Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Taurine: A Water Friendly Organocatalyst in Organic Reactions

Author(s): Shikha Agarwal*, Priyanka Kalal, Ayushi Sethiya and Jay Soni

Volume 19, Issue 5, 2022

Published on: 14 January, 2022

Page: [617 - 628] Pages: 12

DOI: 10.2174/1570193X18666211122112327

Price: $65

Abstract

Organocatalysis has become a powerful tool in organic synthesis for the formation of C-C and C-X (N, S, O, etc.) bonds, leading to the formation of complex molecules from easily available starting materials. It provides an alternative platform to the conventional synthesis and fulfills the principles of green chemistry. During the last decades, taurine has emerged as a promising organocatalyst in an array of organic transformations in addition to its plentiful biological properties. It is highly stable, easy to store and separate, water-soluble, of low cost, easily available, and recyclable. The present article highlights the recent and up-to-date applications of taurine in organic transformations.

Keywords: Organocatalysis, taurine, green chemistry, organic synthesis, knoevenagal condensation, michael addition.

Graphical Abstract
[1]
MacMillan, D.W. The advent and development of organocatalysis. Nature, 2008, 455(7211), 304-308.
[http://dx.doi.org/10.1038/nature07367] [PMID: 18800128]
[2]
Evans, C.S.; Davis, L.O. Recent advances in organocatalyzed domino C–C bond-forming reactions. Molecules, 2017, 23(1), 1-13.
[http://dx.doi.org/10.3390/molecules23010033] [PMID: 29295474]
[3]
Song, J.; Chen, D.F.; Gong, L.Z. Recent progress in organocatalytic asymmetric total syntheses of complex indole alkaloids. Natl. Sci. Rev., 2017, 4, 381-396.
[http://dx.doi.org/10.1093/nsr/nwx028]
[4]
Bisogno, F.R.; López‐Vidal, M.G.; de Gonzalo, G. Organocatalysis and biocatalysis hand in hand: Combining catalysts in one‐pot procedures. Adv. Synth. Catal., 2017, 359, 2026-2049.
[http://dx.doi.org/10.1002/adsc.201700158]
[5]
Da Gama Oliveira, V.; do Carmo Cardoso, M.F.; da Silva Magalhães Forezi, L.O. A brief overview on its evolution and application. Catalysts, 2018, 8, 605-633.
[http://dx.doi.org/10.3390/catal8120605]
[6]
Huxtable, R.J. Taurine in Nutrition and Neurology; Plenum: New York, 1982, pp. 1-4.
[http://dx.doi.org/10.1007/978-1-4757-0402-0]
[7]
Huxtable, R.J.; Sebring, L.A. Towards a unifying theory for the actions of taurine. Trends Pharmacol. Sci., 1986, 7, 481-485.
[http://dx.doi.org/10.1016/0165-6147(86)90433-5]
[8]
Huxtable, R.J. Physiological actions of taurine. Physiol. Rev., 1992, 72(1), 101-163.
[http://dx.doi.org/10.1152/physrev.1992.72.1.101] [PMID: 1731369]
[9]
Ripps, H.; Shen, W. Review: taurine: a “very essential” amino acid. Mol. Vis., 2012, 18, 2673-2686.
[PMID: 23170060]
[10]
Demarcay, H. De la nature de la bile. Ann. Pharm., 1838, 27, 270-291.
[11]
Tiedemann, F.; Gmelin, L. Einige neue Bestandtheile der Galle des Ochsen. Ann. Phys., 1827, 85, 326-337.
[http://dx.doi.org/10.1002/andp.18270850214]
[12]
Ronalds, B.F. Bringing together academic and industrial chemistry: Edmund Ronalds’ contribution. Substantia, 2019, 3, 139-152.
[13]
Sturman, J.A.; Gaull, G.E. Taurine in the brain and liver of the developing human and monkey. J. Neurochem., 1975, 25(6), 831-835.
[http://dx.doi.org/10.1111/j.1471-4159.1975.tb04414.x] [PMID: 812959]
[14]
Sadzuka, Y.; Matsuura, M.; Sonobe, T. The effect of taurine, a novel biochemical modulator, on the antitumor activity of doxorubicin. Biol. Pharm. Bull., 2009, 32(9), 1584-1587.
[http://dx.doi.org/10.1248/bpb.32.1584] [PMID: 19721236]
[15]
El Agouza, I.M.; Eissa, S.S.; El Houseini, M.M.; El-Nashar, D.E.; Abd El Hameed, O.M. Taurine: a novel tumor marker for enhanced detection of breast cancer among female patients. Angiogenesis, 2011, 14(3), 321-330.
[http://dx.doi.org/10.1007/s10456-011-9215-3] [PMID: 21553281]
[16]
Schaffer, S.W.; Azuma, J.; Mozaffari, M. Role of antioxidant activity of taurine in diabetes. Can. J. Physiol. Pharmacol., 2009, 87(2), 91-99.
[http://dx.doi.org/10.1139/Y08-110] [PMID: 19234572]
[17]
Hu, J.; Xu, X.; Yang, J.; Wu, G.; Sun, C.; Lv, Q. Antihypertensive effect of taurine in rat. InTaurine 7; Springer: New York, 2009, pp. 75-84.
[18]
Gossai, D.; Lau-Cam, C.A. The effects of taurine, hypotaurine, and taurine homologs on erythrocyte morphology, membrane fluidity and cytoskeletal spectrin alterations due to diabetes, alcoholism and diabetes-alcoholism in the rat. Taurine 7; Springer: New York, 2009, pp. 369-379.
[http://dx.doi.org/10.1007/978-0-387-75681-3_38]
[19]
(a)Salze, G.P.; Davis, D.A. Taurine: a critical nutrient for future fish feeds. Aquaculture, 2015, 437, 215-229.,
[http://dx.doi.org/10.1016/j.aquaculture.2014.12.006]
(b)Menzie, J.; Pan, C.; Prentice, H.; Wu, J.Y. Taurine and central nervous system disorders.Amino Acids, 2014, 46(1), 31-46.,
[http://dx.doi.org/10.1007/s00726-012-1382-z] [PMID: 22903433]
(c)Schuller-Levis, G.B.; Park, E. Taurine and its chloramine: modulators of immunity.Neurochem. Res., 2004, 29(1), 117-126.,
[http://dx.doi.org/10.1023/B:NERE.0000010440.37629.17 ] [PMID: 14992270]
(d)Hofmann, A.F. The function of bile salts in fat absorption. The solvent properties of dilute micellar solutions of conjugated bile salts. Biochem. J., 1963, 89, 57-68.
[http://dx.doi.org/10.1042/bj0890057] [PMID: 14097367]
[20]
Madhu, R.; Devadas, B.; Chen, S.M.; Rajkumar, M. An enhanced direct electrochemistry of glucose oxidase at poly (taurine) modified glassy carbon electrode for glucose biosensor. Anal. Methods, 2014, 6, 9053-9058.
[http://dx.doi.org/10.1039/C4AY01406E]
[21]
Wu, D.; Song, L.; Zhu, C.; Zhang, X.; Guo, H.; Yang, C. Solubility of taurine and its application for the crystallization process improvement. J. Mol. Liq., 2017, 241, 326-333.
[http://dx.doi.org/10.1016/j.molliq.2017.06.043]
[22]
Jeong, S.; Kim, G.M.; Kang, G.S.; Kim, C.; Lee, H.; Kim, W.J.; Lee, Y.K.; Lee, S.; Kim, H.; Lim, H.K.; Lee, D.C. Selectivity modulated by surface ligands on Cu2O/TiO2 catalysts for gas-phase photocatalytic reduction of carbon dioxide. J. Phys. Chem. C, 2019, 123, 29184-29191.
[http://dx.doi.org/10.1021/acs.jpcc.9b05780]
[23]
Lu, J.; Liu, W.; Ling, H.; Kong, J.; Ding, G.; Zhou, D.; Lu, X. Layer-by-layer assembled sulfonated-graphene/polyaniline nanocomposite films: enhanced electrical and ionic conductivities, and electrochromic properties. RSC Advances, 2012, 2, 10537-10543.
[http://dx.doi.org/10.1039/c2ra21579a]
[24]
Capone, R.; Blake, S.; Restrepo, M.R.; Yang, J.; Mayer, M. Designing nanosensors based on charged derivatives of gramicidin A. J. Am. Chem. Soc., 2007, 129(31), 9737-9745.
[http://dx.doi.org/10.1021/ja0711819] [PMID: 17625848]
[25]
Suzuki, M.; Nakajima, Y.; Sato, T.; Shirai, H.; Hanabusa, K. Fabrication of TiO2 using L-lysine-based organogelators as organic templates: control of the nanostructures. Chem. Commun. (Camb.), 2006, (4), 377-379.
[http://dx.doi.org/10.1039/B510302A] [PMID: 16404484]
[26]
Mikhalenko, S.A.; Solov’eva, L.I. Phthalocyanines and related compounds: XXXVIII. Synthesis of symmetric taurine-and choline-substituted phthalocyanines. Russ. J. Gen. Chem., 2004, 74, 1775-1800.
[http://dx.doi.org/10.1007/s11176-005-0100-x]
[27]
Collin, C.; Gautier, B.; Gaillard, O.; Hallegot, P.; Chabane, S.; Bastien, P.; Peyron, M.; Bouleau, M.; Thibaut, S.; Pruche, F.; Duranton, A.; Bernard, B.A. Protective effects of taurine on human hair follicle grown in vitro. Int. J. Cosmet. Sci., 2006, 28(4), 289-298.
[http://dx.doi.org/10.1111/j.1467-2494.2006.00334.x] [PMID: 18489269]
[28]
Janeke, G.; Siefken, W.; Carstensen, S.; Springmann, G.; Bleck, O.; Steinhart, H.; Höger, P.; Wittern, K.P.; Wenck, H.; Stäb, F.; Sauermann, G.; Schreiner, V.; Doering, T. Role of taurine accumulation in keratinocyte hydration. J. Invest. Dermatol., 2003, 121(2), 354-361.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12366.x] [PMID: 12880428]
[29]
Martin, R.E.; Plancq, B.; Gavelle, O.; Wagner, B.; Fischer, H.; Bendels, S.; Müller, K. Remote modulation of amine basicity by a phenylsulfone and a phenylthio group. ChemMedChem, 2007, 2(3), 285-287.
[http://dx.doi.org/10.1002/cmdc.200600265] [PMID: 17200999]
[30]
Song, I.K.; Kang, Y.K. Conformational preferences of taurine in the gas phase and in water. Comput. Theor. Chem., 2013, 1025, 8-15.
[http://dx.doi.org/10.1016/j.comptc.2013.09.007]
[31]
Abd El Aleem Ali Ali El‐Remaily, M.; Elhady, O.M. Green bio‐organic and recoverable catalyst taurine (2‐aminoethanesulfonic acid) for synthesis of bio‐active compounds 3, 4‐dihydropyrimidin derivatives in aqueous medium. ChemistrySelect, 2020, 5, 12098-12102.
[http://dx.doi.org/10.1002/slct.202002575]
[32]
Verma, K.; Tailor, Y.K.; Khandelwal, S.; Rushell, E.; Agarwal, M.; Kumar, M. Efficient and environmentally sustainable domino protocol for the synthesis of diversified spiroheterocycles with privileged heterocyclic substructures using bio-organic catalyst in aqueous medium. Mol. Divers., 2020, 24(4), 1355-1365.
[http://dx.doi.org/10.1007/s11030-019-09999-4] [PMID: 31598819]
[33]
Mohammadian, N.; Akhlaghinia, B. Magnetic calcined oyster shell functionalized with taurine immobilized on β-cyclodextrin (Fe3O4/COS@ β-CD-SO3H NPs) as green and magnetically reusable nanocatalyst for efficient and rapid synthesis of spirooxindoles. Res. Chem. Intermed., 2019, 45, 4737-4756.
[http://dx.doi.org/10.1007/s11164-019-03860-x]
[34]
Chate, A.V.; Shaikh, B.A.; Bondle, G.M.; Sangle, S.M. Efficient atom-economic one-pot multicomponent synthesis of benzylpyrazolyl coumarins and novel pyrano [2, 3-c] pyrazoles catalysed by 2-aminoethanesulfonic acid (taurine) as a bio-organic catalyst. Synth. Commun., 2019, 49, 2244-2257.
[http://dx.doi.org/10.1080/00397911.2019.1619772]
[35]
Biglari, M.; Shirini, F.; Mahmoodi, N.O.; Zabihzadeh, M.; Safarpoor Nikoo Langarudi, M.; Alipour Khoshdel, M. Taurine/choline chloride deep eutectic solvent as a novel ecocompatible catalyst to facilitate the multi-component synthesis of pyrano [2, 3-d] pyrimidinone (thione), hexahydroquinoline, and biscoumarin derivatives. Polycycl. Arom. Compd., 2020, 1-22.
[36]
Daneshvar, N.; Shirini, F.; Langarudi, M.S.N.; Karimi-Chayjani, R. Taurine as a green bio-organic catalyst for the preparation of bio-active barbituric and thiobarbituric acid derivatives in water media. Bioorg. Chem., 2018, 77, 68-73.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.021] [PMID: 29334621]
[37]
Daneshvar, N.; Goli‐Jolodar, O.; Karimi‐Chayjani, R.; Nikoo Langarudi, M.S.; Shirini, F. Sustainable and eco‐friendly method for the synthesis of some bioactive derivatives of biscoumarin and pyrano [3, 2‐c] chromene‐3‐carbonitrile using taurine, as the catalyst. ChemistrySelect, 2019, 4, 1562-1566.
[http://dx.doi.org/10.1002/slct.201803210]
[38]
Shirini, F.; Daneshvar, N. Introduction of taurine (2-aminoethanesulfonic acid) as a green bio-organic catalyst for the promotion of organic reactions under green conditions. RSC Advances, 2016, 6, 110190-110205.
[http://dx.doi.org/10.1039/C6RA15432H]
[39]
Wang, C.; Li, K.; Ji, P. Using taurine to increase mesopores in Ce-based metal-organic framework for enhancing the production of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose. J. Chem. Technol. Biotechnol., 2021, 96, 163-171.
[http://dx.doi.org/10.1002/jctb.6522]
[40]
Ji, H.; Fu, J.; Wang, T. Pyrolyzing renewable sugar and taurine on the surface of multi-walled carbon nanotubes as heterogeneous catalysts for hydroxymethylfurfural production. Catalysts, 2018, 8, 517.
[http://dx.doi.org/10.3390/catal8110517]
[41]
Shen, H.M.; Zhou, W.J.; Wu, H.K.; Yu, W.B.; Ai, N.; Ji, H.B.; Shi, H.X.; She, Y.B. Metal-free chemoselective oxidation of sulfides to sulfoxides catalyzed by immobilized taurine and homotaurine in aqueous phase at room temperature. Tetrahedron Lett., 2015, 56, 4494-4498.
[http://dx.doi.org/10.1016/j.tetlet.2015.05.105]
[42]
Yu, F.L.; Gu, Y.L.; Gao, X.; Liu, Q.C.; Xie, C.X.; Yu, S.T. Alkylation of isobutane and isobutene catalyzed by trifluoromethanesulfonic acid-taurine deep eutectic solvents in polyethylene glycol. Chem. Commun. (Camb.), 2019, 55(33), 4833-4836.
[http://dx.doi.org/10.1039/C9CC01254K] [PMID: 30950458]
[43]
Shumyantseva, V.V.; Makhova, A.A.; Bulko, T.V.; Bernhardt, R.; Kuzikov, A.V.; Shich, E.V.; Kukes, V.G.; Archakov, A.I. Taurine modulates catalytic activity of cytochrome P450 3A4. Biochemistry (Mosc.),. 2015, 80(3), 366-373.
[http://dx.doi.org/10.1134/S0006297915030116] [PMID: 25761690]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy