Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Solution Tetrahydrobiopterin Radical vs. the Enzyme-Bound Radical: A Paramagnetic Reconciliation

Author(s): Yaser NejatyJahromy*

Volume 15, Issue 4, 2021

Page: [319 - 330] Pages: 12

DOI: 10.2174/2212796816666211221095934

Price: $65

Abstract

Background: Nitric oxide synthase (NOS) catalyzes the formation of nitric oxide (NO) and citrulline from L-arginine, dioxygen (O2) and nicotinamide adenine dinucleotide phosphate (NADPH) in a two-step reaction, with the enzyme-bound intermediate Nω-hydroxy-L-arginine (NHA). Previous electron paramagnetic resonance (EPR) studies of NOS reaction have shown that (6R, 1'R, 2'S)-6-(l',2'-dihydroxypropyl)-5,6,7,8-tetrahydropterin (H4B) acts as a single electron donor in both steps of the reaction, resulting in transient generation of a tetrahydropterin cation radical (H4B•+).

Methods: H4B•+ can also be chemically generated in strongly acidic solutions. EPR studies of chemically generated H4B•+ and similar pterin radicals date back to the 1960s. However, the reported paramagnetic parameters of H4B•+ in NOS do not seem to match the corresponding reported parameters for either H4B•+ or other pterin centered radicals chemically generated in solution. In particular, the rather isotropic hyperfine coupling of ca. 45 MHz for 1H6 of H4B•+ in NOS is at least 15 MHz larger than that of H4B•+ or any other previously studies pterin solution radical. In the work reported here, a combination of 9.5 - 9.8 GHz contentious wave (cw-) EPR, 34GHz 1H electron nuclear double resonance (ENDOR), spectral simulation and Density Functional Theory (DFT) calculations was used to investigate this seeming discrepancy.

Results: A plethora of data from 9.5 - 9.8 GHz cw-EPR, 34GHz 1H ENDOR, spectral simulation and Density Functional Theory (DFT) calculations suggest that the differences in the paramagnetic parameters of the chemically generated H4B radicals in solution and those of H4B radical in NOS stems from the presence of two different conformers of the same cation radical H4B•+.

Conclusion: We demonstrated that the differences in the paramagnetic parameters of the chemically generated H4B radicals in solutions and those of the H4B radicals in NOS are consistent with the presence of two different conformers of the same cation radical in the two media.

Keywords: tetrahydrobiopterin, pterin, nitric oxide synthase, NOS, EPR, ENDOR, DFT, RFQ

Graphical Abstract
[1]
Thöny B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 2000; 347(Pt 1): 1-16.
[http://dx.doi.org/10.1042/bj3470001] [PMID: 10727395]
[2]
Kaufman S. A new cofactor required for the enzymatic conversion of phenylalanine to tyrosine. J Biol Chem 1958; 230(2): 931-9.
[http://dx.doi.org/10.1016/S0021-9258(18)70516-4] [PMID: 13525410]
[3]
Kaufman S, Levenberg B. Further studies on the phenylalanine-hydroxylation cofactor. J Biol Chem 1959; 234(10): 2683-8.
[http://dx.doi.org/10.1016/S0021-9258(18)69759-5] [PMID: 14404871]
[4]
Kaufman S. The structure of the phenylalanine-hydroxylation cofactor Proc Natl Acad Sci 1963; 50(6): 1085-93.
[http://dx.doi.org/10.1073/pnas.50.6.1085] [PMID: 14096182]
[5]
Brenneman AR, Kaufman S. The role of tetrahydropteridines in the enzymatic conversion of tyrosine to 3,4-dihydroxyphenylalanine. Biochem Biophys Res Commun 1964; 17(2): 177-83.
[http://dx.doi.org/10.1016/0006-291X(64)90141-X] [PMID: 26410913]
[6]
Nagatsu T, Levitt M, Udenfriend S. Tyrosine hydroxylase: The initial step in norepinephrine biosynthesis. J Biol Chem 1964; 239(9): 2910-7.
[http://dx.doi.org/10.1016/S0021-9258(18)93832-9] [PMID: 14216443]
[7]
Lovenberg W, Jequier E, Sjoerdsma A. Tryptophan hydroxylation: Measurement in pineal gland, brainstem, and carcinoid tumor. Science 1967; 155(3759): 217-9.
[http://dx.doi.org/10.1126/science.155.3759.217]
[8]
Jequier E, Robinson DS, Lovenberg W, Sjoerdsma A. Further studies on tryptophan hydroxylase in rat brainstem and beef pineal. Biochem Pharmacol 1969; 18(5): 1071-81.
[http://dx.doi.org/10.1016/0006-2952(69)90111-7] [PMID: 5789774]
[9]
Friedman PA, Kappelman AH, Kaufman S. Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain. J Biol Chem 1972; 247(13): 4165-73.
[http://dx.doi.org/10.1016/S0021-9258(19)45055-2] [PMID: 4402511]
[10]
Tietz A, Lindberg M, Kennedy EP. A new pteridine-requiring enzyme system for the oxidation of glyceryl ethers. J Biol Chem 1964; 239(12): 4081-90.
[http://dx.doi.org/10.1016/S0021-9258(18)91137-3] [PMID: 14247652]
[11]
Tayeh MA, Marletta MA. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem 1989; 264(33): 19654-8.
[http://dx.doi.org/10.1016/S0021-9258(19)47163-9] [PMID: 2584186]
[12]
Kwon NS, Nathan CF, Stuehr DJ. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem 1989; 264(34): 20496-501.
[http://dx.doi.org/10.1016/S0021-9258(19)47089-0] [PMID: 2584226]
[13]
Giovanelli J, Campos K L, Kaufman S. Tetrahydrobiopterin, a cofactor for rat cerebellar nitric oxide synthase, does not function as a reactant in the oxygenation of arginine. Proc Natl Acad Sci 1991; 88(16): 7091-5.
[http://dx.doi.org/10.1073/pnas.88.16.7091] [PMID: 1714584]
[14]
Baek KJ, Thiel BA, Lucas S, Stuehr DJ. Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J Biol Chem 1993; 268(28): 21120-9.
[http://dx.doi.org/10.1016/S0021-9258(19)36901-7] [PMID: 7691806]
[15]
Abu-Soud HM, Loftus M, Stuehr DJ. Subunit dissociation and unfolding of macrophage NO synthase: Relationship between enzyme structure, prosthetic group binding, and catalytic function. Biochemistry 1995; 34(35): 11167-75.
[http://dx.doi.org/10.1021/bi00035a023] [PMID: 7545434]
[16]
Klatt P, Schmidt K, Lehner D, Glatter O, Bächinger HP, Mayer B. Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer. EMBO J 1995; 14(15): 3687-95.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb00038.x] [PMID: 7543842]
[17]
Rodríguez-Crespo I, Gerber NC, Ortiz de Montellano PR. Endothelial nitric-oxide synthase. Expression in Escherichia coli, spectroscopic characterization, and role of tetrahydrobiopterin in dimer formation. J Biol Chem 1996; 271(19): 11462-7.
[http://dx.doi.org/10.1074/jbc.271.19.11462] [PMID: 8626704]
[18]
Crane B R, Arvai A S, Ghosh D K, et al. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 1998; 279(5359): 2121-6.
[http://dx.doi.org/10.1126/science.279.5359.2121]
[19]
Raman CS, Li H, Martásek P, Král V, Masters BSS, Poulos TL. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 1998; 95(7): 939-50.
[http://dx.doi.org/10.1016/S0092-8674(00)81718-3] [PMID: 9875848]
[20]
Bec N, Gorren ACF, Voelker C, Mayer B, Lange R. Reaction of neuronal nitric-oxide synthase with oxygen at low temperature. Evidence for reductive activation of the oxy-ferrous complex by tetrahydrobiopterin. J Biol Chem 1998; 273(22): 13502-8.
[http://dx.doi.org/10.1074/jbc.273.22.13502] [PMID: 9593685]
[21]
Riethmüller C, Gorren ACF, Pitters E, et al. Activation of neuronal nitric-oxide synthase by the 5-methyl analog of tetrahydrobiopterin. Functional evidence against reductive oxygen activation by the pterin cofactor. J Biol Chem 1999; 274(23): 16047-51.
[http://dx.doi.org/10.1074/jbc.274.23.16047] [PMID: 10347155]
[22]
Hurshman AR, Krebs C, Edmondson DE, Huynh BH, Marletta MA. Formation of a pterin radical in the reaction of the heme domain of inducible nitric oxide synthase with oxygen. Biochemistry 1999; 38(48): 15689-96.
[http://dx.doi.org/10.1021/bi992026c] [PMID: 10625434]
[23]
Schmidt PP, Lange R, Gorren ACF, Werner ER, Mayer B, Andersson KK. Formation of a protonated trihydrobiopterin radical cation in the first reaction cycle of neuronal and endothelial nitric oxide synthase detected by electron paramagnetic resonance spectroscopy. J Biol Inorg Chem 2001; 6(2): 151-8.
[http://dx.doi.org/10.1007/s007750000185] [PMID: 11293408]
[24]
Wei C-C, Wang Z-Q, Wang Q, et al. Rapid kinetic studies link tetrahydrobiopterin radical formation to heme-dioxy reduction and arginine hydroxylation in inducible nitric-oxide synthase. J Biol Chem 2001; 276(1): 315-9.
[http://dx.doi.org/10.1074/jbc.M008441200] [PMID: 11020389]
[25]
Hurshman AR, Krebs C, Edmondson DE, Marletta MA. Ability of tetrahydrobiopterin analogues to support catalysis by inducible nitric oxide synthase: Formation of a pterin radical is required for enzyme activity. Biochemistry 2003; 42(45): 13287-303.
[http://dx.doi.org/10.1021/bi035491p] [PMID: 14609340]
[26]
Santolini J. The molecular mechanism of mammalian NO-synthases: A story of electrons and protons. J Inorg Biochem 2011; 105(2): 127-41.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.10.011] [PMID: 21194610]
[27]
Wei C-C, Wang Z-Q, Hemann C, Hille R, Stuehr DJ. A tetrahydrobiopterin radical forms and then becomes reduced during nomega-hydroxyarginine oxidation by nitric-oxide synthase. J Biol Chem 2003; 278(47): 46668-73.
[http://dx.doi.org/10.1074/jbc.M307682200] [PMID: 14504282]
[28]
Woodward JJ, Chang MM, Martin NI, Marletta MA. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant. J Am Chem Soc 2009; 131(1): 297-305.
[http://dx.doi.org/10.1021/ja807299t] [PMID: 19128180]
[29]
Brunel A, Santolini J, Dorlet P. Electron paramagnetic resonance characterization of tetrahydrobiopterin radical formation in bacterial nitric oxide synthase compared to mammalian nitric oxide synthase. Biophys J 2012; 103(1): 109-17.
[http://dx.doi.org/10.1016/j.bpj.2012.05.032] [PMID: 22828337]
[30]
Watschinger K, Keller MA, Hermetter A, Golderer G, Werner-Felmayer G, Werner ER. Glyceryl ether monooxygenase resembles aromatic amino acid hydroxylases in metal ion and tetrahydrobiopterin dependence 2009; 390(1): 3-10.
[http://dx.doi.org/10.1515/BC.2009.010]
[31]
Stoll S, NejatyJahromy Y, Woodward JJ, Ozarowski A, Marletta MA, Britt RD. Nitric oxide synthase stabilizes the tetrahydrobiopterin cofactor radical by controlling its protonation state. J Am Chem Soc 2010; 132(33): 11812-23.
[http://dx.doi.org/10.1021/ja105372s] [PMID: 20669954]
[32]
Bobst A. Über Pterinchemie 23. Mitteilung [1 Radikalbildung während der oxydation von tetrahydrofolsäure und 5,6,7,8-tetrahydropterin. Helv Chim Acta 1967; 50(8): 2222-5.
[http://dx.doi.org/10.1002/hlca.19670500807]
[33]
Bobst A. Über pterinchemie: 24. Mitteilung: Charakterisierung des 5,6,7,8-tetrahydropterin-(THP)-radikals in saurer lösung. Helv Chim Acta 1968; 51(4): 607-13.
[http://dx.doi.org/10.1002/hlca.660510403]
[34]
Patel KB, Stratford MRL, Wardman P, Everett SA. Oxidation of tetrahydrobiopterin by biological radicals and scavenging of the trihydrobiopterin radical by ascorbate. Free Radic Biol Med 2002; 32(3): 203-11.
[http://dx.doi.org/10.1016/S0891-5849(01)00777-8] [PMID: 11827745]
[35]
Vásquez-Vivar J, Whitsett J, Martásek P, Hogg N, Kalyanaraman B. Reaction of tetrahydrobiopterin with superoxide: EPR-kinetic analysis and characterization of the pteridine radical. Free Radic Biol Med 2001; 31(8): 975-85.
[http://dx.doi.org/10.1016/S0891-5849(01)00680-3] [PMID: 11595382]
[36]
Kuzkaya N, Weissmann N, Harrison DG, Dikalov S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem 2003; 278(25): 22546-54.
[http://dx.doi.org/10.1074/jbc.M302227200] [PMID: 12692136]
[37]
Mathieu D, Frapart Y-M, Bartoli JF, Boucher J-L, Battioni P, Mansuy D. Very general formation of tetrahydropterin cation radicals during reaction of iron porphyrins with tetrahydropterins: model for the corresponding NO-synthase reaction. Chem Commun (Camb) 2004; (1): 54-5.
[http://dx.doi.org/10.1039/b312441j] [PMID: 14737329]
[38]
Mansuy D, Mathieu D, Battioni P, Boucher J-L. Reactions between iron porphyrins and tetrahydropterins. J Porphyr Phthalocyanines 2004; 08(03): 265-78.
[http://dx.doi.org/10.1142/S1088424604000258]
[39]
Stoll S, Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 2006; 178(1): 42-55.
[http://dx.doi.org/10.1016/j.jmr.2005.08.013] [PMID: 16188474]
[40]
Stoll S, Britt RD. General and efficient simulation of pulse EPR spectra. Phys Chem Chem Phys 2009; 11(31): 6614-25.
[http://dx.doi.org/10.1039/b907277b] [PMID: 19639136]
[41]
Matsuura S, Sugimoto T, Murata S, Sugawara Y, Iwasaki H. Stereochemistry of biopterin cofactor and facile methods for the determination of the stereochemistry of a biologically active 5,6,7,8-tetrahydropterin. J Biochem 1985; 98(5): 1341-8.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a135401] [PMID: 4086482]
[42]
Neese F. Prediction of electron paramagnetic resonance g values using coupled perturbed hartree–fock and kohn–sham theory. J Chem Phys 2001; 115(24): 11080-96.
[http://dx.doi.org/10.1063/1.1419058]
[43]
Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 1999; 110(13): 6158-70.
[http://dx.doi.org/10.1063/1.478522]
[44]
Barone V. Structure, magnetic properties and reactivities of open-shell species from density functional and self-consistent hybrid methods. In: Chong DP, Ed. Recent Advances in Density Functional Methods; Recent Advances in Computational Chemistry 1995; 1: pp. 287-334.
[http://dx.doi.org/10.1142/9789812830586_0008]
[45]
Cheeseman JR, Trucks GW, Keith TA, Frisch MJ. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 1996; 104(14): 5497-509.
[http://dx.doi.org/10.1063/1.471789]
[46]
Eberlein G, Bruice TC, Lazarus RA, Henrie R, Benkovic SJ. The interconversion of the 5,6,7,8-tetrahydro-, 6,7,8-dihydro-, and radical forms of 6,6,7,7-tetramethyldihydropterin. A model for the biopterin center of aromatic amino acid mixed function oxidases. J Am Chem Soc 1984; 106(25): 7916-24.
[http://dx.doi.org/10.1021/ja00337a047]
[47]
Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 2009; 113(18): 6378-96.
[http://dx.doi.org/10.1021/jp810292n] [PMID: 19366259]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy