2015, 17, 842-847.
[http://dx.doi.org/10.1039/C4GC02028F]
[43]
Li, D.Y.; Mao, X.F.; Chen, H.J.; Chen, G.R.; Liu, P.N. Rhodium-catalyzed addition-cyclization of hydrazines with alkynes: pyrazole synthesis via unexpected C-N bond cleavage. Org. Lett., 2014, 16(13), 3476-3479.
[http://dx.doi.org/10.1021/ol501402p] [PMID: 24964008]
[44]
Prabhudeva, M.G.; Bharath, S.; Kumar, A.D.; Naveen, S.; Lokanath, N.K.; Mylarappa, B.N.; Kumar, K.A. Design and environmentally benign synthesis of novel thiophene appended pyrazole analogues as anti-inflammatory and radical scavenging agents: Crystallographic, in silico modeling, docking and SAR characterization. Bioorg. Chem., 2017, 73, 109-120.
[http://dx.doi.org/10.1016/j.bioorg.2017.06.004] [PMID: 28648923]
[45]
Sarmah, B.; Srivastava, R. Octahedral MnO2 molecular sieve decorated Meso-ZSM-5 catalyst for eco-friendly synthesis of pyrazoles and carbamates. Ind. Eng. Chem. Res., 2017, 56, 15017-15029.
[http://dx.doi.org/10.1021/acs.iecr.7b03993]
[46]
Wasizuka, K-I.; Nagai, K.; Minakata, S.; Ryu, I. Komatsu, M. Novel generation of azomethine imines from α-silylnitrosamines by 1,4-silatropic shift and their cycloaddition. Tetrahedron Lett., 1999, 40, 8849-8853.
[http://dx.doi.org/10.1016/S0040-4039(99)01859-6]
[47]
Wasizuka, K-I.; Nagai, K.; Minakata, S.; Ryu, I. Komatsu, M. Generation and cycloaddition of polymer-supported azomethine imines: traceless synthesis of pyrazole derivatives from α-silylnitrosoamide derivatives bound to resin. Tetrahedron Lett., 2000, 41, 691-695.
[http://dx.doi.org/10.1016/S0040-4039(99)02140-1]
[48]
Aggarwal, V.K.; de Vicente, J.; Bonnert, R.V. A novel one-pot method for the preparation of pyrazoles by 1,3-dipolar cycloadditions of diazo compounds generated in situ. J. Org. Chem., 2003, 68(13), 5381-5383.
[http://dx.doi.org/10.1021/jo0268409] [PMID: 12816503]
[49]
Deng, X.; Mani, N.S. Reaction of N-monosubstituted hydrazones with nitroolefins: A novel regioselective pyrazole synthesis. Org. Lett., 2006, 8(16), 3505-3508.
[http://dx.doi.org/10.1021/ol061226v] [PMID: 16869646]
[50]
Corradi, A.; Leonelli, C.; Rizzuti, A.; Rosa, R.; Veronesi, P.; Grandi, R.; Baldassari, S.; Villa, C. New “green” approaches to the synthesis of pyrazole derivatives. Molecules, 2007, 12(7), 1482-1495.
[http://dx.doi.org/10.3390/12071482] [PMID: 17909503]
[51]
Xie, J-W.; Wang, Z.; Yang, W-J.; Kong, L-C.; Xu, D-C. Efficient method for the synthesis of functionalized pyrazoles by catalyst-free one-pot tandem reaction of nitroalkenes with ethyl diazoacetate. Org. Biomol. Chem., 2009, 7(21), 4352-4354.
[http://dx.doi.org/10.1039/b915231h] [PMID: 19830281]
[52]
Wu, C.; Fang, Y.; Larock, R.C.; Shi, F. Synthesis of 2H-indazoles by the [3 + 2] cycloaddition of arynes and sydnones. Org. Lett., 2010, 12(10), 2234-2237.
[http://dx.doi.org/10.1021/ol100586r] [PMID: 20394430]
[53]
Fang, Y.; Wu, C.; Larock, R.C.; Shi, F. Synthesis of 2H-indazoles by the [3 + 2] dipolar cycloaddition of sydnones with arynes. J. Org. Chem., 2011, 76(21), 8840-8851.
[http://dx.doi.org/10.1021/jo201605v] [PMID: 21970468]
[54]
Nair, D.; Pavashe, P.; Namboothri, I.N.N. 1,3-Dipolar cycloaddition of chalcones and arylidene-1,3-dicarbonyls with diazosulfone for the regioselective synthesis of functionalised pyrazoles and pyrazolines. Tetrahedron, 2018, 74, 2716-2724.
[http://dx.doi.org/10.1016/j.tet.2018.04.030]
[55]
Voronin, V.V.; Ledovskaya, M.S.; Gordeev, E.G.; Rodygin, K.S.; Ananikov, V.P. [3+2]-Cycloaddition of in situ generated nitrile imines and acetylene for assembling of 1,3-disubstitued pyrazoles with quantitative deuterium labeling. J. Org. Chem., 2018, 83(7), 3819-3828.
[http://dx.doi.org/10.1021/acs.joc.8b00155] [PMID: 29547278]
[56]
Das, P.; Gondo, S.; Tokunaga, E.; Sumii, Y. Shibata. N. Anionic triflydiazomethane: generation and its application for synthesis of pyrazole-3-triflone via [3+2] cycloaddition reaction. Org. Lett., 2018, 20, 558-561.
[http://dx.doi.org/10.1021/acs.orglett.7b03664] [PMID: 29320193]
[57]
Pal, G.; Paul, S.; Ghosh, P.P. Das. A.R. PhIO promoted synthesis of nitrile imines and nitrile oxides within micellar core in aqueous media: a regiocontrolled approach to synthesize densely functionalized pyrazole and isoxazoline derivatives. RSC Advances, 2014, 4, 8300-8307.
[http://dx.doi.org/10.1039/c3ra46129g]
[58]
Cao, G.; Liu, X.; Wang, L.; Li, Y.; Teng, D. Cascade 1,3-dipolar cycloaddition/SO2 extrusion approach for the rapid synthesis of tetraaryl-substituted pyrazoles with induced emission characteristics. Tetrahedron, 2020, 76, 131568.
[http://dx.doi.org/10.1016/j.tet.2020.131568]
[59]
Feng, G.; Xu, S.; Chen, R.; Chen, W.; Wang, K-K.; Wang, S. Facile synthesis of pyrazoles via [3+2] cycloaddition of diazocarbonyl compounds and enones. Tetrahedron Lett., 2020, 61, 152622.
[http://dx.doi.org/10.1016/j.tetlet.2020.152622]
[60]
Zhao, M-N.; Zhang, M-N.; Ren, Z-H.; Wang, Y-Y.; Guan, Z-H. Base-mediated formal [3+2] cycloaddition of β,γ-alkenyl esters and p-TsN3 for the synthesis of pyrazole. Sci. Bull. (Beijing), 2017, 62, 493-496.
[http://dx.doi.org/10.1016/j.scib.2017.03.003]
[61]
Zhang, Q.; Meng, L-G.; Wang, K.; Wang, L. (n)Bu3P-catalyzed desulfonylative [3 + 2] cycloadditions of allylic carbonates with arylazosulfones to pyrazole derivatives. Org. Lett., 2015, 17(4), 872-875.
[http://dx.doi.org/10.1021/ol503735c] [PMID: 25651031]
[62]
Zeng, H.; Fang, X.; Yang, Z.; Zhu, C.; Jiang, H. Regioselective synthesis of 5-trifluoromethylpyrazoles by [3+2] cycloaddition of nitrile imines and 2-bromo-3,3,3-trifluoropropene. J. Org. Chem., 2021, 86(3), 2810-2819.
[http://dx.doi.org/10.1021/acs.joc.0c02765] [PMID: 33423498]
[63]
Zhao, P. Zeng, Zi; Feng, X.; Liu, X. Multisubstituted pyrazole synthesis via [3+2] cycloaddition/rearrangement/NH insertion cascade reaction of α-diazoesters and ynones. Chin. Chem. Lett., 2021, 32, 132-135.
[http://dx.doi.org/10.1016/j.cclet.2020.11.053]
[64]
Giacomelli, G.; Porcheddu, A.; Salaris, M.; Taddei, M. Microwave-assisted solution-phase synthesis of 1,4,5-trisubstituted pyrazoles. Eur. J. Org. Chem., 2003, 3, 537-541.
[http://dx.doi.org/10.1002/ejoc.200390091]
[65]
Reddy, G.J.; Rao, K.S. A rapid and facile synthesis of isoxazolyl and pyrazolyl phenols from enaminoketones using montmorillonite under heterogeneous catalytic conditions. Indian J. Chem., 2005, 44B, 1295-1297.
[http://dx.doi.org/10.1002/chin.200544048]
[66]
Mukherjee, A.; Mishra, M.; Chatterjee, A.; Sarkar, M.; Chowdhury, S.K.D.; Mahalanabis, K.K. On the regiospecificity of 3,5-disubstituted pyrazoles derived from C-acylated-β-enaminonitriles and esters. Indian J. Chem., 2005, 44B, 2333-2337.
[67]
Surmont, R.; Verniest, G.; De Schrijver, M.; Thuring, J.W.; ten Holte, P.; Deroose, F.; De Kimpe, N. Synthesis of 3-amino-4-fluoropyrazoles. J. Org. Chem., 2011, 76(10), 4105-4111.
[http://dx.doi.org/10.1021/jo2000989] [PMID: 21500813]
[68]
Raghunadh, A.; Meruva, S.B.; Mekala, R.; Rao, K.R.; Krishna, T.; Chary, R.G.; Rao, L.V.; Kumar, U.K.S. An efficient regioselective copper catalyzed multi-component synthesis of 1,3-disubstituted pyrazoles. Tetrahedron Lett., 2014, 55, 2986-2990.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.125]
[69]
Guo, Y.; Wang, G.; Wei, L.; Wan, J.P. Wei, Li and Wan, J-P. Domino C-H sulfonylation and pyrazole annulation for fully substituted pyrazole synthesis in water using hydrophilic enaminones. J. Org. Chem., 2019, 84(5), 2984-2990.
[http://dx.doi.org/10.1021/acs.joc.8b02897] [PMID: 30714367]
[70]
Rathelot, P.; Azas, N.; El-Kashef, H.; Delmas, F.; Di Giorgio, C.; Timon-David, P.; Maldonado, J.; Vanelle, P. 1,3-Diphenylpyrazoles: synthesis and antiparasitic activities of azomethine derivatives. Eur. J. Med. Chem., 2002, 37(8), 671-679.
[http://dx.doi.org/10.1016/S0223-5234(02)01388-0] [PMID: 12161064]
[71]
Lebedev, A.V.; Lebedeva, A.B.; Sheludyakov, V.D.; Kovaleva, E.A.; Ustinova, O.L.; Kozhevnikov, I.B. Vilsmeier formylation of hydrazones and semicarbazones derived from alkyl, benzyl, and cycloalkyl methyl ketones. Russ. J. Gen. Chem., 2005, 75, 412-416.
[http://dx.doi.org/10.1007/s11176-005-0241-y]
[72]
Mohite, S.K.; Magdum, C.S. Novel synthesis of functionally substituted N-{[3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl]methylene}anilines and their pharmacological screening. Int. J. Chem. Sci., 2006, 4, 980-988.
[73]
Prakash, O.; Pannu, K.; Naithani, R.; Kaur, H. One-pot synthesis of oxime derivatives of 1,3-diphenylpyrazole-4-carboxaldehydes from acetophenone phenylhydrazones using Vilsmeier-Haack reagent. Synth. Commun., 2006, 36, 3479-3485.
[http://dx.doi.org/10.1080/00397910600942941]
[74]
Nag, S.; Singh, V.; Batra, S. Studies on the Baylis-Hillman reaction of pyrazolecarbaldehydes under the influence of DABCO: positional effect on the reactivity of the formyl group. ARKIVOC, 2007, (xiv), 185-203.
[http://dx.doi.org/10.3998/ark.5550190.0008.e18]
[75]
Bawa, S.; Ahmad, F.; Kumar, S. 3-Chloro-4-fluoro-N-{[3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl]methyl}aniline. Molbank, 2009, 4, M640.
[http://dx.doi.org/10.3390/M640]
[76]
Veettil, S.P.; Haridas, K.R. 1,3,5-Tris{[N-(1,3-diphenyl-1H-pyrazol-4-yl)methylene]-4-aminophenyl}benzene. Molbank, 2009, 4, M624.
[http://dx.doi.org/10.3390/M624]
[77]
Vora, J.J.; Vasava, S.B.; Parmar, K.C.; Chauhan, S.K.; Sharma, S.S. Synthesis, spectral and microbial studies of some novel Schiff base derivatives of 4-methylpyridin-2-amine. E-J. Chem., 2009, 6, 1205-1210.
[http://dx.doi.org/10.1155/2009/247209]
[78]
Abu-Zaied, M.A.; El-Telbani, E.M.; Elgemeie, G.H.; Nawwar, G.A.M. Synthesis and in vitro anti-tumor activity of new oxadiazole thioglycosides. Eur. J. Med. Chem., 2011, 46(1), 229-235.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.008] [PMID: 21115211]
[79]
Sridhar, R.; Perumal, P.T.; Etti, S.; Shanmugam, G.; Ponnuswamy, M.N.; Prabavathy, V.R.; Mathivanan, N. Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates. Bioorg. Med. Chem. Lett., 2004, 14(24), 6035-6040.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.066] [PMID: 15546724]
[80]
Nikitenko, A.A.; Winkley, M.W.; Zeldis, J.; Kremer, K.; Chan, A.W-Y.; Strong, H.; Jennings, M.; Jirkovsky, I.; Blum, D.; Khafizova, G.; Grosu, G.T.; Venkatesan, A.M. Selective hydrolysis of ethyl 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole-2-carboxylate and ethyl 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole-3-carboxylate as a key step in the large-scale synthesis of bicyclic heteroaryl carboxyaldehydes. Org. Process Res. Dev., 2006, 10, 712-716.
[http://dx.doi.org/10.1021/op050218b]
[81]
Matiichuk, V.S.; Potopnyk, M.A.; Obushak, N.D. Molecular design of pyrazolo[3,4-d]pyridazines. Russ. J. Org. Chem., 2008, 44, 1352-1361.
[http://dx.doi.org/10.1134/S1070428008090182]
[82]
Kumar, D.B.A.; Prakash, G.K.; Kumaraswamy, M.N.; Nandeshwarappa, B.P.; Sherigara, B.S.; Mahadevan, K.M. Synthesis and antimicrobial investigation of some novel phenyl pyrazole, azetidinone and diazenyl ethanone derivatives of benzofurans. Indian J. Chem., 2007, 46B, 336-343.
[http://dx.doi.org/10.1002/chin.200723094]
[83]
Mogilaiah, K.; Jagadeeshwar, K.; Prashad, R.S. Green synthesis of 3-(2-oxo-2H-chromenyl)-1-[3-(4-methoxyphenyl)[1,8]naphthyridin-2-yl]-1H-4-pyrazolecarbaldehydes under microwave irradiation. Indian J. Chem., 2009, 48B, 1466-1469.
[84]
Mogilaiah, K.; Vidya, K.; Kavitha, S.; Kumar, K.S. Synthesis and antibacterial activity of 3-aryl-4-formyl-1-[3-(3-chlorophenyl)-1,8-naphthyridin-2-yl]pyrazoles. Indian J. Chem., 2009, 48B, 282-285.
[http://dx.doi.org/10.1002/chin.200924153]
[85]
Shamsuzzaman; Khan, M.S.; Tabassum, Z.; Alam, M. Synthesis and characterization of steroidal 5'-formyl[6,7-c]pyrazoles using Vilsmeier-Haack reagent. Indian J. Chem., 2009, 48B, 1183-1186.
[86]
Goudarshivannanavar, B.C.; Jayadevappa, H.; Mahadevan, K.M. A convenient synthesis of 2(2-benzo[b]furo)indoles and benzofuropyrazoles. Indian J. Chem., 2009, 48B, 1419-1423.
[87]
Cheng, K-M.; Huang, Y-Y.; Huang, J-J.; Kaneko, K.; Kimura, M.; Takayama, H.; Juang, S-H.; Wong, F.F. Synthesis and antiproliferative evaluation of N,N-disubstituted-N'-[1-aryl-1H-pyrazol-5-yl]-methnimidamides. Bioorg. Med. Chem. Lett., 2010, 20(22), 6781-6784.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.133] [PMID: 20855206]
[88]
Hu, H.; Ge, C.; Ding, L.; Zhang, A. Synthesis of novel 1-[(2,6-dichloro-4-trifluoromethyl)phenyl]-3-aryl-1H-pyrazole-4-carbaldehydes. Molecules, 2010, 15(10), 7472-7481.
[http://dx.doi.org/10.3390/molecules15107472] [PMID: 20975629]
[89]
Ivonin, S.P.; Kurpil, B.B.; Valochnyuk, D.M.; Grygorenko, O.O. Regioselective synthesis of pyrazoles fused with heteroaliphatic amines at the [3,4-c] edges. Tetrahedron Lett., 2015, 56, 6248-6250.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.108]
[90]
Ivonin, S.P.; Kurpil, B.B.; Rusanov, E.D.; Grygorenko, O.O. N-Alkylhydrazones of aliphatic ketones in the synthesis of 1,3,4-trisubstituted non-symmetric pyrazoles. Tetrahedron Lett., 2014, 55, 2187-2189.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.058]
[91]
Lee, K.Y.; Kim, J.M.; Kim, J.N. Regioselective synthesis of 1,3,4,5-tetrasubstituted pyrazoles from Baylis-Hillman adducts. Tetrahedron Lett., 2003, 44, 6737-6740.
[http://dx.doi.org/10.1016/S0040-4039(03)01648-4]
[92]
Nikpassand, M.; Mamaghani, M.; Tabatabaeian, K.; Kupaei Abiazi, M. KSF: an efficient catalyst for the regioselective synthesis of 1,5-diaryl pyrazoles using Baylis-Hillman adducts. Mol. Divers., 2009, 13(3), 389-393.
[http://dx.doi.org/10.1007/s11030-009-9123-2] [PMID: 19234755]
[93]
Xie, J.; Sha, F.; Wu, X-Y. Asymmetric synthesis of pyrano[2,3-c]pyrazoles via a cascade reaction between Morita-Baylis-Hillman acetates of nitroalkene and pyrazolones. Tetrahedron, 2016, 72, 4047-4054.
[http://dx.doi.org/10.1016/j.tet.2016.05.033]
[94]
Olivera, R.; SanMartin, R.; Domínguez, E. A combination of tandem amine-exchange/heterocyclization and biaryl coupling reactions for the straightforward preparation of phenanthro[9,10-d]pyrazoles. J. Org. Chem., 2000, 65(21), 7010-7019.
[http://dx.doi.org/10.1021/jo000609i] [PMID: 11031023]
[95]
Mohamed Ahmed, M.S.; Kobayashi, K.; Mori, A. One-pot construction of pyrazoles and isoxazoles with palladium-catalyzed four-component coupling. Org. Lett., 2005, 7(20), 4487-4489.
[http://dx.doi.org/10.1021/ol051841j] [PMID: 16178565]
[96]
Attanasi, O.A.; Favi, G.; Filippone, P.; Giorgi, G.; Mantellini, F.; Moscatelli, G.; Spinelli, D. Flexible protocol for the chemo- and regioselective building of pyrroles and pyrazoles by reactions of Danishefsky’s dienes with 1,2-diaza-1,3-butadienes. Org. Lett., 2008, 10(10), 1983-1986.
[http://dx.doi.org/10.1021/ol800557h] [PMID: 18426219]
[97]
Cocconcelli, G.; Ghiron, C.; Hayder, S.; Micco, I.; Zanaletti, R. Synthesis of novel 4-fluoro-2H-pyrazol-3-ylamines. Synth. Commun., 2010, 40, 2547-2555.
[http://dx.doi.org/10.1080/00397910903277912]
[98]
Mor, S.; Mohil, R.; Kumar, D.; Ahuja, M. Synthesis and antimicrobial activities of some isoxazolyl thiazolyl pyrazoles. Med. Chem. Res., 2012, 21, 3541-3548.
[http://dx.doi.org/10.1007/s00044-011-9859-y]
[99]
Kumar, A.; Lohan, P.; Aneja, D.K.; Gupta, G.K.; Kaushik, D.; Prakash, O. Design, synthesis, computational and biological evaluation of some new hydrazino derivatives of DHA and pyranopyrazoles. Eur. J. Med. Chem., 2012, 50, 81-89.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.042] [PMID: 22357113]
[100]
Yang, Y. Hu, Zi-L.; Li, R-H.; Chen, Y.H.; Zhan, Z-P. Pyrazole synthesis via a cascade Sonogashira coupling/cyclisation of N-propargyl sulfonylhydrazones. Org. Biomol. Chem., 2018, 16, 197-201.
[http://dx.doi.org/10.1039/C7OB02576A] [PMID: 29227496]
[101]
Regalla, V.R.; Addada, R.R.; Chatterjee, A. A simple and efficient strategy for the synthesis of fused pyrazole derivative. Tetrahedron Lett., 2018, 59, 4161-4164.
[http://dx.doi.org/10.1016/j.tetlet.2018.10.017]
[102]
Venkateswarlu, V.; Kour, J.; Kumar, K.K.A.; Verma, P.K.; Reddy, G.L.; Hussain, Y.; Tabassum, A.; Balgotra, S.; Gupta, S.; Hudwekar, A.D.; Vishwakarma, R.A.; Sawant, S.D. Direct N-heterocyclisation of hydrazines to access styralated pyrazoles: synthesis of 1,3,5-trisubstituted pyrazoles and dihydropyrazoles. RSC Advances, 2018, 8, 26523-26527.
[http://dx.doi.org/10.1039/C8RA04550J]
[103]
Panda, N.; Ojha, S. Facile synthesis of pyrazoles by iron-catalysed regioselective cyclisation of hydrazone and 1,2-diol under ligand free conditions. J. Org. Metallic Chem., 2018, 861, 244-251.
[http://dx.doi.org/10.1016/j.jorganchem.2018.02.043]
[104]
Maddila, S.; Rana, S.; Pagadala, R.; Kankala, S.; Maddila, S.; Jonnalagadda, S.B. Synthesis of pyrazole-4-carbonitrile derivatives in aqueous media with CuO/ZrO2 as a recyclable catalyst. Catal. Commun., 2015, 61, 26-30.
[http://dx.doi.org/10.1016/j.catcom.2014.12.005]
[105]
Schmitt, D.C.; Taylor, A.P.; Flick, A.C.; Kyne, R.E., Jr Synthesis of pyrazoles from 1,3-diols via hydrogen transfer catalysis. Org. Lett., 2015, 17(6), 1405-1408.
[http://dx.doi.org/10.1021/acs.orglett.5b00266] [PMID: 25719568]
[106]
Yadav, S.; Rai, P.; Srivastava, M.; Singh, J.; Tiwari, K.P.; Singh, J. Atmospheric oxygen mediated synthesis of pyrazole under visible irradiation. Tetrahedron Lett., 2015, 56, 5831-5835.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.039]
[107]
Chen, B.; Zhu, C.; Tang, Y.; Ma, S. Copper-mediated pyrazole synthesis from 2,3-allenoates or 2-alkynoates, amines and nitriles. Chem. Commun. (Camb.), 2014, 50(57), 7677-7679.
[http://dx.doi.org/10.1039/c4cc02856b] [PMID: 24897944]
[108]
Srivastava, M.; Rai, P.; Singh, J.; Singh, J. Efficient iodine-catalysed one pot synthesis of highly functionalised pyrazoles in water. New J. Chem., 2014, 38, 302-307.
[http://dx.doi.org/10.1039/C3NJ01149F]
[109]
Sun, A.; Ye, J-H.; Yu, H.; Zhang, W.; Wang, X. A new efficient synthesis of pyrazoles from hydrazonyl halides and β-oxophosphonates. Tetrahedron Lett., 2014, 55, 889-892.
[http://dx.doi.org/10.1016/j.tetlet.2013.12.045]
[110]
Zhang, Q.; Yu, M.; Yuan, J.; Zhang, R.; Liang, Y.; Tian, J.; Dong, D. Formal [4+1] Annulation of α-arylhydrazonoketones and dimethylsulfoxonium methylide: one-pot synthesis of substituted pyrazoles and dihydropyrazoles. J. Org. Chem., 2016, 81(14), 6036-6041.
[http://dx.doi.org/10.1021/acs.joc.6b01127] [PMID: 27327446]
[111]
Pünner, F.; Sohtome, Y.; Sodeoka, M. Solvent-dependent copper-catalyzed synthesis of pyrazoles under aerobic conditions. Chem. Commun. (Camb.), 2016, 52(98), 14093-14096.
[http://dx.doi.org/10.1039/C6CC06935E] [PMID: 27805203]
[112]
Comas-Barcelo, J.; Blanco-Ania, D.; Van den Broek, S.A.M.W.; Nieuwland, P.J.; Harrity, J.P.A.; Rutjes, F.P.J.T. Cu-catalysed pyrazole synthesis in continuous flow. Catal. Sci. Technol., 2016, 6, 4718-4723.
[http://dx.doi.org/10.1039/C5CY02247A]
[113]
Cheng, B.; Bao, B.; Xu, W.; Li, Y.; Li, H.; Zhang, X.; Li, Y.; Wang, T.; Zhai, H. Synthesis of fully substituted pyrazoles from pyridinium 1,4-zwitterionic thiolates and hydrazonoyl chlorides via a [[3 + 3] - 1] pathway. Org. Biomol. Chem., 2020, 18(15), 2949-2955.
[http://dx.doi.org/10.1039/D0OB00224K] [PMID: 32242607]
[114]
Cardinale, L.; Neumeier, M.; Majek, M.; Jacobi von Wangelin, A. Aryl pyrazoles from photocatalytic cycloaddition of arenediazonium. Org. Lett., 2020, 22(18), 7219-7224.
[http://dx.doi.org/10.1021/acs.orglett.0c02514] [PMID: 32886879]
[115]
Pearce, A.J.; Harkins, R.P.; Reiner, B.R.; Wotal, A.C.; Dunscomb, R.J.; Tonks, I.A. Multicomponent pyrazole synthesis from alkynes, nitriles and Titanium Imido complexes via oxidatively induced N-N bond coupling. J. Am. Chem. Soc., 2020, 142(9), 4390-4399.
[http://dx.doi.org/10.1021/jacs.9b13173] [PMID: 32043879]
[116]
Zhu, J-N.; Wang, W-K. Jin, Ze-H.; Wang, Q-K.; Zhao, S-Y. Pyrrolo[3,4-c]pyrazole synthesis via Copper(I) chloride-catalyzed oxidative coupling of hydrazones to maleimides. Org. Lett., 2019, 21, 5046-5050.
[http://dx.doi.org/10.1021/acs.orglett.9b01641] [PMID: 31247786]
[117]
Meng, Y.; Zhang, T.; Gong, X.; Zhang, M.; Zhu, C. Visible-light promoted one-pot synthesis of pyrazoles from alkynes and hyrazines. Tetrahedron Lett., 2019, 60, 171-174.
[http://dx.doi.org/10.1016/j.tetlet.2018.12.009]
[118]
Yuan, H.; Li, Y.; Zhao, H.; Yang, Z.; Li, X.; Li, W. Asymmetric synthesis of atropisomeric pyrazole via an enantioselective reaction of azonaphthalene with pyrazolone. Chem. Commun. (Camb.), 2019, 55(84), 12715-12718.
[http://dx.doi.org/10.1039/C9CC06360A] [PMID: 31588462]
[119]
Everson, N.; Yniguez, K.; Loop, L.; Lazaro, H.; Belanger, B.; Koch, G.; Bach, J.; Manjunath, A.; Schioldager, R.; Law, J.; Grabenauer, M.; Eagon, S. Microwave synthesis of 1-Aryl -1H-pyrazole-5-amines. Tetrahedron Lett., 2019, 60, 72-74.
[http://dx.doi.org/10.1016/j.tetlet.2018.11.060]
[120]
Deng, B.; Li, C.; Yuan, J.; Rao, C.B.; Zhao, Y.; Zhang, R.; Dong, D. Synthesis of substituted dihydro-1H-pyrazoles and 1H-pyrazoles via formal [4+1] annulation of α-arylhydrazonoketones and dimethylsulfonium methylides. Tetrahedron, 2019, 75, 2273-2279.
[http://dx.doi.org/10.1016/j.tet.2019.01.061]
[121]
Zeng, L.; Guo, X-Q.; Yang, Z-J.; Gan, Y.; Chen, L-M.; Kang, T-R. Metal-free and highly regioselective synthesis of N-heteroaryl substituted pyrazoles from α,β-unsaturated N-tosylhydrazones and heteroaryl chlorides. Tetrahedron Lett., 2019, 60, 150943.
[http://dx.doi.org/10.1016/j.tetlet.2019.07.034]
[122]
Otvos, S.B.; Georgiades, A.; Ozsvar, D.; Fulop, F. Continuous-flow synthesis of 3,5-disubstituted pyrazoles via sequential alkyne homocoupling and Cope-type hydroamination. RSC Advances, 2019, 9, 8197-8203.
[http://dx.doi.org/10.1039/C9RA01590F]
[123]
Wezeman, T.; Comas-Barceló, J.; Nieger, M.; Harrity, J.P.A.; Bräse, S. Synthesis of aminopyrazoles from sydnones and ynamides. Org. Biomol. Chem., 2017, 15(7), 1575-1579.
[http://dx.doi.org/10.1039/C6OB02518H] [PMID: 28120987]
[124]
Dalal, K.S.; Tayade, Y.A.; Wagh, Y.B.; Trivedi, D.R.; Dalal, D.S.; Chaudhari, B.L. Bovine Serum Albumin Catalysed one pot, three-component synthesis of dihydropyrano[2,3-c]pyrazole derivatives in aqueous ethanol. RSC Advances, 2016, 6, 14868-14879.
[http://dx.doi.org/10.1039/C5RA13014J]
[125]
Frank, A.O.; Feldkamp, M.D.; Kennedy, J.P.; Waterson, A.G.; Pelz, N.F.; Patrone, J.D.; Vangamudi, B.; Camper, D.V.; Rossanese, O.W.; Chazin, W.J.; Fesik, S.W. Discovery of a potent inhibitor of replication protein a protein-protein interactions using a fragment-linking approach. J. Med. Chem., 2013, 56(22), 9242-9250.
[http://dx.doi.org/10.1021/jm401333u] [PMID: 24147804]
[126]
Ahsan, M.J.; Khalilullah, H.; Yasmin, S.; Jadav, S.S.; Govindasamy, J. Synthesis, characterisation, and in vitro anticancer activity of curcumin analogues bearing pyrazole/pyrimidine ring targeting EGFR tyrosine kinase. BioMed Res. Int., 2013, 2013, 239354.
[http://dx.doi.org/10.1155/2013/239354] [PMID: 24089667]
[127]
Kibria, G.; Hatakeyama, H.; Harashima, H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system. Arch. Pharm. Res., 2014, 37(1), 4-15.
[http://dx.doi.org/10.1007/s12272-013-0276-2] [PMID: 24272889]
[128]
Nugiel, D.A.; Vidwans, A.; Etzkorn, A.M.; Rossi, K.A.; Benfield, P.A.; Burton, C.R.; Cox, S.; Doleniak, D.; Seitz, S.P. Synthesis and evaluation of indenopyrazoles as cyclin-dependent kinase inhibitors. 2. Probing the indeno ring substituent pattern. J. Med. Chem., 2002, 45(24), 5224-5232.
[http://dx.doi.org/10.1021/jm020171+] [PMID: 12431050]
[129]
Hammam, A.E.G.; El-Salam, O.I.A.; Mohamed, A.M.; Hafez, N.A. Novel fluoro substituted benzo[b]pyran with anti-lung cancer activity. Indian J. Chem., 2005, 44B, 1887-1893.
[130]
Lin, R.; Chiu, G.; Yu, Y.; Connolly, P.J.; Li, S.; Lu, Y.; Adams, M.; Fuentes-Pesquera, A.R.; Emanuel, S.L.; Greenberger, L.M. Design, synthesis, and evaluation of 3,4-disubstituted pyrazole analogues as anti-tumor CDK inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(16), 4557-4561.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.092] [PMID: 17574416]
[131]
Christodoulou, M.S.; Liekens, S.; Kasiotis, K.M.; Haroutounian, S.A. Novel pyrazole derivatives: Synthesis and evaluation of anti-angiogenic activity. Bioorg. Med. Chem., 2010, 18(12), 4338-4350.
[http://dx.doi.org/10.1016/j.bmc.2010.04.076] [PMID: 20493716]
[132]
Lv, P-C.; Li, H-Q.; Sun, J.; Zhou, Y.; Zhu, H-L. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg. Med. Chem., 2010, 18(13), 4606-4614.
[http://dx.doi.org/10.1016/j.bmc.2010.05.034] [PMID: 20627597]
[133]
Morley, A.D.; Cook, A.; King, S.; Roberts, B.; Lever, S.; Weaver, R.; Macdonald, C.; Unitt, J.; Fagura, M.; Phillips, T.; Lewis, R.; Wenlock, M. Discovery of pyrazoles as novel FPR1 antagonists. Bioorg. Med. Chem. Lett., 2011, 21(21), 6456-6460.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.085] [PMID: 21955939]
[134]
Nassar, I.F.; El Assaly, S.A. Synthesis, reactivity and antitumor activity of some new pyrazolo[3,4-d] pyrimidine and their triazole derivatives. Pharma Chem., 2011, 3, 229-238.
[135]
Lv, H-S.; Kong, X-Q.; Ming, Q-Q.; Jin, X.; Miao, J-Y.; Zhao, B-X. Synthesis of 5-benzyl-2-phenylpyrazolo[1,5-a]pyrazin-4,6(5H,7H)-dione derivatives and discovery of an apoptosis inducer for H322 lung cancer cells. Bioorg. Med. Chem. Lett., 2012, 22(2), 844-849.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.049] [PMID: 22209459]
[136]
Deverakonda, M.; Doonaboina, R.; Vanga, S.; Vemu, J.; Boni, S.; Mailavaram, R.P. Synthesis of novel 2-alkyl-4-substituted-amino-pyrazolo[3,4-d]pyrimidines as new leads for anti-bacterial and anti-cancer activity. Med. Chem. Res., 2013, 22, 1090-1101.
[http://dx.doi.org/10.1007/s00044-012-0084-0]
[137]
Zhang, H.; Zhu, P.; Liu, J.; Lin, Y.; Yao, H.; Jiang, J.; Ye, W.; Wu, X.; Xu, J. Synthesis, in vitro and in vivo antitumor activity of pyrazole-fused 23-hydroxybetulinic acid derivatives. Bioorg. Med. Chem. Lett., 2015, 25(3), 728-732.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.058] [PMID: 25529742]
[138]
Srinivasa Reddy, T.; Kulhari, H.; Ganga Reddy, V.; Subba Rao, A.V.; Bansal, V.; Kamal, A.; Shukla, R. Synthesis and biological evaluation of pyrazolo-triazole hybrids as cytotoxic and apoptosis inducing agents. Org. Biomol. Chem., 2015, 13(40), 10136-10149.
[http://dx.doi.org/10.1039/C5OB00842E] [PMID: 26346902]
[139]
Dai, H.; Ge, S.; Guo, J.; Chen, S.; Huang, M.; Yang, J.; Sun, S.; Ling, Y.; Shi, Y. Development of novel bis-pyrazole derivatives as antitumor agents with potent apoptosis induction effects and DNA damage. Eur. J. Med. Chem., 2018, 143, 1066-1076.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.098] [PMID: 29232583]
[140]
Zhang, Y-L. Li, Bo-Y.; Yang, R.; Xia L-Y; Fan, A-Li; Chu, Yi-C.; Wang, L-J.; Wang, Z-C.; Jiang, Ai-Q.; Zhu, H-L. A class of novel tubulin polymerization inhibitors exerts effective anti-tumor activity via mitotic catastrophe. Eur. J. Med. Chem., 2019, 163, 896-910.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.030] [PMID: 30580241]
[141]
Wang, G.; Liu, W.; Peng, Z.; Huang, Y.; Gong, Z.; Li, Y. Design, synthesis, molecular modeling, and biological evaluation of pyrazole-naphthalene derivatives as potential anticancer agents on MCF-7 breast cancer cells by inhibiting tubulin polymerization. Bioorg. Chem., 2020, 103, 104141.
[http://dx.doi.org/10.1016/j.bioorg.2020.104141] [PMID: 32750611]
[142]
Dawood, D.H.; Nossier, E.S.; Ali, M.M.; Mahmoud, A.E. Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase. Bioorg. Chem., 2020, 101, 103916.
[http://dx.doi.org/10.1016/j.bioorg.2020.103916] [PMID: 32559576]
[143]
Ramadan, S.K. EI-Ziaty, A.K.; Ali, R.S. Synthesis, antiproliferative activity and molecular docking of some N-heterocycles bearing a pyrazole scaffold against liver and breast tumors. J. Het. Chem., 2021, 58, 290-304.
[http://dx.doi.org/10.1002/jhet.4168]
[144]
Akhtar, W.; Marella, A.; Alam, M.M.; Khan, M.F.; Akhtar, M.; Anwer, T.; Khan, F.; Naematullah, M.; Azam, F.; Rizvi, M.A.; Shaquiquzzaman, M. Design and synthesis of pyrazole-pyrazoline hybrids as cancer-associated selective COX-2 inhibitors. Arch. Pharm. (Weinheim), 2021, 354(1), e2000116.
[http://dx.doi.org/10.1002/ardp.202000116] [PMID: 33015829]
[145]
Bondock, S.; Alqahtani, S.; Fouda, A.M. Synthesis and anticancer evaluation of some new pyrazolo[3,4-d][1,2,3]triazin-4-ones, pyrazolo[1,5-a]pyrimidines and imidazo[1,2-b]pyrazoles clubbed with carbazole. J. Het. Chem., 2021, 58, 56-73.
[http://dx.doi.org/10.1002/jhet.4148]
[146]
Liang, X.; Tang, S.; Liu, X.; Liu, Y.; Xu, Q.; Wang, X.; Saidahmatov, A.; Li, C.; Wang, J.; Zhou, Yu.; Zhang, Y.; Geng, M.; Huang, M.; Liu, H. Discovery of novel pyrrolo[2,3- d]pyrimidine-based derivatives as potent JAK/HDAC dual inhibitors for the treatment of refractory solid tumors. J. Med. Chem., 2021. Online ahead of print
[http://dx.doi.org/10.1021/acs.jmedchem.0c02111] [PMID: 33586434]
[147]
Amin, K.M.; Hanna, M.M.; Abo-Youssef, H.E.; George, R.F. Synthesis, analgesic and anti-inflammatory activities evaluation of some bi-, tri- and tetracyclic condensed pyrimidines. Eur. J. Med. Chem., 2009, 44(11), 4572-4584.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.028] [PMID: 19628310]
[148]
Griffin, M.R.; Yared, A.; Ray, W.A. Nonsteroidal antiinflammatory drugs and acute renal failure in elderly persons. Am. J. Epidemiol., 2000, 151(5), 488-496.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a010234] [PMID: 10707917]
[149]
Ranatunge, R.R.; Augustyniak, M.; Bandarage, U.K.; Earl, R.A.; Ellis, J.L.; Garvey, D.S.; Janero, D.R.; Letts, L.G.; Martino, A.M.; Murty, M.G.; Richardson, S.K.; Schroeder, J.D.; Shumway, M.J.; Tam, S.W.; Trocha, A.M.; Young, D.V. Synthesis and selective cyclooxygenase-2 inhibitory activity of a series of novel, nitric oxide donor-containing pyrazoles. J. Med. Chem., 2004, 47(9), 2180-2193.
[http://dx.doi.org/10.1021/jm030276s] [PMID: 15084117]
[150]
Ranatunge, R.R.; Earl, R.A.; Garvey, D.S.; Janero, D.R.; Letts, L.G.; Martino, A.M.; Murty, M.G.; Richardson, S.K.; Schwalb, D.J.; Young, D.V.; Zemtseva, I.S. 3-(2-Methoxytetrahydrofuran-2-yl)pyrazoles: a novel class of potent, selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(24), 6049-6052.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.073] [PMID: 15546727]
[151]
Amir, M.; Kumar, S. Synthesis and anti-inflammatory, ulcerogenic and lipid peroxidation activities of 3,5-dimethyl pyrazoles, 3-methyl pyrazol-5-ones and 3,5-disubstituted pyrazolines. Indian J. Chem., 2005, 44B, 2532-2537.
[152]
Sakya, S.M.; DeMello, K.L.M.; Minich, M.L.; Rast, B.; Shavnya, A.; Rafka, R.J.; Koss, D.A.; Cheng, H.; Li, J.; Jaynes, B.H.; Ziegler, C.B.; Mann, D.W.; Petras, C.F.; Seibel, S.B.; Silvia, A.M.; George, D.M.; Lund, L.A.; St. Denis, S.; Hickman, A.; Haven, M.L. Lynch, M.P. 5-Heteroatom substituted pyrazoles as canine COX-2 inhibitors. Part 1: Structure–activity relationship studies of 5-alkylamino pyrazoles and discovery of a potent, selective, and orally active analog. Bioorg. Med. Chem. Lett., 2006, 16, 288-292.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.006] [PMID: 16275075]
[153]
Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Villar, R.; Vicente, E.; Solano, B.; Ancizu, S.; Pérez-Silanes, S.; Aldana, I.; Monge, A. Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4,5-dihydro-(1H)-pyrazole analogues. Bioorg. Med. Chem. Lett., 2007, 17(23), 6439-6443.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.002] [PMID: 17942306]
[154]
Gökhan-Kelekçi, N. Yabanoglu, S.; Küpeli, E.; Salgin, U.; Özgen, O.; Uçar, G.; Yesilada, E.; Kendi, E.; Yesilada, A.; Bilgin, A.A. A new therapeutic approach in Alzheimer disease: some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesics. Bioorg. Med. Chem., 2007, 15(17), 5775-5786.
[http://dx.doi.org/10.1016/j.bmc.2007.06.004] [PMID: 17611112]
[155]
Bekhit, A.A.; Ashour, H.M.A.; Abdel Ghany, Y.S.; Bekhit, A-D.; Baraka, A. Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. Eur. J. Med. Chem., 2008, 43(3), 456-463.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.030] [PMID: 17532544]
[156]
Karabasanagouda, T.; Adhikari, A.V.; Girisha, M. Synthesis of some new pyrazolines and isoxazoles carrying 4-metylthiophenyl moiety as potential analgesic and anti-inflammatory agents. Indian J. Chem., 2009, 48B, 430-437.
[157]
Migliara, O.; Raffa, D.; Plescia, S.; Cusimano, M.G.; Carbone, A. Synthesis and COX inhibition of 7-R1-8-R2-1-ethyl-3,4-dimethyl-4,10-dihydro-1H-pyrazolo[3,4-c][1,5]benzodiazocine-5,11-diones. ARKIVOC, 2009, (ii), 1-10.
[158]
Barsoum, F.F.; Girgis, A.S. Facile synthesis of bis(4,5-dihydro-1H-pyrazole-1-carboxamides) and their thio-analogues of potential PGE(2) inhibitory properties. Eur. J. Med. Chem., 2009, 44(5), 2172-2177.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.020] [PMID: 19056146]
[159]
Hwang, S.H.; Wagner, K.M.; Morisseau, C.; Liu, J-Y.; Dong, H.; Wecksler, A.T.; Hammock, B.D. Synthesis and structure-activity relationship studies of urea-containing pyrazoles as dual inhibitors of cyclooxygenase-2 and soluble epoxide hydrolase. J. Med. Chem., 2011, 54(8), 3037-3050.
[http://dx.doi.org/10.1021/jm2001376] [PMID: 21434686]
[160]
Brullo, C.; Spisani, S.; Selvatici, R.; Bruno, O. N-Aryl-2-phenyl-2,3-dihydro-imidazo[1,2-b]pyrazole-1-carboxamides 7-substituted strongly inhibiting both fMLP-OMe- and IL-8-induced human neutrophil chemotaxis. Eur. J. Med. Chem., 2012, 47(1), 573-579.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.031] [PMID: 22152986]
[161]
Ovais, S.; Bashir, R.; Yaseen, S.; Rathore, P.; Samim, M.; Javed, K. Synthesis and pharmacological evaluation of some novel 2-pyrazolines bearing benzenesulfonamide as anti-inflammatory and blood glucose lowerinf agents. Med. Chem. Res., 2013, 22, 1378-1385.
[http://dx.doi.org/10.1007/s00044-012-0130-y]
[162]
Abdel-Aziz, H.A.; Al-Rashood, K.A.; ElTahir, K.E.H.; Suddek, G.M. Synthesis of N-benzenesulfonamide-1H-pyrazoles bearing arylsulfonyl moiety: Novel celecoxib analogs as potent anti-inflammatory agents. Eur. J. Med. Chem., 2014, 80, 416-422.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.065] [PMID: 24794773]
[163]
Alegaon, S.G.; Alagawadi, K.R.; Garg, M.K.; Dushyant, K.; Vinod, D. 1,3,4-Trisubstituted pyrazole analogues as promising anti-inflammatory agents. Bioorg. Chem., 2014, 54, 51-59.
[http://dx.doi.org/10.1016/j.bioorg.2014.04.001] [PMID: 24793214]
[164]
Chandna, N.; Kapoor, J.K.; Grover, J.; Bairwa, K.; Goyal, V.; Jachak, S.M. Pyrazolylbenzyltriazoles as cyclooxygenase inhibitors: Synthesis and biological evaluation as dual anti-inflammatory and antimicrobial agents. New J. Chem., 2014, 38, 3662-3672.
[http://dx.doi.org/10.1039/C4NJ00226A]
[165]
Harras, M.F.; Sabour, R.; Alkamali, O.M. Discovery of new non-acidic lonazolac analogues with COX-2 selectivity as potent anti-inflammatory agents. MedChemComm, 2019, 10(10), 1775-1788.
[http://dx.doi.org/10.1039/C9MD00228F] [PMID: 31803395]
[166]
Sivaramakarthikeyan, R.; Iniyaval, S.; Lim, W-M.; Hii, L-W.; Mai, C-W.; Ramalingan, C. Pyrazolylphenanthroimidazole heterocycles: Synthesis, biological and molecular docking studies. New J. Chem., 2020, 44, 19612-19622.
[http://dx.doi.org/10.1039/D0NJ02214D]
[167]
Jaffar, S.; Grant, A.D.; Whitworth, J.; Smith, P.G.; Whittle, H. The natural history of HIV-1 and HIV-2 infections in adults in Africa: A literature review. Bull. World Health Organ., 2004, 82(6), 462-469.
[PMID: 15356940]
[168]
De Clercq, E. The design of drugs for HIV and HCV. Nat. Rev. Drug Discov., 2007, 6(12), 1001-1018.
[http://dx.doi.org/10.1038/nrd2424] [PMID: 18049474]
[169]
Asahchop, E.L.; Wainberg, M.A.; Sloan, R.D.; Tremblay, C.L. Antiviral drug resistance and the need for development of new HIV-1 reverse transcriptase inhibitors. Antimicrob. Agents Chemother., 2012, 56(10), 5000-5008.
[http://dx.doi.org/10.1128/AAC.00591-12] [PMID: 22733071]
[170]
Sweeney, Z.K.; Harris, S.F.; Arora, S.F.; Javanbakht, H.; Li, Y.; Fretland, J.; Davidson, J.P.; Billedeau, J.R.; Gleason, S.K.; Hirschfeld, D.; Kennedy-Smith, J.J.; Mirzadegan, T.; Roetz, R.; Smith, M.; Sperry, S.; Suh, J.M.; Wu, J.; Tsing, S.; Villaseñor, A.G.; Paul, A.; Su, G.; Heilek, G.; Hang, J.Q.; Zhou, A.S.; Jernelius, J.A.; Zhang, F.J.; Klumpp, K. Design of annulated pyrazoles as inhibitors of HIV-1 reverse transcriptase. J. Med. Chem., 2008, 51(23), 7449-7458.
[http://dx.doi.org/10.1021/jm800527x] [PMID: 19007201]
[171]
Rizvi, S.U.F.; Siddiqui, H.L.; Johns, M.; Detorio, M.; Schinazi, R.F. Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Med. Chem. Res., 2012, 21, 3741-3749.
[http://dx.doi.org/10.1007/s00044-011-9912-x]
[172]
Khalid, Z.; Aslam, S.; Ahmad, M.; Munawar, M.A.; Montero, C.; Detorio, M.; Parvez, M.; Schinazi, R.F. Anti-HIV activity of new pyrazolobenzothiazine 5,5-dioxide-based acetohydrazides. Med. Chem. Res., 2015, 24(10), 3671-3680.
[http://dx.doi.org/10.1007/s00044-015-1411-z] [PMID: 34316244]
[173]
Madni, M.; Hameed, S.; Ahmed, M.N.; Tahir, M.N.; Al-Masoudi, N.A.; Pannecouque, C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives. Med. Chem. Res., 2017, 26, 2653-2665.
[http://dx.doi.org/10.1007/s00044-017-1963-1]
[174]
Kumar, S.; Gupta, S.; Abadi, L.F.; Gaikwad, S.; Desai, D.; Bhutani, K.K.; Kulkarni, S.; Singh, I.P. Synthesis and in-vitro anti-HIV-1 evaluation of novel pyrazolo[4,3-c]pyridin-4-one derivatives. Eur. J. Med. Chem., 2019, 183, 111714.
[http://dx.doi.org/10.1016/j.ejmech.2019.111714] [PMID: 31557609]
[175]
Kasralikar, H.M.; Jadhavar, S.C.; Goswami, S.V.; Kaminwar, N.S.; Bhusare, S.R. Design, synthesis and molecular docking of pyrazolo [3,4d] thiazole hybrids as potential anti-HIV-1 NNRT inhibitors. Bioorg. Chem., 2019, 86, 437-444.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.006] [PMID: 30771690]
[176]
Coffman, T.M.; Crowley, S.D. Kidney in hypertension: guyton redux. Hypertension, 2008, 51(4), 811-816.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.105.063636] [PMID: 18332286]
[177]
Law, M.R.; Morris, J.K.; Wald, N.J. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ, 2009, 338, b1665.
[http://dx.doi.org/10.1136/bmj.b1665] [PMID: 19454737]
[178]
Almansa, C.; Gómez, L.A.; Cavalcanti, F.L.; de Arriba, A.F.; García-Rafanell, J.; Forn, J. Synthesis and structure-activity relationship of a new series of potent AT1 selective angiotensin II receptor antagonists: 5-(biphenyl-4-ylmethyl)pyrazoles. J. Med. Chem., 1997, 40(4), 547-558.
[http://dx.doi.org/10.1021/jm9604383] [PMID: 9046346]
[179]
El-Hamouly, W.S.; El-Khamry, A.M.A.; Abbas, E.M.H. Synthesis of new 4-aryl-isoxazolo[5,4-d]pyrimidin-6-one(thione) and 4-aryl-pyrazolo[3,4-d]-pyrimidin-6-one derivatives of potential antihypertensive activity. Indian J. Chem., 2006, 45B, 2091-2098.
[180]
Bonesi, M.; Loizzo, M.R.; Statti, G.A.; Michel, S.; Tillequin, F.; Menichini, F. The synthesis and angiotensin converting enzyme (ACE) inhibitory activity of chalcones and their pyrazole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(6), 1990-1993.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.113] [PMID: 20167484]
[181]
Konstantinos, A. Testing for tuberculosis. Aust. Prescr., 2010, 33, 12-18.
[http://dx.doi.org/10.18773/austprescr.2010.005]
[182]
Dixit, P.P.; Dixit, P.P.; Thore, S.N. Hybrid triazoles: design and synthesis as potential dual inhibitor of growth and efflux inhibition in tuberculosis. Eur. J. Med. Chem., 2016, 107, 38-47.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.054] [PMID: 26562541]
[183]
Thomas, K.D.; Adhikari, A.V.; Chowdhury, I.H.; Sumesh, E.; Pal, N.K. New quinolin-4-yl-1,2,3-triazoles carrying amides, sulphonamides and amidopiperazines as potential antitubercular agents. Eur. J. Med. Chem., 2011, 46(6), 2503-2512.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.039] [PMID: 21489660]
[184]
Pattan, S.R.; Rabara, P.A.; Pattan, J.S.; Bukitagar, A.A.; Wakale, V.S.; Musmade, D.S. Synthesis and evaluation of some novel substituted 1,3,4-oxadiazole and pyrazole derivatives for antitubercular activity. Indian J. Chem., 2009, 48B, 1453-1456.
[185]
Trivedi, A.R.; Dholariya, B.H.; Vakhariya, C.P.; Dodiya, D.K.; Ram, H.K.; Kataria, V.B.; Siddiqui, A.B.; Shah, V.H. Synthesis and anti-tubercular evaluation of some novel pyrazolo[3,4-d]pyrimidine derivatives. Med. Chem. Res., 2012, 21(8), 1887-1891.
[http://dx.doi.org/10.1007/s00044-011-9712-3]
[186]
Ahsan, M.J.; Samy, J.G.; Jain, C.B.; Dutt, K.R.; Khalilullah, H.; Nomani, M.S. Discovery of novel antitubercular 1,5-dimethyl-2-phenyl-4-([5-(arylamino)-1,3,4-oxadiazol-2-yl]methylamino)-1,2-dihydro-3H-pyrazol-3-one analogues. Bioorg. Med. Chem. Lett., 2012, 22(2), 969-972.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.014] [PMID: 22197387]
[187]
Jadhav, S.B.; Fatema, S.; Sanap, G.; Farooqui, M. Antitubercular activity and synergistic study of novel pyrazole derivatives. J. Het. Chem., 2018, 55, 1634-1644.
[http://dx.doi.org/10.1002/jhet.3198]
[188]
Kalaria, P.N.; Satasia, S.P.; Raval, D.K. Synthesis, characterization and biological screening of novel 5-imidazopyrazole incorporated fused pyran motifs under microwave irradiation. New J. Chem., 2014, 38, 1512-1521.
[http://dx.doi.org/10.1039/c3nj01327h]
[189]
Harikrishna, N.; Isloor, A.M.; Ananda, K.; Obaid, A.; Fun, H-K. Synthesis, antitubercular and antimicrobial activity of 1'-(4-chlorophenyl) pyrazole containing 3,5-disubstituted pyrazoline derivatives. New J. Chem., 2016, 40, 73-76.
[http://dx.doi.org/10.1039/C5NJ02237A]
[190]
Karad, S.C.; Purohit, V.B.; Avalani, J.R.; Sapariya, N.H.; Raval, D.K. Design, synthesis and characterization of fluoro substituted novel pyrazole nucleus clubbed with 1,3,4-oxadiazole scaffolds and their biological applications. RSC Advances, 2016, 4, 41532-41541.
[http://dx.doi.org/10.1039/C6RA01349J]
[191]
Takate, S.J.; Shinde, A.D.; Karale, B.K.; Akolkar, H.; Nawale, L.; Sarkar, D.; Mhaske, P.C. Thiazolyl-pyrazole derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett., 2019, 29(10), 1199-1202.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.020] [PMID: 30910461]
[192]
He, S.; Shao, Y.; Fan, L.; Che, Z.; Xu, H.; Zhi, X.; Wang, J.; Yao, X.; Qu, H. Synthesis and quantitative structure-activity relationship (QSAR) study of novel 4-acyloxypodophyllotoxin derivatives modified in the A and C rings as insecticidal agents. J. Agric. Food Chem., 2013, 61(3), 618-625.
[http://dx.doi.org/10.1021/jf305011n] [PMID: 23278333]
[193]
Sharma, H.C.; Sullivan, D.; Bhatnagar, V.S. Population dynamics and natural mortality factors of oriental armyworm, Mythimnaseparata (Lepidoptera: Noctuidae), in South-central India. Crop Prot., 2002, 21, 721-732.
[http://dx.doi.org/10.1016/S0261-2194(02)00029-7]
[194]
Dai, H.; Li, Y.Q.; Du, D.; Qin, X.; Zhang, X.; Yu, H.B.; Fang, J-X. Synthesis and biological activities of novel pyrazole oxime derivatives containing a 2-chloro-5-thiazolyl moiety. J. Agric. Food Chem., 2008, 56(22), 10805-10810.
[http://dx.doi.org/10.1021/jf802429x] [PMID: 18959421]
[195]
Feng, Q.; Liu, Z-L.; Xiong, L-X.; Wang, M-Z.; Li, Y-Q.; Li, Z-M. Synthesis and insecticidal activities of novel anthranilic diamides containing modified N-pyridylpyrazoles. J. Agric. Food Chem., 2010, 58(23), 12327-12336.
[http://dx.doi.org/10.1021/jf102842r] [PMID: 21047132]
[196]
Ohno, R.; Nagaoka, M.; Hirai, K.; Uchida, A.; Kochi, S-I.; Yamada, O.; Tokumura, J. Synthesis and insecticidal activity of novel 1-alkyl-3-sulfonyloxypyrazole-4-carboxamide derivatives. J. Pestic. Sci., 2010, 35, 15-22.
[http://dx.doi.org/10.1584/jpestics.G09-50]
[197]
Sah, P.; Kaul, V. Synthesis and in-vitro biological evaluation of some quinazolin substituted pyrazoles, pyrazolones and 1,3,4-oxadiazoles. Indian J. Chem., 2010, 49B, 1406-1412.
[198]
Rani, A.; Jain, S.; Gautam, R.D. Investigation of insecticidal activity of some α,β-unsaturated carbonyl compounds and their synergistic combination with natural products against Phenacoccus solenopsis tinsley. J. Plant Prot. Res., 2012, 52, 146-155.
[http://dx.doi.org/10.2478/v10045-012-0023-6]
[199]
Mao, M-Z.; Li, Y.X.; Zhou, Y-Y.; Zhang, X-L.; Liu, Q-X.; Di, F-J.; Song, H-B.; Xiong, L.X.; Li, Y.Q.; Li, Z.M. Synthesis and insecticidal evaluation of novel N-pyridylpyrazolecarboxamides containing an amino acid methyl ester and their analogues. J. Agric. Food Chem., 2014, 62(7), 1536-1542.
[http://dx.doi.org/10.1021/jf500003d] [PMID: 24433133]
[200]
Dai, H.; Li, G.; Chen, J.; Shi, Y.; Ge, S.; Fan, C.; He, H. Synthesis and biological activities of novel 1,3,4-thiadiazole-containing pyrazole oxime derivatives. Bioorg. Med. Chem. Lett., 2016, 26(15), 3818-3821.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.094] [PMID: 27324978]
[201]
Guo, Y.; Wang, X.; Qu, L.; Xu, S.; Zhao, Yi.; Xie, R.; Huang, M.; Zhang, Y. Design, synthesis, antibacterial and insecticidal activities of novel N-phenylpyrazole fraxinellone hybrid compounds. RSC Advances, 2017, 7, 11796-11802.
[http://dx.doi.org/10.1039/C6RA28064A]
[202]
Yu, G.; Luo, L.; Chen, S.; He, F.; Xie, Y.; Luo, D.; Xue, W.; Wu, J. Synthesis and insecticidal activity of novel diacylhydrazines derivatives containing a N-pyridylpyrazole moiety. ChemistrySelect, 2018, 3, 10991-10995.
[http://dx.doi.org/10.1002/slct.201802434]
[203]
Zhao, Y.; Li, H.; Sun, P.; Gao, L.; Liu, J.; Zhou, S.; Xiong, L.; Yang, N.; Li, Y.; Li, Z. Synthesis, biological activities, and SAR studies of novel 1-(2-chloro-4,5-difluorophenyl)-1H-pyrazole derivatives. Bioorg. Med. Chem. Lett., 2020, 30(22), 127535.
[http://dx.doi.org/10.1016/j.bmcl.2020.127535] [PMID: 32898692]
[204]
Raspail, C.; Graindorge, M.; Moreau, Y.; Crouzy, S.; Lefèbvre, B.; Robin, A.Y.; Dumas, R.; Matringe, M. 4-hydroxyphenylpyruvate dioxygenase catalysis: Identification of catalytic residues and production of a hydroxylated intermediate shared with a structurally unrelated enzyme. J. Biol. Chem., 2011, 286(29), 26061-26070.
[http://dx.doi.org/10.1074/jbc.M111.227595] [PMID: 21613226]
[205]
Wang, D.W.; Lin, H.Y.; Cao, R.J.; Ming, Z.Z.; Chen, T.; Hao, G.F.; Yang, W.C.; Yang, G.F. Design, synthesis and herbicidal activity of novel quinazoline-2,4-diones as 4-hydroxyphenylpyruvate dioxygenase inhibitors. Pest Manag. Sci., 2015, 71(8), 1122-1132.
[http://dx.doi.org/10.1002/ps.3894] [PMID: 25185782]
[206]
Santucci, A.; Bernardini, G.; Braconi, D.; Petricci, E.; Manetti, F. 4-hydroxyphenylpyruvate dioxygenase and its inhibition in plants and animals: Small molecule as herbicide and agents for the treatments of human inherited diseases. J. Med. Chem., 2017, 60(10), 4101-4125.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01395] [PMID: 28128559]
[207]
Norris, S.R.; Barrette, T.R.; DellaPenna, D. Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell, 1995, 7(12), 2139-2149.
[PMID: 8718624]
[208]
Yamaoka, K.; Nakagawa, M.; Ishida, M. Hydrolysis of the rice herbicide pyrazolate in aqueous solutions. J. Pestic. Sci., 1987, 12, 209-212.
[http://dx.doi.org/10.1584/jpestics.12.209]
[209]
Kudo, N.; Furuta, S.; Taniguchi, M.; Endo, T.; Sato, K. Synthesis and herbicidal activity of 1,5-diarylpyrazole derivatives. Chem. Pharm. Bull. (Tokyo), 1999, 47, 857-868.
[http://dx.doi.org/10.1248/cpb.47.857]
[210]
Mu, J-X.; Zhai, Z-W.; Tan, C-X.; Weng, J-Q.; Wu, H-K.; Duke, S.O.; Zhang, Y-G.; Liu, X-H. Synthesis and herbicidal activity of 1,2,4-triazole derivatives containing a pyrazole moiety. J. Het. Chem., 2019, 56, 968-971.
[http://dx.doi.org/10.1002/jhet.3476]
[211]
Fu, Y.; Wang, M-X.; Zhang, D.; Hou, Y-W.; Gao, S. Zhao, Li-X. and Ye, F. Design, synthesis, and herbicidal activity of pyrazole benzophenone derivatives. RSC Advances, 2017, 7, 46858-46865.
[http://dx.doi.org/10.1039/C7RA09858H]
[212]
Fu, Q.; Cai, P-P.; Cheng, L.; Zhong, L-K.; Tan, C-X.; Shen, Z-H.; Han, L.; Xu, T-M.; Liu, X-H. Synthesis and herbicidal activity of novel pyrazole aromatic ketone analogs as HPPD inhibitor. Soc. Chem. Industry, 2020, 76(3), 868-879.
[http://dx.doi.org/10.1002/ps.5591] [PMID: 31429196]
[213]
He, B.; Wu, F.X.; Yu, L.K.; Wu, L.; Chen, Q.; Hao, G.F.; Yang, W.C.; Lin, H.Y.; Yang, G.F. Wu, F-X.; Yu, L-K.; Wu, L.; Chen, Q.; Hao, G-F.; Yang, W-C.; Lin, H-Y. and Yang, G-Fu. Discovery of novel pyrazole-quinazoline-2,4-dione hybrids as 4-hydroxyphenylpyruvate dioxygenase inhibitors. J. Agric. Food Chem., 2020, 68(18), 5059-5067.
[http://dx.doi.org/10.1021/acs.jafc.0c00051] [PMID: 32286826]
[214]
Ren, A.R.; Xue, Q.M.; Swidorski, J.J.; Gong, Y-F.; Mathew, M.; Parker, D.D.; Yang, Z.; Eggers, B.; D’Arienzo, C.; Sun, Y.; Malinowski, J.; Gao, Q.; Wu, D.; Langley, D.R.; Colonno, R.J.; Chien, C.; Grasela, D.M.; Zheng, M.; Lin, P.F.; Meanwell, N.A.; Kadow, J.F. Inhibitors of human immunodeficiency virus type 1 (HIV-1)attachment. 12. Structure-activity relationships associated with 4-fluoro-6-azaindolederivatives leading to the identification of 1-(4-benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-585248). J. Med. Chem., 2013, 56, 1656-1669.
[215]
Fader, L.D.; Bethell, R.; Bonneau, P.; Bös, M.; Bousquet, Y.; Cordingley, M.G.; Coulombe, R.; Deroy, P.; Faucher, A.M.; Gagnon, A.; Goudreau, N.; Grand-Maître, C.; Guse, I.; Hucke, O.; Kawai, S.H.; Lacoste, J.E.; Landry, S.; Lemke, C.T.; Malenfant, E.; Mason, S.; Morin, S.; O’Meara, J.; Simoneau, B.; Titolo, S.; Yoakim, C. Discovery of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly. Bioorg. Med. Chem. Lett., 2011, 21(1), 398-404.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.131] [PMID: 21087861]
[216]
Farghaly, T.A.; Abdel Hafez, N.A.; Ragab, E.A.; Awad, H.M.; Abdalla, M.M. Synthesis, anti-HCV, antioxidant, and peroxynitrite inhibitory activity of fused benzosuberone derivatives. Eur. J. Med. Chem., 2010, 45(2), 492-500.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.033] [PMID: 19913334]
[217]
Rashad, A.E.; Hegab, M.I.; Abdel-Megeid, R.E.; Micky, J.A.; Abdel-Megeid, F.M.E. Synthesis and antiviral evaluation of some new pyrazole and fused pyrazolopyrimidine derivatives. Bioorg. Med. Chem., 2008, 16(15), 7102-7106.
[http://dx.doi.org/10.1016/j.bmc.2008.06.054] [PMID: 18635363]
[218]
el-Sabbagh, O.I.; Baraka, M.M.; Ibrahim, S.M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad, A.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem., 2009, 44(9), 3746-3753.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.038] [PMID: 19419804]
[219]
Rashad, A.A.; El-Sabbagh, O.I.; Baraka, M.M.; Ibrahim, S.M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Mostafa, A. Design, synthesis and preliminary antiviral screening of new N-phenylpyrazole and dihydroisoxazole derivatives. Med. Chem. Res., 2010, 19, 1025-1035.
[http://dx.doi.org/10.1007/s00044-009-9248-y]
[220]
Tantawy, A.S.; Nasr, M.N.A.; El-Sayed, M.A.A.; Tawfik, S.S. Synthesis and antiviral activity of new 3-methyl-1,5-diphenyl-1H-pyrazole derivatives. Med. Chem. Res., 2012, 21, 4139-4149.
[http://dx.doi.org/10.1007/s00044-011-9960-2]
[221]
Yang, Z.; Li, P.; Gan, X. Novel pyrazole-hydrazone derivatives containing an isoxazole moiety: Design, synthesis, and antiviral activity. Molecules, 2018, 23(7), 1798.
[http://dx.doi.org/10.3390/molecules23071798] [PMID: 30037021]
[222]
Yang, G.; Zheng, H.; Shao, W.; Liu, L.; Wu, Z. Study of the in vivo antiviral activity against TMV treated with novel 1-(t-butyl)-5-amino-4-pyrazole derivatives containing a 1,3,4-oxadiazole sulfide moiety. Pestic. Biochem. Physiol., 2021, 171, 104740.
[http://dx.doi.org/10.1016/j.pestbp.2020.104740] [PMID: 33357562]
[223]
Bildirici, I.; Sener, A.; Tozlu, I. Further derivatives of 4-benzoyl-1, 5-diphenyl-1H-pyrazole-3-carboxylic acid and their antibacterial activities. Med. Chem. Res., 2007, 16, 418-426.
[http://dx.doi.org/10.1007/s00044-007-9082-z]
[224]
Moudgal, V.; Little, T.; Boikov, D.; Vazquez, J.A. Multiechinocandin- and multiazole-resistant Candida parapsilosis isolates serially obtained during therapy for prosthetic valve endocarditis. Antimicrob. Agents Chemother., 2005, 49(2), 767-769.
[http://dx.doi.org/10.1128/AAC.49.2.767-769.2005] [PMID: 15673762]
[225]
Kumar, V.; Aggarwal, R.; Tyagi, P.; Singh, S.P. Synthesis and antibacterial activity of some new 1-heteroaryl-5-amino-4-phenyl-3-trifluoromethylpyrazoles. Eur. J. Med. Chem., 2005, 40(9), 922-927.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.021] [PMID: 15921826]
[226]
Aggarwal, R.; Kumar, V.; Tyagi, P.; Singh, S.P. Synthesis and antibacterial activity of some new 1-heteroaryl-5-amino-3H/methyl-4-phenylpyrazoles. Bioorg. Med. Chem., 2006, 14(6), 1785-1791.
[http://dx.doi.org/10.1016/j.bmc.2005.10.026] [PMID: 16300953]
[227]
Özdemir, A.; Turan-Zitouni, G.; Kaplancikli, Z.A.; Revial, G.; Güven, K. Synthesis and antimicrobial activity of 1-(4-aryl-2-thiazolyl)-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(3), 403-409.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.001] [PMID: 17125888]
[228]
Pathak, V.N.; Gupta, R.; Gupta, N. Synthesis and biological evaluation of some new 4,5-dihydro-3-(2-aryl-indol-3-yl)-5-(4- chlorophenyl)-N′-phenylpyrazoles. Indian J. Chem.,, 2008, 47(B), 1303-1307.
[229]
Sahu, S.K.; Banerjee, M.; Samantray, A.; Behera, C.; Azam, M.A. Synthesis, analgesic, anti-inflammatory and antimicrobial activities of some novel pyrazoline derivatives. Trop. J. Pharm. Res., 2008, 7, 961-968.
[http://dx.doi.org/10.4314/tjpr.v7i2.14664]
[230]
Patel, R.G.; Shah, N.; Patel, M. Synthesis, characterization and antimicrobial activity of some new quinolone bearing pyrazole nucleus. Indian J. Chem.,, 2009, 48(B), 1170-1173.
[231]
Parkesh, O.; Pundeer, R.; Ranjan, P.; Pannu, K.; Dhingra, Y.; Aneja, K.R. Synthesis and antibacterial activity of 1,3-diaryl-4-cyanopyrazoles. Indian J. Chem.,, 2009, 48(B), 563-568.
[232]
Kumar, R.; Malik, S.; Chandra, R. Synthesis and antimicrobial activity of 4-[5-chloro-3-methyl-1-pyrazol-4-yl]-dihydropyridines and 4-[5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl]-3,4- dihydropyrimidin-2-ones Indian J. Chem.,, 2009, 48(B), 718-724.
[233]
Gupta, M.; Paul, S.; Gupta, R. Microwave assisted one-pot synthesis of antifungal active 1-substituted-3,7-dialkyl/aryl-4Hpyrazolo[ 4,5-f] [1,2,4]triazolo[3,4b][1,3,4]thiadiazepines using solid support. Indian J. Chem.,, 2009, 48(B), 460-466.
[234]
Bondock, S.; Fadaly, W.; Metwally, M.A. Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur. J. Med. Chem., 2010, 45(9), 3692-3701.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.018] [PMID: 20605657]
[235]
Gupta, R.; Gupta, N.; Jain, A. Improved synthesis of chalcones and pyrazolines under ultrasonic irradiation. Indian J. Chem., 2010, 49B, 351-355.
[236]
Radi, S.; Salhi, S.; Radi, A. Synthesis and preliminary biological activity of some new pyrazole derivatives as acyclonucleoside analogues. Lett. Drug Des. Discov., 2010, 7(1), 27-30.
[http://dx.doi.org/10.2174/157018010789869307]
[237]
Nagaraju, V.; Srinivasulu, R.; Doraswamy, K.; Ramana, P.V. Synthesis, characterization and antibacterial screening of new pyrazole and pyrazoline-5-one derivatives. J. Indian Chem. Soc., 2011, 88, 293-298.
[238]
Kumar, S. Meenakshi; Kumar, S.; Kumar, P. Synthesis and antimicrobial activity of some (3-phenyl-5-(1-phenyl-3-aryl-1H-pyrazol-4-yl)-4,5-dihydro-1H-pyrazol-1yl)(pyridine-4-yl)methanones: new derivatives of 1,3,5-trisustituted pyrazolines. Med. Chem. Res., 2013, 22, 433-439.
[http://dx.doi.org/10.1007/s00044-012-0045-7]
[239]
Ningaiah, S.; Bhadraiah, U.K.; Doddaramappa, S.D.; Keshavamurthy, S.; Javarasetty, C. Novel pyrazole integrated 1,3,4-oxadiazoles: synthesis, characterization and antimicrobial evaluation. Bioorg. Med. Chem. Lett., 2014, 24(1), 245-248.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.029] [PMID: 24316123]
[240]
Liu, J-J.; Sun, J.; Fang, Y-B.; Yang, Y-A.; Jiao, R-H.; Zhu, H-L. Synthesis, and antibacterial activity of novel 4,5-dihydro-1H-pyrazole derivatives as DNA gyrase inhibitors. Org. Biomol. Chem., 2014, 12(6), 998-1008.
[http://dx.doi.org/10.1039/c3ob41953c] [PMID: 24382549]
[241]
Harikrishna, N.; Isloor, A.M.; Ananda, K.; Obaid, A.; Fun, H-K. 1,3,4-trisubstituted pyrazole bearing 4-(chromen-2-one) thiazole: Synthesis, characterization and its biological studies. RSC Advances, 2015, 5, 43648-43659.
[http://dx.doi.org/10.1039/C5RA04995D]
[242]
Li, Y.R.; Li, C.; Liu, J-C.; Guo, M.; Zhang, T.Y.; Sun, L.P.; Zheng, C.J.; Piao, H.R. Synthesis and biological evaluation of 1,3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2015, 25(22), 5052-5057.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.028] [PMID: 26490095]
[243]
Bhat, M.; Nagaraja, G.K.; Kayarmar, R.; Peetramber, S.L.; Shafeeulla, M. Design, synthesis and characterization of new 1,2,3-triazolyl pyrazole derivatives as potential antimicrobial agents via a Vilsmeier-Haack reaction approach. RSC Advances, 2016, 6, 59375-59388.
[http://dx.doi.org/10.1039/C6RA06093E]
[244]
Hassan, A.S.; Masoud, D.M.; Sroor, F.M.; Askar, A.A. Synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine-3-carboxamide as antimicrobial agents. Med. Chem. Res., 2017, 26, 2909-2919.
[http://dx.doi.org/10.1007/s00044-017-1990-y]
[245]
El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem., 2018, 143, 1463-1473.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.046] [PMID: 29113746]
[246]
Reddy, G.M.; Garcia, J.R.; Zyryanov, G.V.; Sravya, G.; Reddy, N.B. Pyranopyrazoles as efficient antimicrobial agents: Green, one pot and multicomponent approach. Bioorg. Chem., 2019, 82, 324-331.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.035] [PMID: 30415166]
[247]
Patel, B.; Zunk, M.; Grant, G.; Rudrawar, S. Design, synthesis and bioactivity evaluation of novel pyrazole linked phenylthiazole derivatives in context of antibacterial activity. Bioorg. Med. Chem. Lett., 2021, 39, 127853.
[http://dx.doi.org/10.1016/j.bmcl.2021.127853] [PMID: 33609657]
[248]
Nyenwe, E.A.; Jerkins, T.W.; Umpierrez, G.E.; Kitabchi, A.E. Management of type 2 diabetes: Evolving strategies for the treatment of patients with type 2 diabetes. Metabolism, 2011, 60(1), 1-23.
[http://dx.doi.org/10.1016/j.metabol.2010.09.010] [PMID: 21134520]
[249]
Gerich, J.E. The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr. Rev., 1998, 19(4), 491-503.
[http://dx.doi.org/10.1210/edrv.19.4.0338] [PMID: 9715377]
[250]
Bonora, E.; Muggeo, M. Postprandial blood glucose as a risk factor for cardiovascular disease in Type II diabetes: The epidemiological evidence. Diabetologia, 2001, 44(12), 2107-2114.
[http://dx.doi.org/10.1007/s001250100020] [PMID: 11793012]
[251]
Cottineau, B.; Toto, P.; Marot, C.; Pipaud, A.; Chenault, J. Synthesis and hypoglycemic evaluation of substituted pyrazole-4-carboxylic acids. Bioorg. Med. Chem. Lett., 2002, 12(16), 2105-2108.
[http://dx.doi.org/10.1016/S0960-894X(02)00380-3] [PMID: 12127514]
[252]
Das, N.; Verma, A.; Shrivastava, P.K.; Shrivastava, S.K. Synthesis and biological evaluation of some new aryl pyrazol-3-one derivatives as potential hypoglycemic agents. Indian J. Chem., 2008, 47B, 1555-1558.
[253]
Hernández-Vázquez, E.; Salgado-Barrera, S.; Ramírez-Espinosa, J.J.; Estrada-Soto, S.; Hernández-Luis, F. Synthesis and molecular docking of N'-arylidene-5-(4-chlorophenyl)-1-(3,4-dichlorophen-yl)-4-methyl-1H-pyrazole-3-carbohydrazides as novel hypogly-cemic and antioxidant dual agents. Bioorg. Med. Chem., 2016, 24(10), 2298-2306.
[http://dx.doi.org/10.1016/j.bmc.2016.04.007] [PMID: 27079123]
[254]
Hernández-Vázquez, E.; Aguayo-Ortiz, R.; Ramírez-Espinosa, J.J.; Estrada-Soto, S.; Hernández-Luis, F. Synthesis, hypoglycemic activity and molecular modeling studies of pyrazole-3-carbohydrazides designed by a CoMFA model. Eur. J. Med. Chem., 2013, 69, 10-21.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.054] [PMID: 23995214]
[255]
Pessah, N. Bialer, M.; Wlodarczyk, B.; Finnell, R.H.; Yagen, B. α-fluoro-2,2,3,3-tetramethylcyclopropanecarboxamide, a novel potent anticonvulsant derivative of a cyclic analogue of valproic acid. J. Med. Chem., 2009, 52(8), 2233-2242.
[http://dx.doi.org/10.1021/jm900017f] [PMID: 19296679]
[256]
Yogeeswari, P.; Sriram, D.; Vaigundaragavendran, J. The GABA shunt: An attractive and potential therapeutic target in the treatment of epileptic disorders. Curr. Drug Metab., 2005, 6(2), 127-139.
[http://dx.doi.org/10.2174/1389200053586073] [PMID: 15853764]
[257]
Cramer, J.A.; Mintzer, S.; Wheless, J.; Mattson, R.H. Adverse effects of antiepileptic drugs: A brief overview of important issues. Expert Rev. Neurother., 2010, 10(6), 885-891.
[http://dx.doi.org/10.1586/ern.10.71] [PMID: 20518605]
[258]
Naithani, M.; Chopra, S.; Somani, B.L.; Singh, R.K. Studies on adverse metabolic effects of antiepileptics and their correlation with blood components. Curr. Neurobiol., 2010, 1, 117-120.
[259]
Abdel-Aziz, M.; Abuo-Rahma, G-D.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[260]
Kocyigit-Kaymakcioglu, B.; Aker, R.G.; Tezcan, K.; Sakalli, E.; Ketenci, S.; Oruç-Emre, E.E.; Akin, D.; Gurbanova, A.; Terzioglu, B.; Onat, F.; Rollas, S. Anticonvulsant activity of 3,5-dimethylpyrazole derivatives in animal models. Med. Chem. Res., 2011, 20(5), 607-614.
[http://dx.doi.org/10.1007/s00044-010-9358-6]
[261]
Aboul-Enein, M.N.; El-Azzouny, A.A.; Attia, M.I.; Maklad, Y.A.; Amin, K.M.; Abdel-Rehim, M.; El-Behairy, M.F. Design and synthesis of novel stiripentol analogues as potential anticonvulsants. Eur. J. Med. Chem., 2012, 47(1), 360-369.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.004] [PMID: 22118828]
[262]
Farghaly, A-R.; Esmail, S.; Abdel-Zaher, A.; Abdel-Hafez, A.; El-Kashef, H. Synthesis and anticonvulsant activity of some new pyrazolo[3,4-b]pyrazines and related heterocycles. Bioorg. Med. Chem., 2014, 22(7), 2166-2175.
[http://dx.doi.org/10.1016/j.bmc.2014.02.019] [PMID: 24618512]
[263]
Vivek, S. Dinesh; Shama, P.; Naveen, S.; Lokanath, N.K.; Nagaraja, G.K. Design, synthesis, anticonvulsant and analgesic studies of new pyrazole analogues: A Knoevenagel reaction approach. RSC Advances, 2015, 5, 94786-94795.
[http://dx.doi.org/10.1039/C5RA17391D]
[264]
Pradhan, J.; Goyal, A. Synthesis, anticonvulsant activity and QSAR studies of some new pyrazolyl pyridines. Med. Chem. Res., 2016, 25, 1639-1656.
[http://dx.doi.org/10.1007/s00044-016-1597-8]
[265]
Conti, M.; Beavo, J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: Essential components in cyclic nucleotide signaling. Annu. Rev. Biochem., 2007, 76, 481-511.
[http://dx.doi.org/10.1146/annurev.biochem.76.060305.150444] [PMID: 17376027]
[266]
Beavo, J.A.; Brunton, L.L. Cyclic nucleotide research -- still expanding after half a century. Nat. Rev. Mol. Cell Biol., 2002, 3(9), 710-718.
[http://dx.doi.org/10.1038/nrm911] [PMID: 12209131]
[267]
Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agents. Pharmacol. Ther., 2006, 109(3), 366-398.
[http://dx.doi.org/10.1016/j.pharmthera.2005.07.003] [PMID: 16102838]
[268]
Ho, G.D.; Yang, S-W.; Smotryski, J.; Bercovici, A.; Nechuta, T.; Smith, E.M.; McElroy, W.; Tan, Z.; Tulshian, D.; McKittrick, B.; Greenlee, W.J.; Hruza, A.; Xiao, L.; Rindgen, D.; Mullins, D.; Guzzi, M.; Zhang, X.; Bleickardt, C.; Hodgson, R. The discovery of potent, selective, and orally active pyrazoloquinolines as PDE10A inhibitors for the treatment of Schizophrenia. Bioorg. Med. Chem. Lett., 2012, 22(2), 1019-1022.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.127] [PMID: 22222034]
[269]
McElroy, W.T.; Tan, Z.; Basu, K.; Yang, S-W.; Smotryski, J.; Ho, G.D.; Tulshian, D.; Greenlee, W.J.; Mullins, D.; Guzzi, M.; Zhang, X.; Bleickardt, C.; Hodgson, R. Pyrazoloquinolines as PDE10A inhibitors: discovery of a tool compound. Bioorg. Med. Chem. Lett., 2012, 22(3), 1335-1339.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.080] [PMID: 22227212]
[270]
Rawson, D.J.; Ballard, S.; Barber, C.; Barker, L.; Beaumont, K.; Bunnage, M.; Cole, S.; Corless, M.; Denton, S.; Ellis, D.; Floc’h, M.; Foster, L.; Gosset, J.; Holmwood, F.; Lane, C.; Leahy, D.; Mathias, J.; Maw, G.; Million, W.; Poinsard, C.; Price, J.; Russel, R.; Street, S.; Watson, L. The discovery of UK-369003, a novel PDE5 inhibitor with the potential for oral bioavailability and dose-proportional pharmacokinetics. Bioorg. Med. Chem., 2012, 20(1), 498-509.
[http://dx.doi.org/10.1016/j.bmc.2011.10.022] [PMID: 22100260]
[271]
Yang, S-W.; Smotryski, J.; McElroy, W.T.; Tan, Z.; Ho, G.; Tulshian, D.; Greenlee, W.J.; Guzzi, M.; Zhang, X.; Mullins, D.; Xiao, L.; Hruza, A.; Chan, T-M.; Rindgen, D.; Bleickardt, C.; Hodgson, R. Discovery of orally active pyrazoloquinolines as potent PDE10 inhibitors for the management of schizophrenia. Bioorg. Med. Chem. Lett., 2012, 22(1), 235-239.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.023] [PMID: 22142545]
[272]
Dore, A.; Asproni, B.; Scampuddu, A.; Pinna, G.A.; Christoffersen, C.T.; Langgård, M.; Kehler, J. Synthesis and SAR study of novel tricyclic pyrazoles as potent phosphodiesterase 10A inhibitors. Eur. J. Med. Chem., 2014, 84, 181-193.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.020] [PMID: 25016376]
[273]
Kunitomo, J.; Yoshikawa, M.; Fushimi, M.; Kawada, A.; Quinn, J.F.; Oki, H.; Kokubo, H.; Kondo, M.; Nakashima, K.; Kamiguchi, N.; Suzuki, K.; Kimura, H.; Taniguchi, T. Discovery of 1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one (TAK-063), a highly potent, selective, and orally active phosphodiesterase 10A (PDE10A) inhibitor. J. Med. Chem., 2014, 57(22), 9627-9643.
[http://dx.doi.org/10.1021/jm5013648] [PMID: 25384088]
[274]
Bartolomé-Nebreda, J.M.; Delgado, F.; Martín-Martín, M.L.; Martínez-Viturro, C.M.; Pastor, J.; Tong, H.M.; Iturrino, L.; Macdonald, G.J.; Sanderson, W.; Megens, A.; Langlois, X.; Somers, M.; Vanhoof, G.; Conde-Ceide, S. Discovery of a potent, selective, and orally active phosphodiesterase 10A inhibitor for the potential treatment of schizophrenia. J. Med. Chem., 2014, 57(10), 4196-4212.
[http://dx.doi.org/10.1021/jm500073h] [PMID: 24758746]
[275]
Shaaban, M.A.; Elshaier, Y.A.M.M.; Hammad, A.H.; Farag, N.A.; Hassan Haredy, H. AbdEl-Ghany, A.A.; Mohamed, K.O. Design and synthesis of pyrazolo[3,4-d]pyrimidinone derivatives: discovery of selective phosphodiesterase-5 inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(16), 127337.
[http://dx.doi.org/10.1016/j.bmcl.2020.127337] [PMID: 32631538]
[276]
Yu, Y-F.; Huang, Y-D.; Zhang, C.; Wu, X-N.; Zhou, Q.; Wu, D.; Wu, Y.; Luo, H-B. Discovery of novel pyrazolopyrimidinone derivatives as PDE9A inhibitors capable of inhibiting BuChE for treatment of Alzheimer disease. ACS Chem. Neurosci., 2017, 8, 2522-2534.
[http://dx.doi.org/10.1021/acschemneuro.7b00268] [PMID: 28783948]
[277]
Hu, D-K.; Zhao, D-S.; He, M.; Jin, H-W.; Tang, Y-M.; Zhang, L-H.; Song, G-P.; Cui, Z-N. Synthesis and bioactivity of 3,5-dimethylpyrazole derivatives as potential PDE4 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28, 3276-3280.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy