Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Review on Synthesis of (S)-5-Benzylpyrrolidine-2,4-dione Derivatives with Substitution at C-3 Position by Employing Functional Groups Interconversion

Author(s): Munirah Zulkifli, Noor Hidayah Pungot*, Noraishah Abdullah, Nur Ain Nabilah Ash’ari and Zurina Shaameri

Volume 19, Issue 6, 2022

Published on: 18 February, 2022

Page: [681 - 685] Pages: 5

DOI: 10.2174/1570193X19666220110121158

Price: $65

Abstract

5-benzylpyrrolidine-2,4-dione 9 are versatile scaffolds with a unique structural feature responsible for the diversity of its biological importance. Over the past years, many researchers have reported the synthesis of various bio-active (S)-5-benzylpyrrolidine-2,4-dione derivatives due to their simplicity yet exhibiting promising bioactivities. This review focuses on the synthesis of core structure 9 and its derivatives based on the substitution at carbon-3 position of (S)-5-benzylpyrrolidine- 2,4-dione 9. This review also reported the effective method for the synthesis of core structure 9 with a 98% yield. Biological evaluations of various prepared derivatives by various researchers were described.

Keywords: 5-benzylpyrrolidine-2, 4-dione, substitution, C-3 position, synthesis, biological activities, derivatives.

Graphical Abstract
[1]
Bai, W.; Lu, C.; Wang, X. Recent advances in the total synthesis of tetramic acid-containing natural products. J. Chem., 2016, 2016, 8510278.
[http://dx.doi.org/10.1155/2016/8510278]
[2]
Jiang, M.; Chen, S.; Li, J.; Liu, L. The biological and chemical diversity of tetramic acid compounds from marine-derived microorganisms. Mar. Drugs, 2020, 18(2), 114.
[http://dx.doi.org/10.3390/md18020114] [PMID: 32075282]
[3]
Athanasellis, G.; Igglessi-Markopoulou, O.; Markopoulos, J. Tetramic and tetronic acids as scaffolds in bioinorganic and bioorganic chemistry. Bioinorg. Chem. Appl., 2010, 2010, 315056.
[http://dx.doi.org/10.1155/2010/315056] [PMID: 20508811]
[4]
Lambert, K.M.; Medley, A.W.; Jackson, A.C.; Markham, L.E.; Wood, J.L. Synthesis of chiral tetramic acids: Preparation of (S)-5-benzylpyrrolidine-2,4-dione from L-phenylalanine methyl ester hydrochloride. Org. Synth., 2019, 96, 528-585.
[http://dx.doi.org/10.15227/orgsyn.096.0528] [PMID: 32367897]
[5]
Yoda, H.; Takahashi, M.; Sengoku, T. Developments in the Synthesis of 3-Acyltetramic Acid Natural Products. Studies in Natural Products Chemistry; Atta-ur-Rahman; Elsevier, B.V., Ed.; 2015, 46, pp. 99-131.
[6]
Chen, G.Y.; Huang, H.; Ye, J.L.; Wang, A.E.; Huang, H.Y.; Zhang, H.K.; Huang, P.Q. Enantioselective syntheses of rigidiusculamides A and B: Revision of the relative stereochemistry of rigidiusculamide A. Chem. Asian J., 2012, 7(3), 504-518.
[http://dx.doi.org/10.1002/asia.201100809] [PMID: 22315233]
[7]
Wu, B.; Wiese, J.; Labes, A.; Kramer, A.; Schmaljohann, R.; Imhoff, J.F. Lindgomycin, an unusual antibiotic polyketide from a marine fungus of the lindgomycetaceae. Mar. Drugs, 2015, 13(8), 4617-4632.
[http://dx.doi.org/10.3390/md13084617] [PMID: 26225984]
[8]
Kemami Wangun, H.V.; Hertweck, C.; Epicoccarines, A. B and epipyridone: Tetramic acids and pyridone alkaloids from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. Org. Biomol. Chem., 2007, 5(11), 1702-1705.
[http://dx.doi.org/10.1039/b702378b] [PMID: 17520137]
[9]
Kempf, K.; Kempf, O.; Orozco, M.; Bilitewski, U.; Schobert, R. Synthesis and structural revision of the fungal tetramic acid metabolite spiroscytalin. J. Org. Chem., 2017, 82(15), 7791-7795.
[http://dx.doi.org/10.1021/acs.joc.7b00727] [PMID: 28703001]
[10]
Mo, X.; Li, Q.; Ju, J. Naturally occurring tetramic acid products: isolation, structure elucidation and biological activity. RSC Advances, 2014, 4(92), 50566-50593.
[http://dx.doi.org/10.1039/C4RA09047K]
[11]
Schmidt, K.; Riese, U.; Li, Z.; Hamburger, M. Novel tetramic acids and pyridone alkaloids, militarinones B, C, and D, from the insect pathogenic fungus Paecilomyces militaris. J. Nat. Prod., 2003, 66(3), 378-383.
[http://dx.doi.org/10.1021/np020430y] [PMID: 12662096]
[12]
Kroscky, A. Syntheses of natural bioactive 3-acyltetramic acids and derivatives.. PhD Thesis, University of Bayreuth, Germany, 2015.
[13]
Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M.J.; Tran, V.; Vijayendran, K.G.; Brunden, K.R.; Kozlowski, M.C.; Thomas, C.J.; Smith, A.B., III; Huryn, D.M.; Ballatore, C. Structure property relationships of carboxylic acid isosteres. J. Med. Chem., 2016, 59(7), 3183-3203.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01963] [PMID: 26967507]
[14]
Klapper, M.; Paschold, A.; Zhang, S.; Weigel, C.; Dahse, H.M.; Götze, S.; Pace, S.; König, S.; Rao, Z.; Reimer, L.; Werz, O.; Stallforth, P. Bioactivity and mode of action of bacterial tetramic acids. ACS Chem. Biol., 2019, 14(8), 1693-1697.
[http://dx.doi.org/10.1021/acschembio.9b00388] [PMID: 31294961]
[15]
Lu, G.; Chu, H.; Chen, M.; Yang, C. Synthesis and bioactivity of novel strobilurin derivatives containing the pyrrolidine-2,4-dione moiety. Chin. Chem. Lett., 2014, 25(1), 61-64.
[http://dx.doi.org/10.1016/j.cclet.2013.10.007]
[16]
Sengoku, T.; Suzuki, K.; Nakayama, K.; Yagishita, F.; Sakamoto, M.; Takahashi, M.; Yoda, H. Novel chiral tetramic acid-derived diols: organocatalytic facile synthesis and unique structural properties. RSC Advances, 2014, 4(58), 30775.
[http://dx.doi.org/10.1039/C4RA05405A]
[17]
Schlenk, A.; Diestel, R.; Sasse, F.; Schobert, R. A selective 3-acylation of tetramic acids and the first synthesis of ravenic acid. Chemistry, 2010, 16(8), 2599-2604.
[http://dx.doi.org/10.1002/chem.200902544] [PMID: 20066698]
[18]
Barnickel, B.; Bayliffe, F.; Diestel, R.; Kempf, K.; Laschat, S.; Pachali, S.; Sasse, F.; Schlenk, A.; Schobert, R. Structure-activity relationships of precursors and analogs of natural 3-enoyl-tetramic acids. Chem. Biodivers., 2010, 7(12), 2830-2845.
[http://dx.doi.org/10.1002/cbdv.201000179] [PMID: 21161996]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy