Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Regulation of Neurogenesis and Neuronal Differentiation by Natural Compounds

Author(s): Jing An, Bo Chen*, Ding Tian, Yunshan Guo, Yuzhu Yan and Hao Yang*

Volume 17, Issue 8, 2022

Published on: 06 December, 2021

Page: [756 - 771] Pages: 16

DOI: 10.2174/1574888X16666210907141447

Price: $65

Abstract

Neuronal damage or degeneration is the main feature of neurological diseases. Regulation of neurogenesis and neuronal differentiation is important in developing therapies to promote neuronal regeneration or synaptic network reconstruction. Neurogenesis is a multistage process in which neurons are generated and integrated into existing neuronal circuits. Neuronal differentiation is extremely complex because it can occur in different cell types and can be caused by a variety of inducers. Recently, natural compounds that induce neurogenesis and neuronal differentiation have attracted extensive attention. In this paper, the potential neural induction effects of medicinal plant-derived natural compounds on neural stem/progenitor cells (NS/PCs), the cultured neuronal cells, and mesenchymal stem cells (MSCs) are reviewed. The natural compounds that are efficacious in inducing neurogenesis and neuronal differentiation include phenolic acids, polyphenols, flavonoids, glucosides, alkaloids, terpenoids, quinones, coumarins, and others. They exert neural induction effects by regulating signal factors and cellspecific genes involved in the process of neurogenesis and neuronal differentiation, including specific proteins (β-tubulin III, MAP-2, tau, nestin, neurofilaments, GFAP, GAP-43, NSE), related genes and proteins (STAT3, Hes1, Mash1, NeuroD1, notch, cyclin D1, SIRT1, Reggie-1), transcription factors (CREB, Nkx-2.5, Ngn1), neurotrophins (BDNF, NGF, NT-3), and signaling pathways (JAK/STAT, Wnt/β-catenin, MAPK, PI3K/Akt, GSK-3β/β-catenin, Ca2+/CaMKII/ATF1, Nrf2/HO-1, BMP).The natural compounds with neural induction effects are of great value for neuronal regenerative medicine and provide promising prevention and treatment strategies for neurological diseases.

Keywords: Natural compounds, neurogenesis, neuronal differentiation, neurite outgrowth, neural stem/progenitor cells, neuronal cells, mesenchymal stem cells.

[1]
Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4(11): 1313-7.
[http://dx.doi.org/10.1038/3305] [PMID: 9809557]
[2]
Gaspard N, Vanderhaeghen P. Mechanisms of neural specification from embryonic stem cells. Curr Opin Neurobiol 2010; 20(1): 37-43.
[http://dx.doi.org/10.1016/j.conb.2009.12.001] [PMID: 20080043]
[3]
Christie KJ, Turnley AM. Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci 2013; 6: 70.
[http://dx.doi.org/10.3389/fncel.2012.00070] [PMID: 23346046]
[4]
Jun H, Mohammed Qasim Hussaini S, Rigby MJ, Jang MH. Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders. Neural Plast 2012; 2012: 854285.
[http://dx.doi.org/10.1155/2012/854285] [PMID: 23346419]
[5]
Yu IT, Park JY, Kim SH, Lee JS, Kim YS, Son H. Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology 2009; 56(2): 473-80.
[http://dx.doi.org/10.1016/j.neuropharm.2008.09.019] [PMID: 19007798]
[6]
Kim HJ. Stem cell potential in Parkinson’s disease and molecular factors for the generation of dopamine neurons. Biochim Biophys Acta 2011; 1812(1): 1-11.
[http://dx.doi.org/10.1016/j.bbadis.2010.08.006] [PMID: 20713152]
[7]
Xu J, Lacoske MH, Theodorakis EA. Neurotrophic natural products: chemistry and biology. Angew Chem Int Ed Engl 2014; 53(4): 956-87.
[http://dx.doi.org/10.1002/anie.201302268] [PMID: 24353244]
[8]
Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011; 70(4): 687-702.
[http://dx.doi.org/10.1016/j.neuron.2011.05.001] [PMID: 21609825]
[9]
Alvarez-Buylla A, García-Verdugo JM, Tramontin AD. A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2001; 2(4): 287-93.
[http://dx.doi.org/10.1038/35067582] [PMID: 11283751]
[10]
Fares J, Bou Diab Z, Nabha S, Fares Y. Neurogenesis in the adult hippocampus: history, regulation, and prospective roles. Int J Neurosci 2019; 129(6): 598-611.
[http://dx.doi.org/10.1080/00207454.2018.1545771] [PMID: 30433866]
[11]
Magnus T, Rao MS. Neural stem cells in inflammatory CNS diseases: mechanisms and therapy. J Cell Mol Med 2005; 9(2): 303-19.
[http://dx.doi.org/10.1111/j.1582-4934.2005.tb00357.x] [PMID: 15963251]
[12]
Yang J, Jiang Z, Fitzgerald DC, et al. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest 2009; 119(12): 3678-91.
[http://dx.doi.org/10.1172/JCI37914] [PMID: 19884657]
[13]
Young TH, Hung CH. Behavior of embryonic rat cerebral cortical stem cells on the PVA and EVAL substrates. Biomaterials 2005; 26(20): 4291-9.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.043] [PMID: 15683653]
[14]
Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 2005; 8(6): 709-15.
[http://dx.doi.org/10.1038/nn1475] [PMID: 15917835]
[15]
Bonaguidi MA, Peng CY, McGuire T, et al. Noggin expands neural stem cells in the adult hippocampus. J Neurosci 2008; 28(37): 9194-204.
[http://dx.doi.org/10.1523/JNEUROSCI.3314-07.2008] [PMID: 18784300]
[16]
Hamby ME, Coskun V, Sun YE. Transcriptional regulation of neuronal differentiation: the epigenetic layer of complexity. Biochim Biophys Acta 2008; 1779(8): 432-7.
[http://dx.doi.org/10.1016/j.bbagrm.2008.07.006] [PMID: 18674649]
[17]
Bath KG, Lee FS. Neurotrophic factor control of adult SVZ neurogenesis. Dev Neurobiol 2010; 70(5): 339-49.
[http://dx.doi.org/10.1002/dneu.20781] [PMID: 20186714]
[18]
Song HJ, Stevens CF, Gage FH. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci 2002; 5(5): 438-45.
[http://dx.doi.org/10.1038/nn844] [PMID: 11953752]
[19]
Li XJ, Zhang X, Johnson MA, Wang ZB, Lavaute T, Zhang SC. Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development 2009; 136(23): 4055-63.
[http://dx.doi.org/10.1242/dev.036624] [PMID: 19906872]
[20]
Warashina M, Min KH, Kuwabara T, et al. A synthetic small molecule that induces neuronal differentiation of adult hippocampal neural progenitor cells. Angew Chem Int Ed 2006; 45(4): 591-3.
[http://dx.doi.org/10.1002/anie.200503089] [PMID: 16323231]
[21]
Bonaguidi MA, McGuire T, Hu M, Kan L, Samanta J, Kessler JA. LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development 2005; 132(24): 5503-14.
[http://dx.doi.org/10.1242/dev.02166] [PMID: 16314487]
[22]
Ohno M, Kohyama J, Namihira M, et al. Neuropoietin induces neuroepithelial cells to differentiate into astrocytes via activation of STAT3. Cytokine 2006; 36(1-2): 17-22.
[http://dx.doi.org/10.1016/j.cyto.2006.10.007] [PMID: 17161614]
[23]
Rajan P, McKay RDG. Multiple routes to astrocytic differentiation in the CNS. J Neurosci 1998; 18(10): 3620-9.
[http://dx.doi.org/10.1523/JNEUROSCI.18-10-03620.1998] [PMID: 9570793]
[24]
Pieper AA, Xie S, Capota E, et al. Discovery of a proneurogenic, neuroprotective chemical. Cell 2010; 142(1): 39-51.
[http://dx.doi.org/10.1016/j.cell.2010.06.018] [PMID: 20603013]
[25]
Sasmita AO, Kuruvilla J, Ling APK. Harnessing neuroplasticity: modern approaches and clinical future. Int J Neurosci 2018; 128(11): 1061-77.
[http://dx.doi.org/10.1080/00207454.2018.1466781] [PMID: 29667473]
[26]
Murakami S, Motohashi H. Roles of NRF2 in cell proliferation and differentiation. Free Radic Biol Med 2015; 88(Pt B): 168-78.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.030]
[27]
Yang X, Wang S, Ouyang Y, et al. Garcinone D, a natural xanthone promotes C17.2 neural stem cell proliferation: Possible involvement of STAT3/Cyclin D1 pathway and Nrf2/HO-1 pathway. Neurosci Lett 2016; 626: 6-12.
[http://dx.doi.org/10.1016/j.neulet.2016.05.012] [PMID: 27177723]
[28]
Yabe T, Hirahara H, Harada N, et al. Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience 2010; 165(2): 515-24.
[http://dx.doi.org/10.1016/j.neuroscience.2009.10.023] [PMID: 19837139]
[29]
Xue L, Wang J, Wang W, et al. The effect of stromal cell-derived factor 1 in the migration of neural stem cells. Cell Biochem Biophys 2014; 70(3): 1609-16.
[http://dx.doi.org/10.1007/s12013-014-0103-5] [PMID: 25241080]
[30]
Qi X, Ackermann C, Sun D, Sheng M, Hou H. Physicochemical characterization and percutaneous delivery of 2,3,5,6-tetramethylpyrazine. Int J Pharm 2003; 253(1-2): 177-83.
[http://dx.doi.org/10.1016/S0378-5173(03)00002-4] [PMID: 12593948]
[31]
Kong X, Zhong M, Su X, et al. Tetramethylpyrazine promotes migration of neural precursor cells via activating the phosphatidylinositol 3-kinase pathway. Mol Neurobiol 2016; 53(9): 6526-39.
[http://dx.doi.org/10.1007/s12035-015-9551-1] [PMID: 26614511]
[32]
Baral S, Pariyar R, Kim J, Lee HS, Seo J. Quercetin-3-O-glucuronide promotes the proliferation and migration of neural stem cells. Neurobiol Aging 2017; 52: 39-52.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.12.024] [PMID: 28110104]
[33]
Chen Y, Huang X, Chen W, Wang N, Li L. Tenuigenin promotes proliferation and differentiation of hippocampal neural stem cells. Neurochem Res 2012; 37(4): 771-7.
[http://dx.doi.org/10.1007/s11064-011-0671-3] [PMID: 22179853]
[34]
Guo G, Li B, Wang Y, et al. Effects of salvianolic acid B on proliferation, neurite outgrowth and differentiation of neural stem cells de-rived from the cerebral cortex of embryonic mice. Sci China Life Sci 2010; 53(6): 653-62.
[http://dx.doi.org/10.1007/s11427-010-3106-5] [PMID: 20602267]
[35]
Zhang N, Kang T, Xia Y, et al. Effects of salvianolic acid B on survival, self-renewal and neuronal differentiation of bone marrow derived neural stem cells. Eur J Pharmacol 2012; 697(1-3): 32-9.
[http://dx.doi.org/10.1016/j.ejphar.2012.10.008] [PMID: 23085027]
[36]
Zhuang P, Zhang Y, Cui G, et al. Direct stimulation of adult neural stem/progenitor cells in vitro and neurogenesis in vivo by salvianolic acid B. PLoS One 2012; 7(4): e35636.
[http://dx.doi.org/10.1371/journal.pone.0035636] [PMID: 22545124]
[37]
Ambrosone A, Matteis L, Serrano-Sevilla I, Tortiglione C, De La Fuente JM. Glycogen synthase kinase 3beta inhibitor delivered by chi-tosan nanocapsules promotes safe, fast, and efficient activation of Wnt signaling in vivo. ACS Biomater Sci Eng 2020; 6(5): 2893-903.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01820] [PMID: 33463287]
[38]
Yao Y, Gao Z, Liang W, et al. Osthole promotes neuronal differentiation and inhibits apoptosis via Wnt/β-catenin signaling in an Alz-heimer’s disease model. Toxicol Appl Pharmacol 2015; 289(3): 474-81.
[http://dx.doi.org/10.1016/j.taap.2015.10.013] [PMID: 26525509]
[39]
Han Z, Xu Q, Li C, Zhao H. Effects of sulforaphane on neural stem cell proliferation and differentiation. Genesis 2017; 55(3)
[http://dx.doi.org/10.1002/dvg.23022] [PMID: 28142224]
[40]
Tian Y, Liu Y, Chen X, et al. Tetramethylpyrazine promotes proliferation and differentiation of neural stem cells from rat brain in hypoxic condition via mitogen-activated protein kinases pathway in vitro. Neurosci Lett 2010; 474(1): 26-31.
[http://dx.doi.org/10.1016/j.neulet.2010.02.066] [PMID: 20206231]
[41]
Ning Y, Huang J, Kalionis B, et al. Oleanolic acid induces differentiation of neural stem cells to neurons: An involvement of transcription factor Nkx-2.5. Stem Cells Int 2015; 2015: 672312.
[http://dx.doi.org/10.1155/2015/672312] [PMID: 26240574]
[42]
Zhang YL, Zhou Z, Han WW, et al. Oleanolic acid inhibiting the differentiation of neural stem cells into astrocyte by down-regulating JAK/STAT signaling pathway. Am J Chin Med 2016; 44(1): 103-17.
[http://dx.doi.org/10.1142/S0192415X16500075] [PMID: 26916917]
[43]
Hoang DM, Ngoc TM, Dat NT, et al. Protein tyrosine phosphatase 1B inhibitors isolated from Morus bombycis. Bioorg Med Chem Lett 2009; 19(23): 6759-61.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.102] [PMID: 19846295]
[44]
Kong SY, Park MH, Lee M, et al. Kuwanon V inhibits proliferation, promotes cell survival and increases neurogenesis of neural stem cells. PLoS One 2015; 10(2): e0118188.
[http://dx.doi.org/10.1371/journal.pone.0118188] [PMID: 25706719]
[45]
Guan S, Zhang XL, Ge D, Liu TQ, Ma XH, Cui ZF. Protocatechuic acid promotes the neuronal differentiation and facilitates survival of phenotypes differentiated from cultured neural stem and progenitor cells. Eur J Pharmacol 2011; 670(2-3): 471-8.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.020] [PMID: 21946114]
[46]
Lim JS, Yoo M, Kwon HJ, Kim H, Kwon YK. Wogonin induces differentiation and neurite outgrowth of neural precursor cells. Biochem Biophys Res Commun 2010; 402(1): 42-7.
[http://dx.doi.org/10.1016/j.bbrc.2010.09.098] [PMID: 20888794]
[47]
Li Y, Zhuang P, Shen B, Zhang Y, Shen J. Baicalin promotes neuronal differentiation of neural stem/progenitor cells through modulating p-stat3 and bHLH family protein expression. Brain Res 2012; 1429: 36-42.
[http://dx.doi.org/10.1016/j.brainres.2011.10.030] [PMID: 22088824]
[48]
Huang JY, Ma YZ, Yuan YH, et al. Claulansine F promoted the neuronal differentiation of neural stem and progenitor cells through Akt/GSK-3β/β-catenin pathway. Eur J Pharmacol 2016; 786: 72-84.
[http://dx.doi.org/10.1016/j.ejphar.2016.05.017] [PMID: 27179990]
[49]
Zhao Y, Xu P, Hu S, et al. Tanshinone II A, a multiple target neuroprotectant, promotes caveolae-dependent neuronal differentiation. Eur J Pharmacol 2015; 765: 437-46.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.006] [PMID: 26363255]
[50]
Weng MS, Liao CH, Yu SY, Lin JK. Garcinol promotes neurogenesis in rat cortical progenitor cells through the duration of extracellular signal-regulated kinase signaling. J Agric Food Chem 2011; 59(3): 1031-40.
[http://dx.doi.org/10.1021/jf104263s] [PMID: 21214247]
[51]
Zhang L, Yang H. Promotive effects of tetrahydroxystilbene glucoside on the differentiation of neural stem cells from the mesencephalon into dopaminergic neurons. Neurosci Lett 2021; 742: 135520.
[http://dx.doi.org/10.1016/j.neulet.2020.135520] [PMID: 33246026]
[52]
Song M, Kim H, Park S, Kwon H, Joung I, Kim Kwon Y. Aucubin promotes differentiation of neural precursor cells into GABAergic neurons. Exp Neurobiol 2018; 27(2): 112-9.
[http://dx.doi.org/10.5607/en.2018.27.2.112] [PMID: 29731677]
[53]
Zainuddin MSA, Thuret S. Nutrition, adult hippocampal neurogenesis and mental health. Br Med Bull 2012; 103(1): 89-114.
[http://dx.doi.org/10.1093/bmb/lds021] [PMID: 22833570]
[54]
Ortiz-López L, Márquez-Valadez B, Gómez-Sánchez A, et al. Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience 2016; 322: 208-20.
[http://dx.doi.org/10.1016/j.neuroscience.2016.02.040] [PMID: 26917271]
[55]
Kim SJ, Son TG, Park HR, et al. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 2008; 283(21): 14497-505.
[http://dx.doi.org/10.1074/jbc.M708373200] [PMID: 18362141]
[56]
Wang X, Wang Z, Yao Y, et al. Essential role of ERK activation in neurite outgrowth induced by α-lipoic acid. Biochim Biophys Acta 2011; 1813(5): 827-38.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.027] [PMID: 21295083]
[57]
da Silva JS, Dotti CG. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 2002; 3(9): 694-704.
[http://dx.doi.org/10.1038/nrn918] [PMID: 12209118]
[58]
Martin LJ. Neuronal cell death in nervous system development, disease, and injury (Review). Int J Mol Med 2001; 7(5): 455-78.
[http://dx.doi.org/10.3892/ijmm.7.5.455] [PMID: 11295106]
[59]
Read DE, Gorman AM. Involvement of Akt in neurite outgrowth. Cell Mol Life Sci 2009; 66(18): 2975-84.
[http://dx.doi.org/10.1007/s00018-009-0057-8] [PMID: 19504044]
[60]
Zhou FQ, Snider WD. Intracellular control of developmental and regenerative axon growth. Philos Trans R Soc Lond B Biol Sci 2006; 361(1473): 1575-92.
[http://dx.doi.org/10.1098/rstb.2006.1882] [PMID: 16939976]
[61]
Price RD, Milne SA, Sharkey J, Matsuoka N. Advances in small molecules promoting neurotrophic function. Pharmacol Ther 2007; 115(2): 292-306.
[http://dx.doi.org/10.1016/j.pharmthera.2007.03.005] [PMID: 17599430]
[62]
McAllister AK. Neurotrophins and neuronal differentiation in the central nervous system. Cell Mol Life Sci 2001; 58(8): 1054-60.
[http://dx.doi.org/10.1007/PL00000920] [PMID: 11529498]
[63]
Vaudry D, Stork PJS, Lazarovici P, Eiden LE. Signaling pathways for PC12 cell differentiation: making the right connections. Science 2002; 296(5573): 1648-9.
[http://dx.doi.org/10.1126/science.1071552] [PMID: 12040181]
[64]
Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006; 361(1473): 1545-64.
[http://dx.doi.org/10.1098/rstb.2006.1894] [PMID: 16939974]
[65]
Riese U, Ziegler E, Hamburger M. Militarinone A induces differentiation in PC12 cells via MAP and Akt kinase signal transduction path-ways. FEBS Lett 2004; 577(3): 455-9.
[http://dx.doi.org/10.1016/j.febslet.2004.10.045] [PMID: 15556627]
[66]
More SV, Kumar H, Kang SM, Song SY, Lee K, Choi DK. Advances in neuroprotective ingredients of medicinal herbs by using cellular and animal models of Parkinson’s disease. Evid Based Complement Alternat Med 2013; 2013: 957875.
[http://dx.doi.org/10.1155/2013/957875] [PMID: 24073012]
[67]
Yanaka N, Nogusa Y, Fujioka Y, Yamashita Y, Kato N. Involvement of membrane protein GDE2 in retinoic acid-induced neurite for-mation in Neuro2A cells. FEBS Lett 2007; 581(4): 712-8.
[http://dx.doi.org/10.1016/j.febslet.2007.01.035] [PMID: 17275818]
[68]
Ohnuma K, Hayashi Y, Furue M, Kaneko K, Asashima M. Serum-free culture conditions for serial subculture of undifferentiated PC12 cells. J Neurosci Methods 2006; 151(2): 250-61.
[http://dx.doi.org/10.1016/j.jneumeth.2005.08.004] [PMID: 16169086]
[69]
Krishna A, Biryukov M, Trefois C, et al. Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson’s disease. BMC Genomics 2014; 15(1): 1154.
[http://dx.doi.org/10.1186/1471-2164-15-1154] [PMID: 25528190]
[70]
Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 2000; 10(3): 381-91.
[http://dx.doi.org/10.1016/S0959-4388(00)00092-1] [PMID: 10851172]
[71]
More SV, Koppula S, Kim IS, Kumar H, Kim BW, Choi DK. The role of bioactive compounds on the promotion of neurite outgrowth. Molecules 2012; 17(6): 6728-53.
[http://dx.doi.org/10.3390/molecules17066728] [PMID: 22664464]
[72]
Tang G, Dong X, Huang X, et al. A natural diarylheptanoid promotes neuronal differentiation via activating ERK and PI3K-Akt depend-ent pathways. Neuroscience 2015; 303: 389-401.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.019] [PMID: 26183020]
[73]
Cheng L, Ye Y, Xiang L, Osada H, Qi J. Lindersin B from Lindernia crustacea induces neuritogenesis by activation of tyrosine kinase A/phosphatidylinositol 3 kinase/extracellular signal-regulated kinase signaling pathway. Phytomedicine 2017; 24: 31-8.
[http://dx.doi.org/10.1016/j.phymed.2016.11.011] [PMID: 28160859]
[74]
Jeon J, Kwon H, Cho E, et al. The effect of coniferaldehyde on neurite outgrowth in neuroblastoma Neuro2a cells. Neurochem Int 2019; 131: 104579.
[http://dx.doi.org/10.1016/j.neuint.2019.104579] [PMID: 31614166]
[75]
Park SJ, Jin ML, An HK, et al. Emodin induces neurite outgrowth through PI3K/Akt/GSK-3β-mediated signaling pathways in Neuro2a cells. Neurosci Lett 2015; 588: 101-7.
[http://dx.doi.org/10.1016/j.neulet.2015.01.001] [PMID: 25562207]
[76]
Hook SS, Means AR. Ca(2+)/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol 2001; 41: 471-505.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.471] [PMID: 11264466]
[77]
Venkatesan R, Shim WS, Yeo EJ, Kim SY. Lactucopicrin potentiates neuritogenesis and neurotrophic effects by regulating Ca2+/CaMKII/ATF1 signaling pathway. J Ethnopharmacol 2017; 198: 174-83.
[http://dx.doi.org/10.1016/j.jep.2016.12.035] [PMID: 28011163]
[78]
Higgins GA, Mufson EJ. NGF receptor gene expression is decreased in the nucleus basalis in Alzheimer’s disease. Exp Neurol 1989; 106(3): 222-36.
[http://dx.doi.org/10.1016/0014-4886(89)90155-6] [PMID: 2556292]
[79]
Friedman WJ, Greene LA. Neurotrophin signaling via Trks and p75. Exp Cell Res 1999; 253(1): 131-42.
[http://dx.doi.org/10.1006/excr.1999.4705] [PMID: 10579918]
[80]
Shi GX, Rehmann H, Andres DA. A novel cyclic AMP-dependent Epac-Rit signaling pathway contributes to PACAP38-mediated neuronal differentiation. Mol Cell Biol 2006; 26(23): 9136-47.
[http://dx.doi.org/10.1128/MCB.00332-06] [PMID: 17000774]
[81]
Greene LA, Kaplan DR. Early events in neurotrophin signalling via Trk and p75 receptors. Curr Opin Neurobiol 1995; 5(5): 579-87.
[http://dx.doi.org/10.1016/0959-4388(95)80062-X] [PMID: 8580709]
[82]
Perrone-Bizzozero NI, Cansino VV, Kohn DT. Posttranscriptional regulation of GAP-43 gene expression in PC12 cells through protein kinase C-dependent stabilization of the mRNA. J Cell Biol 1993; 120(5): 1263-70.
[http://dx.doi.org/10.1083/jcb.120.5.1263] [PMID: 8436593]
[83]
Zhao J, Cheng YY, Fan W, et al. Botanical drug puerarin coordinates with nerve growth factor in the regulation of neuronal survival and neuritogenesis via activating ERK1/2 and PI3K/Akt signaling pathways in the neurite extension process. CNS Neurosci Ther 2015; 21(1): 61-70.
[http://dx.doi.org/10.1111/cns.12334] [PMID: 25310912]
[84]
Sánchez S, Jiménez C, Carrera AC, Diaz-Nido J, Avila J, Wandosell F. A cAMP-activated pathway, including PKA and PI3K, regulates neuronal differentiation. Neurochem Int 2004; 44(4): 231-42.
[http://dx.doi.org/10.1016/S0197-0186(03)00150-5] [PMID: 14602086]
[85]
Lam KYC, Chen J, Lam CTW, et al. Asarone from Acori Tatarinowii Rhizoma potentiates the nerve growth factor-induced neuronal dif-ferentiation in cultured PC12 cells: A signaling mediated by protein kinase A. PLoS One 2016; 11(9): e0163337.
[http://dx.doi.org/10.1371/journal.pone.0163337] [PMID: 27685847]
[86]
Schimmelpfeng J, Weibezahn KF, Dertinger H. Quantification of NGF-dependent neuronal differentiation of PC-12 cells by means of neurofilament-L mRNA expression and neuronal outgrowth. J Neurosci Methods 2004; 139(2): 299-306.
[http://dx.doi.org/10.1016/j.jneumeth.2004.05.010] [PMID: 15488244]
[87]
Liao KK, Wu MJ, Chen PY, et al. Curcuminoids promote neurite outgrowth in PC12 cells through MAPK/ERK- and PKC-dependent pathways. J Agric Food Chem 2012; 60(1): 433-43.
[http://dx.doi.org/10.1021/jf203290r] [PMID: 22145830]
[88]
Koch JC, Solis GP, Bodrikov V, et al. Upregulation of reggie-1/flotillin-2 promotes axon regeneration in the rat optic nerve in vivo and neurite growth in vitro. Neurobiol Dis 2013; 51: 168-76.
[http://dx.doi.org/10.1016/j.nbd.2012.11.007] [PMID: 23174179]
[89]
Lu Z, Shen Y, Wang T, et al. Curcumin promotes neurite outgrowth via reggie-1/flotillin-2 in cortical neurons. Neurosci Lett 2014; 559: 7-12.
[http://dx.doi.org/10.1016/j.neulet.2013.11.029] [PMID: 24287376]
[90]
Ma YZ, Ning N, He WB, et al. Claulansine F promotes neuritogenesis in PC12 cells via the ERK signaling pathway. Acta Pharmacol Sin 2013; 34(12): 1499-507.
[http://dx.doi.org/10.1038/aps.2013.95] [PMID: 24096602]
[91]
Liu J, Zheng X, Yin F, et al. Neurotrophic property of geniposide for inducing the neuronal differentiation of PC12 cells. Int J Dev Neurosci 2006; 24(7): 419-24.
[http://dx.doi.org/10.1016/j.ijdevneu.2006.08.009] [PMID: 17045447]
[92]
Yang X, Li W, Prescott ED, Burden SJ, Wang JC. DNA topoisomerase IIbeta and neural development. Science 2000; 287(5450): 131-4.
[http://dx.doi.org/10.1126/science.287.5450.131] [PMID: 10615047]
[93]
Lok CN, Lang AJ, Mirski SEL, Cole SPC. Characterization of the human topoisomerase IIbeta (TOP2B) promoter activity: essential roles of the nuclear factor-Y (NF-Y)- and specificity protein-1 (Sp1)-binding sites. Biochem J 2002; 368(Pt 3): 741-51.
[http://dx.doi.org/10.1042/bj20020791] [PMID: 12197834]
[94]
Silvestre-Roig C, Fernández P, Esteban V, et al. Inactivation of nuclear factor-Y inhibits vascular smooth muscle cell proliferation and neointima formation. Arterioscler Thromb Vasc Biol 2013; 33(5): 1036-45.
[http://dx.doi.org/10.1161/ATVBAHA.112.300580] [PMID: 23430616]
[95]
Hong IK, Byun HJ, Lee J, et al. The tetraspanin CD81 protein increases melanoma cell motility by up-regulating metalloproteinase MT1-MMP expression through the pro-oncogenic Akt-dependent Sp1 activation signaling pathways. J Biol Chem 2014; 289(22): 15691-704.
[http://dx.doi.org/10.1074/jbc.M113.534206] [PMID: 24733393]
[96]
Yan YX, Zhao JX, Han S, et al. Tetramethylpyrazine induces SH-SY5Y cell differentiation toward the neuronal phenotype through activa-tion of the PI3K/Akt/Sp1/TopoIIβ pathway. Eur J Cell Biol 2015; 94(12): 626-41.
[http://dx.doi.org/10.1016/j.ejcb.2015.09.001] [PMID: 26518113]
[97]
Yan Y, Zhao J, Cao C, et al. Tetramethylpyrazine promotes SH-SY5Y cell differentiation into neurons through epigenetic regulation of Topoisomerase IIβ. Neuroscience 2014; 278: 179-93.
[http://dx.doi.org/10.1016/j.neuroscience.2014.08.010] [PMID: 25149630]
[98]
Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer 2017; 16(1): 31.
[http://dx.doi.org/10.1186/s12943-017-0597-8] [PMID: 28148268]
[99]
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
[http://dx.doi.org/10.1126/science.284.5411.143] [PMID: 10102814]
[100]
Jeong SG, Ohn T, Kim SH, Cho GW. Valproic acid promotes neuronal differentiation by induction of neuroprogenitors in human bone-marrow mesenchymal stromal cells. Neurosci Lett 2013; 554: 22-7.
[http://dx.doi.org/10.1016/j.neulet.2013.08.059] [PMID: 24021810]
[101]
Fujimoto Y, Abematsu M, Falk A, et al. Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripo-tent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells 2012; 30(6): 1163-73.
[http://dx.doi.org/10.1002/stem.1083] [PMID: 22419556]
[102]
Singh M, Kakkar A, Sharma R, et al. Differentiation of bone marrow mesenchymal stem cells into neural lineage cells induced by bFGF-chitosan controlled release system. Sci Rep 2017; 7(1): 10378.
[http://dx.doi.org/10.1038/s41598-017-11028-z] [PMID: 28871128]
[103]
Dantuma E, Merchant S, Sugaya K. Stem cells for the treatment of neurodegenerative diseases. Stem Cell Res Ther 2010; 1(5): 37-43.
[http://dx.doi.org/10.1186/scrt37] [PMID: 21144012]
[104]
Fan W, Cheng K, Qin X, et al. mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo. Stem Cells 2013; 31(1): 203-14.
[http://dx.doi.org/10.1002/stem.1265] [PMID: 23081858]
[105]
Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000; 164(2): 247-56.
[http://dx.doi.org/10.1006/exnr.2000.7389] [PMID: 10915564]
[106]
Muñoz-Elías G, Woodbury D, Black IB. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells 2003; 21(4): 437-48.
[http://dx.doi.org/10.1634/stemcells.21-4-437] [PMID: 12832697]
[107]
Wang Y, Deng Z, Lai X, Tu W. Differentiation of human bone marrow stromal cells into neural-like cells induced by sodium ferulate in vitro. Cell Mol Immunol 2005; 2(3): 225-9.
[PMID: 16212891]
[108]
Nan C, Guo L, Zhao Z, et al. Tetramethylpyrazine induces differentiation of human umbilical cord-derived mesenchymal stem cells into neuron-like cells in vitro. Int J Oncol 2016; 48(6): 2287-94.
[http://dx.doi.org/10.3892/ijo.2016.3449] [PMID: 27035275]
[109]
Sieber C, Kopf J, Hiepen C, Knaus P. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 2009; 20(5-6): 343-55.
[http://dx.doi.org/10.1016/j.cytogfr.2009.10.007] [PMID: 19897402]
[110]
Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999; 284(5415): 770-6.
[http://dx.doi.org/10.1126/science.284.5415.770] [PMID: 10221902]
[111]
Zhao HB, Qi SN, Dong JZ, et al. Salidroside induces neuronal differentiation of mouse mesenchymal stem cells through Notch and BMP signaling pathways. Food Chem Toxicol 2014; 71: 60-7.
[http://dx.doi.org/10.1016/j.fct.2014.05.031] [PMID: 24929042]
[112]
Zhao HB, Ma H, Ha XQ, et al. Salidroside induces rat mesenchymal stem cells to differentiate into dopaminergic neurons. Cell Biol Int 2014; 38(4): 462-71.
[http://dx.doi.org/10.1002/cbin.10217] [PMID: 24323403]
[113]
Herskovits AZ, Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron 2014; 81(3): 471-83.
[http://dx.doi.org/10.1016/j.neuron.2014.01.028] [PMID: 24507186]
[114]
Joe IS, Jeong SG, Cho GW. Resveratrol-induced SIRT1 activation promotes neuronal differentiation of human bone marrow mesenchy-mal stem cells. Neurosci Lett 2015; 584: 97-102.
[http://dx.doi.org/10.1016/j.neulet.2014.10.024] [PMID: 25459285]
[115]
Tang N, Song WX, Luo J, et al. BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/β-catenin signalling. J Cell Mol Med 2009; 13(8B): 2448-64.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00569.x] [PMID: 19175684]
[116]
Clevers H. Wnt/β-catenin signaling in development and disease. Cell 2006; 127(3): 469-80.
[http://dx.doi.org/10.1016/j.cell.2006.10.018] [PMID: 17081971]
[117]
Forde JE, Dale TC. Glycogen synthase kinase 3: A key regulator of cellular fate. Cell Mol Life Sci 2007; 64(15): 1930-44.
[http://dx.doi.org/10.1007/s00018-007-7045-7] [PMID: 17530463]
[118]
Jahan S, Singh S, Srivastava A, et al. PKA-GSK3β and β-catenin signaling play a critical role in trans-resveratrol mediated neuronal dif-ferentiation in human cord blood stem cells. Mol Neurobiol 2018; 55(4): 2828-39.
[http://dx.doi.org/10.1007/s12035-017-0539-x] [PMID: 28455695]
[119]
Micheli L, Ceccarelli M, D’Andrea G, Tirone F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bull 2018; 143: 181-93.
[http://dx.doi.org/10.1016/j.brainresbull.2018.09.002] [PMID: 30236533]
[120]
Ma X, Huang M, Zheng M, et al. ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer’s disease. J Control Release 2020; 327: 688-702.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.019] [PMID: 32931898]
[121]
Watanabe K, Yamaji R, Ohtsuki T. MicroRNA-664a-5p promotes neuronal differentiation of SH-SY5Y cells. Genes Cells 2018; 23(3): 225-33.
[http://dx.doi.org/10.1111/gtc.12559] [PMID: 29341475]
[122]
Wang F, Tang H, Zhu J, Zhang JH. Transplanting mesenchymal stem cells for treatment of ischemic stroke. Cell Transplant 2018; 27(12): 1825-34.
[http://dx.doi.org/10.1177/0963689718795424] [PMID: 30251564]
[123]
Jeffrey P, Summerfield S. Assessment of the blood-brain barrier in CNS drug discovery. Neurobiol Dis 2010; 37(1): 33-7.
[http://dx.doi.org/10.1016/j.nbd.2009.07.033] [PMID: 19664709]
[124]
Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013; 36(3): 437-49.
[http://dx.doi.org/10.1007/s10545-013-9608-0] [PMID: 23609350]
[125]
Brasnjevic I, Steinbusch HWM, Schmitz C, Martinez-Martinez P. Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 2009; 87(4): 212-51.
[http://dx.doi.org/10.1016/j.pneurobio.2008.12.002] [PMID: 19395337]
[126]
Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 2010; 37(1): 48-57.
[http://dx.doi.org/10.1016/j.nbd.2009.07.028] [PMID: 19664710]
[127]
Zhang TT, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood-brain barrier. Biomater Sci 2016; 4(2): 219-29.
[http://dx.doi.org/10.1039/C5BM00383K] [PMID: 26646694]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy