Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

DNA Nanodevices: From Mechanical Motions to Biomedical Applications

Author(s): Yiming Wang, Zhaoran Wang, Xiaohui Wu, Shaoli Liu, Fengsong Liu, Qiao Jiang* and Baoquan Ding*

Volume 22, Issue 8, 2022

Published on: 19 January, 2022

Page: [640 - 651] Pages: 12

DOI: 10.2174/1568026621666211105100240

Price: $65

Abstract

Inspired by molecular machines in nature, artificial nanodevices have been designed to realize various biomedical functions. Self-assembled deoxyribonucleic acid (DNA) nanostructures that feature designed geometries, excellent spatial accuracy, nanoscale addressability, and marked biocompatibility provide an attractive candidate for constructing dynamic nanodevices with biomarker- targeting and stimuli-responsiveness for biomedical applications. Here, a summary of typical construction strategies of DNA nanodevices and their operating mechanisms are presented. We also introduced recent advances in employing DNA nanodevices as platforms for biosensing and intelligent drug delivery. Finally, the broad prospects and main challenges of the DNA nanodevices in biomedical applications are also discussed.

Keywords: Artificial nanodevices, Biomedical applications, DNA nanotechnology, Biosensing, Drug delivery, Mechanical motions.

Graphical Abstract
[1]
Yu, G.; Yung, B.C.; Zhou, Z.; Mao, Z.; Chen, X. Artificial molecular machines in nanotheranostics. ACS Nano, 2018, 12(1), 7-12.
[http://dx.doi.org/10.1021/acsnano.7b07851] [PMID: 29283247]
[2]
Saper, G.; Hess, H. Synthetic systems powered by biological molecular motors. Chem. Rev., 2020, 120(1), 288-309.
[http://dx.doi.org/10.1021/acs.chemrev.9b00249] [PMID: 31509383]
[3]
Ramezani, H.; Dietz, H. Building machines with DNA molecules. Nat. Rev. Genet., 2020, 21(1), 5-26.
[http://dx.doi.org/10.1038/s41576-019-0175-6] [PMID: 31636414]
[4]
Fernandes, A.; Viterisi, A.; Coutrot, F.; Potok, S.; Leigh, D.A.; Aucagne, V.; Papot, S. Rotaxane-based propeptides: protection and enzymatic release of a bioactive pentapeptide. Angew. Chem. Int. Ed. Engl., 2009, 48(35), 6443-6447.
[http://dx.doi.org/10.1002/anie.200903215] [PMID: 19637268]
[5]
Lewandowski, B.; De Bo, G.; Ward, J.W.; Papmeyer, M.; Kuschel, S.; Aldegunde, M.J.; Gramlich, P.M.; Heckmann, D.; Goldup, S.M.; D’Souza, D.M.; Fernandes, A.E.; Leigh, D.A. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science, 2013, 339(6116), 189-193.
[http://dx.doi.org/10.1126/science.1229753] [PMID: 23307739]
[6]
García-López, V.; Chen, F.; Nilewski, L.G.; Duret, G.; Aliyan, A.; Kolomeisky, A.B.; Robinson, J.T.; Wang, G.; Pal, R.; Tour, J.M. Molecular machines open cell membranes. Nature, 2017, 548(7669), 567-572.
[http://dx.doi.org/10.1038/nature23657] [PMID: 28858304]
[7]
Rothemund, P.W. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082), 297-302.
[http://dx.doi.org/10.1038/nature04586] [PMID: 16541064]
[8]
He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A.E.; Jiang, W.; Mao, C. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 2008, 452(7184), 198-201.
[http://dx.doi.org/10.1038/nature06597] [PMID: 18337818]
[9]
Han, D.; Pal, S.; Nangreave, J.; Deng, Z.; Liu, Y.; Yan, H. DNA origami with complex curvatures in three-dimensional space. Science, 2011, 332(6027), 342-346.
[http://dx.doi.org/10.1126/science.1202998] [PMID: 21493857]
[10]
Seeman, N.C.; Sleiman, H.F. DNA nanotechnology. Nat. Rev. Mater., 2017, 3(1), 17068.
[http://dx.doi.org/10.1038/natrevmats.2017.68]
[11]
Zhang, D.Y.; Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem., 2011, 3(2), 103-113.
[http://dx.doi.org/10.1038/nchem.957] [PMID: 21258382]
[12]
Mao, C.; Sun, W.; Shen, Z.; Seeman, N.C. A nanomechanical device based on the B-Z transition of DNA. Nature, 1999, 397(6715), 144-146.
[http://dx.doi.org/10.1038/16437] [PMID: 9923675]
[13]
Liu, D.; Balasubramanian, S. A proton-fuelled DNA nanomachine. Angew. Chem. Int. Ed., 2003, 42(46), 5734-5736.
[http://dx.doi.org/10.1002/anie.200352402] [PMID: 14661209]
[14]
Yang, Y.; Endo, M.; Hidaka, K.; Sugiyama, H. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. J. Am. Chem. Soc., 2012, 134(51), 20645-20653.
[http://dx.doi.org/10.1021/ja307785r] [PMID: 23210720]
[15]
Kuzuya, A.; Sakai, Y.; Yamazaki, T.; Xu, Y.; Komiyama, M. Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nat. Commun., 2011, 2(1), 449.
[http://dx.doi.org/10.1038/ncomms1452] [PMID: 21863016]
[16]
Kallenbach, N.R.; Ma, R.I.; Seeman, N.C. An immobile nucleic-acid junction constructed from oligonucleotides. Nature, 1983, 305(5937), 829-831.
[http://dx.doi.org/10.1038/305829a0]
[17]
Seeman, N.C. Nanomaterials based on DNA. Annu. Rev. Biochem., 2010, 79(1), 65-87.
[http://dx.doi.org/10.1146/annurev-biochem-060308-102244] [PMID: 20222824]
[18]
Hu, Q.; Li, H.; Wang, L.; Gu, H.; Fan, C. DNA nanotechnology-enabled drug delivery systems. Chem. Rev., 2019, 119(10), 6459-6506.
[http://dx.doi.org/10.1021/acs.chemrev.7b00663] [PMID: 29465222]
[19]
Xia, K.; Shen, J.; Li, Q.; Fan, C.; Gu, H. Near-atomic fabrication with nucleic acids. ACS Nano, 2020, 14(2), 1319-1337.
[http://dx.doi.org/10.1021/acsnano.9b09163] [PMID: 31976651]
[20]
Douglas, S.M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W.M. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 2009, 459(7245), 414-418.
[http://dx.doi.org/10.1038/nature08016] [PMID: 19458720]
[21]
Wei, B.; Dai, M.; Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature, 2012, 485(7400), 623-626.
[http://dx.doi.org/10.1038/nature11075] [PMID: 22660323]
[22]
Ke, Y.; Ong, L.L.; Shih, W.M.; Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science, 2012, 338(6111), 1177-1183.
[http://dx.doi.org/10.1126/science.1227268] [PMID: 23197527]
[23]
Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc., 2014, 136(32), 11198-11211.
[http://dx.doi.org/10.1021/ja505101a] [PMID: 25029570]
[24]
Madsen, M.; Gothelf, K.V. Chemistries for DNA nanotechnology. Chem. Rev., 2019, 119(10), 6384-6458.
[http://dx.doi.org/10.1021/acs.chemrev.8b00570] [PMID: 30714731]
[25]
Andersen, E.S.; Dong, M.; Nielsen, M.M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M.M.; Sander, B.; Stark, H.; Oliveira, C.L.; Pedersen, J.S.; Birkedal, V.; Besenbacher, F.; Gothelf, K.V.; Kjems, J. Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 2009, 459(7243), 73-76.
[http://dx.doi.org/10.1038/nature07971] [PMID: 19424153]
[26]
Song, J.; Li, Z.; Wang, P.; Meyer, T.; Mao, C.; Ke, Y. Reconfiguration of DNA molecular arrays driven by information relay. Science, 2017, 357(6349), eaan3377.
[http://dx.doi.org/10.1126/science.aan3377] [PMID: 28642234]
[27]
Chandrasekaran, A.R.; Levchenko, O. DNA nanocages. Chem. Mater., 2016, 28(16), 5569-5581.
[http://dx.doi.org/10.1021/acs.chemmater.6b02546]
[28]
Yurke, B.; Turberfield, A.J.; Mills, A.P., Jr; Simmel, F.C.; Neumann, J.L. A DNA-fuelled molecular machine made of DNA. Nature, 2000, 406(6796), 605-608.
[http://dx.doi.org/10.1038/35020524] [PMID: 10949296]
[29]
Jorge, A.F.; Eritja, R. Overview of DNA self-assembling: progresses in biomedical applications. Pharmaceutics, 2018, 10(4), 268.
[http://dx.doi.org/10.3390/pharmaceutics10040268] [PMID: 30544945]
[30]
Xin, L.; Zhou, C.; Yang, Z.; Liu, D. Regulation of an enzyme cascade reaction by a DNA machine. Small, 2013, 9(18), 3088-3091.
[http://dx.doi.org/10.1002/smll.201300019] [PMID: 23613449]
[31]
Zhou, C.; Yang, Z.; Liu, D. Reversible regulation of protein binding affinity by a DNA machine. J. Am. Chem. Soc., 2012, 134(3), 1416-1418.
[http://dx.doi.org/10.1021/ja209590u] [PMID: 22229476]
[32]
Yan, H.; Zhang, X.; Shen, Z.; Seeman, N.C. A robust DNA mechanical device controlled by hybridization topology. Nature, 2002, 415(6867), 62-65.
[http://dx.doi.org/10.1038/415062a] [PMID: 11780115]
[33]
Ding, B.; Seeman, N.C. Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science, 2006, 314(5805), 1583-1585.
[http://dx.doi.org/10.1126/science.1131372] [PMID: 17158323]
[34]
Wang, X.; Chandrasekaran, A.R.; Shen, Z.; Ohayon, Y.P.; Wang, T.; Kizer, M.E.; Sha, R.; Mao, C.; Yan, H.; Zhang, X.; Liao, S.; Ding, B.; Chakraborty, B.; Jonoska, N.; Niu, D.; Gu, H.; Chao, J.; Gao, X.; Li, Y.; Ciengshin, T.; Seeman, N.C. Paranemic crossover DNA: There and back again. Chem. Rev., 2019, 119(10), 6273-6289.
[http://dx.doi.org/10.1021/acs.chemrev.8b00207] [PMID: 29911864]
[35]
Lo, P.K.; Karam, P.; Aldaye, F.A.; McLaughlin, C.K.; Hamblin, G.D.; Cosa, G.; Sleiman, H.F. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat. Chem., 2010, 2(4), 319-328.
[http://dx.doi.org/10.1038/nchem.575] [PMID: 21124515]
[36]
Sherman, W.B.; Seeman, N.C. A precisely controlled DNA biped walking device. Nano Lett., 2004, 4(7), 1203-1207.
[http://dx.doi.org/10.1021/nl049527q]
[37]
Shin, J.S.; Pierce, N.A. A synthetic DNA walker for molecular transport. J. Am. Chem. Soc., 2004, 126(35), 10834-10835.
[http://dx.doi.org/10.1021/ja047543j] [PMID: 15339155]
[38]
Omabegho, T.; Sha, R.; Seeman, N.C. A bipedal DNA Brownian motor with coordinated legs. Science, 2009, 324(5923), 67-71.
[http://dx.doi.org/10.1126/science.1170336] [PMID: 19342582]
[39]
Willner, I.; Shlyahovsky, B.; Zayats, M.; Willner, B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev., 2008, 37(6), 1153-1165.
[http://dx.doi.org/10.1039/b718428j] [PMID: 18497928]
[40]
Tian, Y.; He, Y.; Chen, Y.; Yin, P.; Mao, C. A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed., 2005, 44(28), 4355-4358.
[http://dx.doi.org/10.1002/anie.200500703] [PMID: 15945114]
[41]
Lund, K.; Manzo, A.J.; Dabby, N.; Michelotti, N.; Johnson-Buck, A.; Nangreave, J.; Taylor, S.; Pei, R.; Stojanovic, M.N.; Walter, N.G.; Winfree, E.; Yan, H. Molecular robots guided by prescriptive landscapes. Nature, 2010, 465(7295), 206-210.
[http://dx.doi.org/10.1038/nature09012] [PMID: 20463735]
[42]
Simmel, F.C.; Yurke, B.; Singh, H.R. Principles and applications of nucleic acid strand displacement reactions. Chem. Rev., 2019, 119(10), 6326-6369.
[http://dx.doi.org/10.1021/acs.chemrev.8b00580] [PMID: 30714375]
[43]
Gu, H.; Chao, J.; Xiao, S.J.; Seeman, N.C. A proximity-based programmable DNA nanoscale assembly line. Nature, 2010, 465(7295), 202-205.
[http://dx.doi.org/10.1038/nature09026] [PMID: 20463734]
[44]
Thubagere, A.J.; Li, W.; Johnson, R.F.; Chen, Z.; Doroudi, S.; Lee, Y.L.; Izatt, G.; Wittman, S.; Srinivas, N.; Woods, D.; Winfree, E.; Qian, L. A cargo-sorting DNA robot. Science, 2017, 357(6356), eaan6558.
[http://dx.doi.org/10.1126/science.aan6558] [PMID: 28912216]
[45]
Chao, J.; Wang, J.; Wang, F.; Ouyang, X.; Kopperger, E.; Liu, H.; Li, Q.; Shi, J.; Wang, L.; Hu, J.; Wang, L.; Huang, W.; Simmel, F.C.; Fan, C. Solving mazes with single-molecule DNA navigators. Nat. Mater., 2019, 18(3), 273-279.
[http://dx.doi.org/10.1038/s41563-018-0205-3] [PMID: 30397311]
[46]
Li, J.; Johnson-Buck, A.; Yang, Y.R.; Shih, W.M.; Yan, H.; Walter, N.G. Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat. Nat. Nanotechnol., 2018, 13(8), 723-729.
[http://dx.doi.org/10.1038/s41565-018-0130-2] [PMID: 29736034]
[47]
Sannohe, Y.; Endo, M.; Katsuda, Y.; Hidaka, K.; Sugiyama, H. Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. J. Am. Chem. Soc., 2010, 132(46), 16311-16313.
[http://dx.doi.org/10.1021/ja1058907] [PMID: 21028867]
[48]
Rajendran, A.; Endo, M.; Hidaka, K.; Sugiyama, H. Direct and real-time observation of rotary movement of a DNA nanomechanical device. J. Am. Chem. Soc., 2013, 135(3), 1117-1123.
[http://dx.doi.org/10.1021/ja310454k] [PMID: 23311576]
[49]
Wu, N.; Willner, I. DNAzyme-controlled cleavage of dimer and trimer origami tiles. Nano Lett., 2016, 16(4), 2867-2872.
[http://dx.doi.org/10.1021/acs.nanolett.6b00789] [PMID: 26931508]
[50]
Gerling, T.; Wagenbauer, K.F.; Neuner, A.M.; Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science, 2015, 347(6229), 1446-1452.
[http://dx.doi.org/10.1126/science.aaa5372] [PMID: 25814577]
[51]
Hahn, J.; Chou, L.Y.T.; Sørensen, R.S.; Guerra, R.M.; Shih, W.M. Extrusion of RNA from a DNA-Origami-Based Nanofactory. ACS Nano, 2020, 14(2), 1550-1559.
[http://dx.doi.org/10.1021/acsnano.9b06466] [PMID: 31922721]
[52]
Chen, Y.; Lee, S.H.; Mao, C. A DNA nanomachine based on a duplex-triplex transition. Angew. Chem. Int. Ed., 2004, 43(40), 5335-5338.
[http://dx.doi.org/10.1002/anie.200460789] [PMID: 15468182]
[53]
Ijäs, H.; Hakaste, I.; Shen, B.; Kostiainen, M.A.; Linko, V. Reconfigurable DNA origami nanocapsule for pH-controlled encapsulation and display of cargo. ACS Nano, 2019, 13(5), 5959-5967.
[http://dx.doi.org/10.1021/acsnano.9b01857] [PMID: 30990664]
[54]
Idili, A.; Vallée-Bélisle, A.; Ricci, F. Programmable pH-triggered DNA nanoswitches. J. Am. Chem. Soc., 2014, 136(16), 5836-5839.
[http://dx.doi.org/10.1021/ja500619w] [PMID: 24716858]
[55]
Hu, Y.W.; Lu, C.H.; Guo, W.W.; Aleman-Garcia, M.A.; Ren, J.T.; Willner, I. A shape memory acrylamide/DNA hydrogel exhibiting switchable dual pH-responsiveness. Adv. Funct. Mater., 2015, 25(44), 6867-6874.
[http://dx.doi.org/10.1002/adfm.201503134]
[56]
Kuzyk, A.; Urban, M.J.; Idili, A.; Ricci, F.; Liu, N. Selective control of reconfigurable chiral plasmonic metamolecules. Sci. Adv., 2017, 3(4), e1602803.
[http://dx.doi.org/10.1126/sciadv.1602803] [PMID: 28439556]
[57]
Asanuma, H.; Liang, X.; Nishioka, H.; Matsunaga, D.; Liu, M.; Komiyama, M. Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat. Protoc., 2007, 2(1), 203-212.
[http://dx.doi.org/10.1038/nprot.2006.465] [PMID: 17401355]
[58]
Yang, Y.; Goetzfried, M.A.; Hidaka, K.; You, M.; Tan, W.; Sugiyama, H.; Endo, M. Direct visualization of walking motions of photocontrolled nanomachine on the DNA nanostructure. Nano Lett., 2015, 15(10), 6672-6676.
[http://dx.doi.org/10.1021/acs.nanolett.5b02502] [PMID: 26302358]
[59]
Kuzyk, A.; Yang, Y.; Duan, X.; Stoll, S.; Govorov, A.O.; Sugiyama, H.; Endo, M.; Liu, N. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat. Commun., 2016, 7(1), 10591.
[http://dx.doi.org/10.1038/ncomms10591] [PMID: 26830310]
[60]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[61]
Krissanaprasit, A.; Key, C.M.; Pontula, S.; LaBean, T.H. Self-assembling nucleic acid nanostructures functionalized with aptamers. Chem. Rev., 2021, 121(22), 13797-13868.
[http://dx.doi.org/10.1021/acs.chemrev.0c01332] [PMID: 34157230]
[62]
Liu, F.; Jiang, Q.; Liu, Q.; Li, N.; Han, Z.; Liu, C.; Wang, Z.; Jiao, Y.; Sun, J.; Ding, B. Logic-gated plasmonic nanodevices based on DNA-templated assembly. CCS Chemistry, 2021, 3(3), 985-993.
[http://dx.doi.org/10.31635/ccschem.020.202000300]
[63]
Kopperger, E.; List, J.; Madhira, S.; Rothfischer, F.; Lamb, D.C.; Simmel, F.C. A self-assembled nanoscale robotic arm controlled by electric fields. Science, 2018, 359(6373), 296-301.
[http://dx.doi.org/10.1126/science.aao4284] [PMID: 29348232]
[64]
Lauback, S.; Mattioli, K.R.; Marras, A.E.; Armstrong, M.; Rudibaugh, T.P.; Sooryakumar, R.; Castro, C.E. Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers. Nat. Commun., 2018, 9(1), 1446.
[http://dx.doi.org/10.1038/s41467-018-03601-5] [PMID: 29654315]
[65]
Chao, J.; Zhu, D.; Zhang, Y.; Wang, L.; Fan, C. DNA nanotechnology-enabled biosensors. Biosens. Bioelectron., 2016, 76, 68-79.
[http://dx.doi.org/10.1016/j.bios.2015.07.007] [PMID: 26212206]
[66]
Weizmann, Y.; Beissenhirtz, M.K.; Cheglakov, Z.; Nowarski, R.; Kotler, M.; Willner, I. A virus spotlighted by an autonomous DNA machine. Angew. Chem. Int. Ed., 2006, 45(44), 7384-7388.
[http://dx.doi.org/10.1002/anie.200602754] [PMID: 17036292]
[67]
Shlyahovsky, B.; Li, D.; Weizmann, Y.; Nowarski, R.; Kotler, M.; Willner, I. Spotlighting of cocaine by an autonomous aptamer-based machine. J. Am. Chem. Soc., 2007, 129(13), 3814-3815.
[http://dx.doi.org/10.1021/ja069291n] [PMID: 17352479]
[68]
Wen, Y.; Xu, Y.; Mao, X.; Wei, Y.; Song, H.; Chen, N.; Huang, Q.; Fan, C.; Li, D. DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva. Anal. Chem., 2012, 84(18), 7664-7669.
[http://dx.doi.org/10.1021/ac300616z] [PMID: 22928468]
[69]
Gao, M.; Daniel, D.; Zou, H.; Jiang, S.; Lin, S.; Huang, C.; Hecht, S.M.; Chen, S. Rapid detection of a dengue virus RNA sequence with single molecule sensitivity using tandem toehold-mediated displacement reactions. Chem. Commun. (Camb.), 2018, 54(8), 968-971.
[http://dx.doi.org/10.1039/C7CC09131A] [PMID: 29319084]
[70]
Gao, M.; Waggoner, J.J.; Hecht, S.M.; Chen, S. Selective detection of dengue virus serotypes using tandem toehold-mediated displacement reactions. ACS Infect. Dis., 2019, 5(11), 1907-1914.
[http://dx.doi.org/10.1021/acsinfecdis.9b00241] [PMID: 31529946]
[71]
Pei, H.; Liang, L.; Yao, G.; Li, J.; Huang, Q.; Fan, C. Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. Angew. Chem. Int. Ed. Engl., 2012, 51(36), 9020-9024.
[http://dx.doi.org/10.1002/anie.201202356] [PMID: 22887892]
[72]
Chang, X.; Zhang, C.; Lv, C.; Sun, Y.; Zhang, M.; Zhao, Y.; Yang, L.; Han, D.; Tan, W. Construction of a multiple-aptamer-based DNA logic device on live cell membranes via associative toehold activation for accurate cancer cell identification. J. Am. Chem. Soc., 2019, 141(32), 12738-12743.
[http://dx.doi.org/10.1021/jacs.9b05470] [PMID: 31328519]
[73]
Modi, S.; M G, S.; Goswami, D.; Gupta, G.D.; Mayor, S.; Krishnan, Y. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol., 2009, 4(5), 325-330.
[http://dx.doi.org/10.1038/nnano.2009.83] [PMID: 19421220]
[74]
Saha, S.; Prakash, V.; Halder, S.; Chakraborty, K.; Krishnan, Y. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat. Nanotechnol., 2015, 10(7), 645-651.
[http://dx.doi.org/10.1038/nnano.2015.130] [PMID: 26098226]
[75]
Dan, K.; Veetil, A.T.; Chakraborty, K.; Krishnan, Y. DNA nanodevices map enzymatic activity in organelles. Nat. Nanotechnol., 2019, 14(3), 252-259.
[http://dx.doi.org/10.1038/s41565-019-0365-6] [PMID: 30742135]
[76]
Saminathan, A.; Devany, J.; Veetil, A.T.; Suresh, B.; Pillai, K.S.; Schwake, M.; Krishnan, Y. A DNA-based voltmeter for organelles. Nat. Nanotechnol., 2021, 16(1), 96-103.
[http://dx.doi.org/10.1038/s41565-020-00784-1] [PMID: 33139937]
[77]
Leung, K.; Chakraborty, K.; Saminathan, A.; Krishnan, Y. A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol., 2019, 14(2), 176-183.
[http://dx.doi.org/10.1038/s41565-018-0318-5] [PMID: 30510277]
[78]
Ebrahimi, S.B.; Samanta, D.; Mirkin, C.A. DNA-based nanostructures for live-cell analysis. J. Am. Chem. Soc., 2020, 142(26), 11343-11356.
[http://dx.doi.org/10.1021/jacs.0c04978] [PMID: 32573219]
[79]
Zhao, J.; Gao, J.; Xue, W.; Di, Z.; Xing, H.; Lu, Y.; Li, L. Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells. J. Am. Chem. Soc., 2018, 140(2), 578-581.
[http://dx.doi.org/10.1021/jacs.7b11161] [PMID: 29281270]
[80]
Zhao, J.; Chu, H.; Zhao, Y.; Lu, Y.; Li, L. A NIR light gated DNA nanodevice for spatiotemporally controlled imaging of microRNA in cells and animals. J. Am. Chem. Soc., 2019, 141(17), 7056-7062.
[http://dx.doi.org/10.1021/jacs.9b01931] [PMID: 30929430]
[81]
Zhang, C.; Zhao, Y.; Xu, X.; Xu, R.; Li, H.; Teng, X.; Du, Y.; Miao, Y.; Lin, H.C.; Han, D. Cancer diagnosis with DNA molecular computation. Nat. Nanotechnol., 2020, 15(8), 709-715.
[http://dx.doi.org/10.1038/s41565-020-0699-0] [PMID: 32451504]
[82]
Tseng, J-C.; Levin, B.; Hurtado, A.; Yee, H.; Perez de Castro, I.; Jimenez, M.; Shamamian, P.; Jin, R.; Novick, R.P.; Pellicer, A.; Meruelo, D. Systemic tumor targeting and killing by Sindbis viral vectors. Nat. Biotechnol., 2004, 22(1), 70-77.
[http://dx.doi.org/10.1038/nbt917] [PMID: 14647305]
[83]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[84]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[85]
Zhou, H.; Ge, J.; Miao, Q.; Zhu, R.; Wen, L.; Zeng, J.; Gao, M. Biodegradable inorganic nanoparticles for cancer theranostics: insights into the degradation behavior. Bioconjug. Chem., 2020, 31(2), 315-331.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00699] [PMID: 31765561]
[86]
Zhang, Y.; Jiang, S.; Zhang, D.; Bai, X.; Hecht, S.M.; Chen, S. DNA-affibody nanoparticles for inhibiting breast cancer cells overexpressing HER2. Chem. Commun. (Camb.), 2017, 53(3), 573-576.
[http://dx.doi.org/10.1039/C6CC08495H] [PMID: 27975087]
[87]
Zhang, C.; Han, M.; Zhang, F.; Yang, X.; Du, J.; Zhang, H.; Li, W.; Chen, S. Enhancing antitumor efficacy of nucleoside analog 5-fluorodeoxyuridine on HER2-overexpressing breast cancer by affibody-engineered DNA nanoparticle. Int. J. Nanomedicine, 2020, 15, 885-900.
[http://dx.doi.org/10.2147/IJN.S231144] [PMID: 32103944]
[88]
Douglas, S.M.; Bachelet, I.; Church, G.M. A logic-gated nanorobot for targeted transport of molecular payloads. Science, 2012, 335(6070), 831-834.
[http://dx.doi.org/10.1126/science.1214081] [PMID: 22344439]
[89]
Li, S.; Jiang, Q.; Liu, S.; Zhang, Y.; Tian, Y.; Song, C.; Wang, J.; Zou, Y.; Anderson, G.J.; Han, J.Y.; Chang, Y.; Liu, Y.; Zhang, C.; Chen, L.; Zhou, G.; Nie, G.; Yan, H.; Ding, B.; Zhao, Y. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol., 2018, 36(3), 258-264.
[http://dx.doi.org/10.1038/nbt.4071] [PMID: 29431737]
[90]
Ren, K.; Liu, Y.; Wu, J.; Zhang, Y.; Zhu, J.; Yang, M.; Ju, H. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun., 2016, 7(1), 13580.
[http://dx.doi.org/10.1038/ncomms13580] [PMID: 27882923]
[91]
Wang, Z.; Song, L.; Liu, Q.; Tian, R.; Shang, Y.; Liu, F.; Liu, S.; Zhao, S.; Han, Z.; Sun, J.; Jiang, Q.; Ding, B. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew. Chem. Int. Ed. Engl., 2021, 60(5), 2594-2598.
[http://dx.doi.org/10.1002/anie.202009842] [PMID: 33089613]
[92]
Chu, H.; Zhao, J.; Mi, Y.; Di, Z.; Li, L. NIR-light-mediated spatially selective triggering of anti-tumor immunity via upconversion nanoparticle-based immunodevices. Nat. Commun., 2019, 10(1), 2839.
[http://dx.doi.org/10.1038/s41467-019-10847-0] [PMID: 31253798]
[93]
Di, Z.; Liu, B.; Zhao, J.; Gu, Z.; Zhao, Y.; Li, L. An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment. Sci. Adv., 2020, 6(25), eaba9381.
[http://dx.doi.org/10.1126/sciadv.aba9381] [PMID: 32596466]
[94]
Liu, S.; Jiang, Q.; Zhao, X.; Zhao, R.; Wang, Y.; Wang, Y.; Liu, J.; Shang, Y.; Zhao, S.; Wu, T.; Zhang, Y.; Nie, G.; Ding, B. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater., 2021, 20(3), 421-430.
[http://dx.doi.org/10.1038/s41563-020-0793-6] [PMID: 32895504]
[95]
Rahman, M.A.; Wang, P.; Zhao, Z.; Wang, D.; Nannapaneni, S.; Zhang, C.; Chen, Z.; Griffith, C.C.; Hurwitz, S.J.; Chen, Z.G.; Ke, Y.; Shin, D.M. Systemic delivery of Bc12-Targeting siRNA by DNA nanoparticles suppresses cancer cell growth. Angew. Chem. Int. Ed. Engl., 2017, 56(50), 16023-16027.
[http://dx.doi.org/10.1002/anie.201709485] [PMID: 29076273]
[96]
Wang, P.; Rahman, M.A.; Zhao, Z.; Weiss, K.; Zhang, C.; Chen, Z.; Hurwitz, S.J.; Chen, Z.G.; Shin, D.M.; Ke, Y. Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells. J. Am. Chem. Soc., 2018, 140(7), 2478-2484.
[http://dx.doi.org/10.1021/jacs.7b09024] [PMID: 29406750]
[97]
Bastings, M.M.C.; Anastassacos, F.M.; Ponnuswamy, N.; Leifer, F.G.; Cuneo, G.; Lin, C.; Ingber, D.E.; Ryu, J.H.; Shih, W.M. Modulation of the cellular uptake of DNA origami through control over mass and shape. Nano Lett., 2018, 18(6), 3557-3564.
[http://dx.doi.org/10.1021/acs.nanolett.8b00660] [PMID: 29756442]
[98]
Wang, D.; Liu, Q.; Wu, D.; He, B.; Li, J.; Mao, C.; Wang, G.; Qian, H. Isothermal self-assembly of spermidine-DNA nanostructure complex as a functional platform for cancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(18), 15504-15516.
[http://dx.doi.org/10.1021/acsami.8b03464] [PMID: 29652478]
[99]
Schüller, V.J.; Heidegger, S.; Sandholzer, N.; Nickels, P.C.; Suhartha, N.A.; Endres, S.; Bourquin, C.; Liedl, T. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano, 2011, 5(12), 9696-9702.
[http://dx.doi.org/10.1021/nn203161y] [PMID: 22092186]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy