Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Health Benefits of Avicularin in the Medicine Against Cancerous Disorders and other Complications: Biological Importance, Therapeutic Benefit and Analytical Aspects

Author(s): Kanika Patel and Dinesh Kumar Patel*

Volume 18, Issue 1, 2022

Published on: 31 August, 2021

Page: [41 - 50] Pages: 10

DOI: 10.2174/1573394717666210831163322

Price: $65

conference banner
Abstract

Background: Herbal drugs and their derived phytochemicals have been used in medicine for the preparation of different types of pharmaceutical products. Pure phytochemicals including flavonoids, alkaloids and terpenoids have been used in medicine for the treatment of different types of human disorders including cancerous disorders. Flavonoids have been well known in medicine for their anti-viral, anti-bacterial, anti-inflammatory, anti-diabetic, anti-cancer, anti-aging and cardioprotective potential. Avicularin, also called quercetin-3-α-l-arabino furanoside, is a pure flavonoid, a class of phytochemicals, found to be present in Lindera erythrocarpa and Lespedeza cuneata. Avicularin has been well known in medicine for its anti-cancer properties.

Methods: In the present work, scientific data of avicularin have been collected from different databases such as Google, PubMed, Science Direct, Google Scholar and Scopus and summarized with reference to medicinal importance, pharmacological activities and analytical aspects of avicularin. The present review summarized the health beneficial properties of avicularin in medicine through data analysis of various scientific research works. Further analytical progress in medicine for the qualitative and quantitative analysis of avicularin in medicine has been also discussed in the present work.

Results: Scientific data analysis of different literature work revealed the biological importance of flavonoid class of phytochemical ‘avicularin’ in medicine. Scientific data analysis revealed that avicularin was found to be present in the Lindera erythrocarpa, Lespedeza cuneata, Rhododendron schlipenbachii and Psidium guajava. Avicularin has been well known in medicine for its anti-inflammatory, anti-allergic, anti-oxidant, anti-tumor and hepatoprotective activities. Avicularin protects cardiomyocytes and hepatocytes against oxidative stress-induced apoptosis and induces cytotoxicity in cancer lines and tumor tissues. Avicularin has positive influence on human hepatocellular carcinoma and inhibits intracellular lipid accumulation. The role of avicularin in rheumatoid arthritis has been also established with its underlying molecular mechanisms in the scientific work. Recent interest in avicularin has focused on pharmacological investigations for its anti-cancer activity in the medicine.

Conclusion: The present work signified the biological importance of avicularin in medicine through its medicinal uses, pharmacological activities and analytical aspects in the biological system.

Keywords: Avicularin, anti-cancer, analytical, flavonoids, herbal drug, pharmacological, phytochemical.

Graphical Abstract
[1]
Kumari P, Ujala , Bhargava B. Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. J Funct Foods 2021; 78: 104375.
[http://dx.doi.org/10.1016/j.jff.2021.104375]
[2]
Kong M, Xie K, Lv M, et al. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomed Pharmacother 2021; 133: 110975.
[http://dx.doi.org/10.1016/j.biopha.2020.110975] [PMID: 33212375]
[3]
Ishak NA, Tahir NI, Mohd Sa’id SN, Gopal K, Othman A, Ramli US. Comparative analysis of statistical tools for oil palm phytochemical research. Heliyon 2021; 7(2): e06048.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06048] [PMID: 33553773]
[4]
Joshi G, Sindhu J, Thakur S, et al. Recent efforts for drug identification from phytochemicals against SARS-CoV-2: Exploration of the chemical space to identify druggable leads. Food Chem Toxicol 2021; 152: 112160.
[http://dx.doi.org/10.1016/j.fct.2021.112160] [PMID: 33823228]
[5]
Sharma V, Janmeda P. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arab J Chem 2017; 10: 509-14.
[http://dx.doi.org/10.1016/j.arabjc.2014.08.019]
[6]
Arora S, Itankar P. Extraction, isolation and identification of flavonoid from Chenopodium album aerial parts. J Tradit Complement Med 2018; 8(4): 476-82.
[http://dx.doi.org/10.1016/j.jtcme.2017.10.002] [PMID: 30302328]
[7]
Mohan S, Nandhakumar L. Role of various flavonoids: Hypotheses on novel approach to treat diabetes. J Med Hypotheses Ideas 2014; 8: 1-6.
[http://dx.doi.org/10.1016/j.jmhi.2013.06.001]
[8]
Hoensch HP, Oertel R. The value of flavonoids for the human nutrition: Short review and perspectives. Clin Nutr Exp 2015; 3: 8-14.
[http://dx.doi.org/10.1016/j.yclnex.2015.09.001]
[9]
Maiti S, Nazmeen A, Medda N, Patra R, Ghosh TK. Flavonoids green tea against oxidant stress and inflammation with related human diseases. Clin Nutr Exp 2019; 24: 1-14.
[http://dx.doi.org/10.1016/j.yclnex.2018.12.004]
[10]
Khalid M, Saeed-ur-Rahman , Bilal M, HUANG D. Role of flavonoids in plant interactions with the environment and against human pathogens — A review. J Integr Agric 2019; 18: 211-30.
[http://dx.doi.org/10.1016/S2095-3119(19)62555-4]
[11]
Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci 2018; 13(1): 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[12]
Tuan PA, Kim YS, Kim Y, et al. Molecular characterization of flavonoid biosynthetic genes and accumulation of baicalin, baicalein, and wogonin in plant and hairy root of Scutellaria lateriflora. Saudi J Biol Sci 2018; 25(8): 1639-47.
[http://dx.doi.org/10.1016/j.sjbs.2016.08.011] [PMID: 30591781]
[13]
Haytowitz DB, Bhagwat S, Holden JM. Sources of variability in the flavonoid content of foods. Procedia Food Sci 2013; 2: 46-51.
[http://dx.doi.org/10.1016/j.profoo.2013.04.008]
[14]
Imran M, Rauf A, Abu-Izneid T, et al. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother 2019; 112: 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[15]
Tavsan Z, Kayali HA. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed Pharmacother 2019; 116: 109004.
[http://dx.doi.org/10.1016/j.biopha.2019.109004] [PMID: 31128404]
[16]
Tarahovsky YS, Kim YA, Yagolnik EA, Muzafarov EN. Flavonoid-membrane interactions: Involvement of flavonoid-metal complexes in raft signaling. Biochim Biophys Acta 2014; 1838(5): 1235-46.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.021] [PMID: 24472512]
[17]
Sousa MC, Braga RC, Cintra BAS, de Oliveira V, Andrade CH. In silico metabolism studies of dietary flavonoids by CYP1A2 and CYP2C9. Food Res Int 2013; 50: 102-10.
[http://dx.doi.org/10.1016/j.foodres.2012.09.027]
[18]
Vo VA, Lee J-W, Chang J-E, et al. Avicularin Inhibits Lipopolysaccharide-Induced Inflammatory Response by Suppressing ERK Phosphorylation in RAW 264.7 Macrophages. Biomol Ther (Seoul) 2012; 20(6): 532-7.
[http://dx.doi.org/10.4062/biomolther.2012.20.6.532] [PMID: 24009846]
[19]
Wang Z, Li F, Quan Y, Shen J. Avicularin ameliorates human hepatocellular carcinoma via the regulation of NF-κB/COX-2/PPAR-γ activities. Mol Med Rep 2019; 19(6): 5417-23.
[http://dx.doi.org/10.3892/mmr.2019.10198] [PMID: 31059053]
[20]
Shen Z, Xu Y, Jiang X, et al. Avicularin relieves depressive- like behaviors induced by chronic unpredictable mild stress in mice. Med Sci Monit 2019; 25: 2777-84.
[http://dx.doi.org/10.12659/MSM.912401] [PMID: 30986204]
[21]
Wang W, Zheng H, Zheng M, Liu X, Yu J. Protective effect of avicularin on rheumatoid arthritis and its associated mechanisms. Exp Ther Med 2018; 16(6): 5343-9.
[http://dx.doi.org/10.3892/etm.2018.6872] [PMID: 30542493]
[22]
Duan C, Li Y, Dong X, Xu W, Ma Y. Network pharmacology and reverse molecular docking-based prediction of the molecular targets and pathways for avicularin against cancer. Comb Chem High Throughput Screen 2019; 22(1): 4-12.
[http://dx.doi.org/10.2174/1386207322666190206163409] [PMID: 30727880]
[23]
Deng X, Zhao X, Lan Z, Jiang J, Yin W, Chen L. Anti-tumor effects of flavonoids from the ethnic medicine Docynia delavayi (Franch.) Schneid, and its possible mechanism. J Med Food 2014; 17(7): 787-94.
[http://dx.doi.org/10.1089/jmf.2013.2886] [PMID: 24940817]
[24]
Gao H, Wu L, Kuroyanagi M, et al. Antitumor-promoting constituents from Chaenomeles sinensis KOEHNE and their activities in JB6 mouse epidermal cells. Chem Pharm Bull (Tokyo) 2003; 51(11): 1318-21.
[http://dx.doi.org/10.1248/cpb.51.1318] [PMID: 14600382]
[25]
Wang Y-F, Cao J-X, Efferth T, Lai G-F, Luo S-D. Cytotoxic and new tetralone derivatives from Berchemia floribunda (Wall.) Brongn. Chem Biodivers 2006; 3(6): 646-53.
[http://dx.doi.org/10.1002/cbdv.200690067] [PMID: 17193298]
[26]
Guo X-F, Liu J-P, Ma S-Q, Zhang P, Sun W-D. Avicularin reversed multidrug-resistance in human gastric cancer through enhancing Bax and BOK expressions. Biomed Pharmacother 2018; 103: 67-74.
[http://dx.doi.org/10.1016/j.biopha.2018.03.110] [PMID: 29635130]
[27]
Kim M-H, Kim JN, Han SN, Kim H-K. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages. Immunopharmacol Immunotoxicol 2015; 37(3): 228-35.
[http://dx.doi.org/10.3109/08923973.2015.1021355] [PMID: 25753845]
[28]
Kim M-H, Nugroho A, Choi J, Park JH, Park H-J. Rhododendrin, an analgesic/anti-inflammatory arylbutanoid glycoside, from the leaves of Rhododendron aureum. Arch Pharm Res 2011; 34(6): 971-8.
[http://dx.doi.org/10.1007/s12272-011-0614-1] [PMID: 21725818]
[29]
Fujimori K, Shibano M. Avicularin, a plant flavonoid, suppresses lipid accumulation through repression of C/EBPα-activated GLUT4-mediated glucose uptake in 3T3-L1 cells. J Agric Food Chem 2013; 61(21): 5139-47.
[http://dx.doi.org/10.1021/jf401154c] [PMID: 23647459]
[30]
Kim SM, Kang K, Jho EH, et al. Hepatoprotective effect of flavonoid glycosides from Lespedeza cuneata against oxidative stress induced by tert-butyl hyperoxide. Phytother Res 2011; 25(7): 1011-7.
[http://dx.doi.org/10.1002/ptr.3387] [PMID: 21226126]
[31]
Tasnuva ST, Qamar UA, Ghafoor K, et al. α-glucosidase inhibitors isolated from Mimosa pudica L. Nat Prod Res 2019; 33(10): 1495-9.
[http://dx.doi.org/10.1080/14786419.2017.1419224] [PMID: 29281898]
[32]
Chen Y, Xie S, Chen S, Zeng S. Glucuronidation of flavonoids by recombinant UGT1A3 and UGT1A9. Biochem Pharmacol 2008; 76(3): 416-25.
[http://dx.doi.org/10.1016/j.bcp.2008.05.007] [PMID: 18565494]
[33]
Shabana S, Kawai A, Kai K, Akiyama K, Hayashi H. Inhibitory activity against urease of quercetin glycosides isolated from Allium cepa and Psidium guajava. Biosci Biotechnol Biochem 2010; 74(4): 878-80.
[http://dx.doi.org/10.1271/bbb.90895] [PMID: 20378972]
[34]
Wang Y, Zhang S-Y, Ma X-F, Tian W-X. Potent inhibition of fatty acid synthase by parasitic loranthus [Taxillus chinensis (dc.) danser] and its constituent avicularin. J Enzyme Inhib Med Chem 2006; 21(1): 87-93.
[http://dx.doi.org/10.1080/14756360500472829] [PMID: 16570511]
[35]
Buqui GA, Gouvea DR, Sy SK, et al. Pharmacokinetic evaluation of avicularin using a model-based development approach. Planta Med 2015; 81(5): 373-81.
[http://dx.doi.org/10.1055/s-0035-1545728] [PMID: 25782034]
[36]
Zhang WM, Li RF, Sun M, Hu DM, Qiu JF, Yan YH. UPLC-MS/MS method for determination of avicularin in rat plasma and its application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 965: 107-11.
[http://dx.doi.org/10.1016/j.jchromb.2014.06.015] [PMID: 25010713]
[37]
Zhao M, Xu J, Qian D, et al. Ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry for determination of avicularin metabolites produced by a human intestinal bacterium. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 949-950: 30-6.
[http://dx.doi.org/10.1016/j.jchromb.2014.01.005] [PMID: 24463398]
[38]
da Silva Sá FA, de Paula JAM, Dos Santos PA, et al. Phytochemical analysis and antimicrobial activity of Myrcia tomentosa (aubl.) DC leaves. Molecules 2017; 22(7): 1100.
[http://dx.doi.org/10.3390/molecules22071100] [PMID: 28677650]
[39]
Park SH, Jang S, Son E, et al. Polygonum aviculare L. extract reduces fatigue by inhibiting neuroinflammation in restraint-stressed mice. Phytomedicine 2018; 42: 180-9.
[http://dx.doi.org/10.1016/j.phymed.2018.03.042] [PMID: 29655685]
[40]
Liaudanskas M, Viškelis P, Raudonis R, Kviklys D, Uselis N, Janulis V. Phenolic composition and antioxidant activity of Malus domestica leaves. ScientificWorldJournal 2014; 2014: 306217.
[http://dx.doi.org/10.1155/2014/306217] [PMID: 25302319]
[41]
Mathioudaki A, Berzesta A, Kypriotakis Z, Skaltsa H, Heilmann J. Phenolic metabolites from Hypericum kelleri Bald., an endemic species of Crete (Greece). Phytochemistry 2018; 146: 1-7.
[http://dx.doi.org/10.1016/j.phytochem.2017.11.009] [PMID: 29190454]
[42]
Liu Q, Zeng H, Jiang S, et al. Separation of polyphenols from leaves of Malus hupehensis (Pamp.) rehder by off-line two-dimensional high Speed counter-current chromatography combined with recycling elution mode. Food Chem 2015; 186: 139-45.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.037] [PMID: 25976803]
[43]
Estrella-Parra EA, Espinosa-González AM, García-Bores AM, et al. Flavonol glycosides in Dyssodia tagetiflora and its temporal variation, chemoprotective and ameliorating activities. Food Chem Toxicol 2019; 124: 411-22.
[http://dx.doi.org/10.1016/j.fct.2018.12.024] [PMID: 30576709]
[44]
Wang L, Wu Y, Bei Q, Shi K, Wu Z. Fingerprint profiles of flavonoid compounds from different Psidium guajava leaves and their antioxidant activities. J Sep Sci 2017; 40(19): 3817-29.
[http://dx.doi.org/10.1002/jssc.201700477] [PMID: 28857481]
[45]
Moharram FA, Al-Gendy AA, El-Shenawy SM, Ibrahim BM, Zarka MA. Phenolic profile, anti-inflammatory, antinociceptive, anti-ulcerogenic and hepatoprotective activities of Pimenta racemosa leaves. BMC Complement Altern Med 2018; 18(1): 208.
[http://dx.doi.org/10.1186/s12906-018-2260-3] [PMID: 29976187]
[46]
Abdelhady MI, Shaheen U, Bader A, Youns MA. A new sucrase enzyme inhibitor from Azadirachta indica. Pharmacogn Mag 2016; 12(3): S293-6.
[http://dx.doi.org/10.4103/0973-1296.185705] [PMID: 27563214]
[47]
Wei Y, Xie Q, Dong W, Ito Y. Separation of epigallocatechin and flavonoids from Hypericum perforatum L. by high-speed counter-current chromatography and preparative high-performance liquid chromatography. J Chromatogr A 2009; 1216(19): 4313-8.
[http://dx.doi.org/10.1016/j.chroma.2008.12.056] [PMID: 19150073]
[48]
Cirak C, Radusiene J, Jakstas V, Ivanauskas L, Seyis F, Yayla F. Secondary metabolites of seven Hypericum species growing in Turkey. Pharm Biol 2016; 54(10): 2244-53.
[http://dx.doi.org/10.3109/13880209.2016.1152277] [PMID: 26958815]
[49]
Kim JA, Jung Y-S, Kim M-Y, Yang SY, Lee S, Kim YH. Protective effect of components isolated from Lindera erythrocarpa against oxidative stress-induced apoptosis of H9c2 cardiomyocytes. Phytother Res 2011; 25(11): 1612-7.
[http://dx.doi.org/10.1002/ptr.3465] [PMID: 21412863]
[50]
Servettaz O, Colombo ML, De Bernardi M, Uberti E, Vidari G, Vita-Finzi P. Flavonol glycosides from Dryas octopetala. J Nat Prod 1984; 47(5): 809-14.
[http://dx.doi.org/10.1021/np50035a009] [PMID: 6512533]
[51]
Lee KJ, Song N-Y, Oh YC, Cho W-K, Ma JY. Isolation and bioactivity analysis of ethyl acetate extract from acer tegmentosum using in vitro assay and on-line screening HPLC-ABTS(+) system. J Anal Methods Chem 2014; 2014: 150509.
[PMID: 25386382]
[52]
Shu J-C, Chou G-X, Wang Z-T. One new diphenylmethane glycoside from the leaves of Psidium guajava L. Nat Prod Res 2012; 26(21): 1971-5.
[http://dx.doi.org/10.1080/14786419.2011.633081] [PMID: 22085357]
[53]
Olszewska M. Flavonoids from Prunus serotina ehrh. Acta Pol Pharm 2005; 62(2): 127-33.
[PMID: 16161354]
[54]
Nenadis N, Llorens L, Koufogianni A, et al. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants. J Photochem Photobiol B 2015; 153: 435-44.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.10.016] [PMID: 26562808]
[55]
Rodríguez Madrera R, Picinelli Lobo A, Suárez Valles B. Phenolic profile of Asturian (Spain) natural cider. J Agric Food Chem 2006; 54(1): 120-4.
[http://dx.doi.org/10.1021/jf051717e] [PMID: 16390187]
[56]
Sirat HM, Rezali MF, Ujang Z. Isolation and identification of radical scavenging and tyrosinase inhibition of polyphenols from Tibouchina semidecandra L. J Agric Food Chem 2010; 58(19): 10404-9.
[http://dx.doi.org/10.1021/jf102231h] [PMID: 20809630]
[57]
Olszewska M. High-performance liquid chromatographic identification of flavonoid monoglycosides from Prunus serotina ehrh. Acta Pol Pharm 2005; 62(6): 435-41.
[PMID: 16583982]
[58]
Chinnici F, Gaiani A, Natali N, Riponi C, Galassi S. Improved HPLC determination of phenolic compounds in cv. golden delicious apples using a monolithic column. J Agric Food Chem 2004; 52(1): 3-7.
[http://dx.doi.org/10.1021/jf030459n] [PMID: 14709005]
[59]
Chen J, Li S-L, Li P, Song Y, Chai X-Y, Ma D-Y. Qualitative and quantitative analysis of active flavonoids in Flos Lonicerae by capillary zone electrophoresis coupled with solid-phase extraction. J Sep Sci 2005; 28(4): 365-72.
[http://dx.doi.org/10.1002/jssc.200400024] [PMID: 15792251]
[60]
Zhang C, Fang Y-X. Studies on the chemical constituents of Chinese herb Melastoma dodecandrum. Zhongguo Zhongyao Zazhi 2003; 28(5): 429-31.
[PMID: 15139128]
[61]
Zou Y, Lu Y, Wei D. Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J Agric Food Chem 2004; 52(16): 5032-9.
[http://dx.doi.org/10.1021/jf049571r] [PMID: 15291471]
[62]
Le NHT, Malterud KE, Diallo D, Paulsen BS, Nergård CS, Wangensteen H. Bioactive polyphenols in Ximenia americana and the traditional use among Malian healers. J Ethnopharmacol 2012; 139(3): 858-62.
[http://dx.doi.org/10.1016/j.jep.2011.12.031] [PMID: 22212502]
[63]
Zhang Y, Liu C, Zhang Z, Wang J, Wu G, Li S. Comprehensive separation and identification of chemical constituents from Apocynum venetum leaves by high-performance counter-current chromatography and high performance liquid chromatography coupled with mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878(30): 3149-55.
[http://dx.doi.org/10.1016/j.jchromb.2010.09.027] [PMID: 20965796]
[64]
Fukunaga T, Nishiya K, Kajikawa I, Takeya K, Itokawa H. Studies on the constituents of Japanese mistletoes from different host trees, and their antimicrobial and hypotensive properties. Chem Pharm Bull (Tokyo) 1989; 37(6): 1543-6.
[http://dx.doi.org/10.1248/cpb.37.1543] [PMID: 2776238]
[65]
Miño J, Acevedo C, Moscatelli V, Ferraro G, Hnatyszyn O. Antinociceptive effect of the aqueous extract of Balbisia calycina. J Ethnopharmacol 2002; 79(2): 179-82.
[http://dx.doi.org/10.1016/S0378-8741(01)00372-5] [PMID: 11801379]
[66]
Nugroho A, Rhim T-J, Choi M-Y, et al. Simultaneous analysis and peroxynitrite-scavenging activity of galloylated flavonoid glycosides and ellagic acid in Euphorbia supina. Arch Pharm Res 2014; 37(7): 890-8.
[http://dx.doi.org/10.1007/s12272-013-0307-z] [PMID: 24293032]
[67]
Wu Y, Zhou SD, Li P. Determination of flavonoids in Hypericum perforatum by HPLC analysis. Yao Xue Xue Bao 2002; 37(4): 280-2.
[PMID: 12579824]
[68]
Lommen A, Godejohann M, Venema DP, Hollman PCH, Spraul M. Application of directly coupled HPLC-NMR-MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel. Anal Chem 2000; 72(8): 1793-7.
[http://dx.doi.org/10.1021/ac9912303] [PMID: 10784143]
[69]
Oliveira MM, Daré RG, Barizão ÉO, et al. Photodamage attenuating potential of Nectandra hihua against UVB-induced oxidative stress in L929 fibroblasts. J Photochem Photobiol B 2018; 181: 127-33.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.03.008] [PMID: 29550671]
[70]
Marzouk MS, Soliman FM, Shehata IA, Rabee M, Fawzy GA. Flavonoids and biological activities of Jussiaea repens. Nat Prod Res 2007; 21(5): 436-43.
[http://dx.doi.org/10.1080/14786410600943288] [PMID: 17487615]
[71]
An R-B, Kim H-C, Tian Y-H, Kim Y-C. Free radical scavenging and hepatoprotective constituents from the leaves of Juglans sinensis. Arch Pharm Res 2005; 28(5): 529-33.
[http://dx.doi.org/10.1007/BF02977753] [PMID: 15974437]
[72]
Konishi T, Nishio T, Kiyosawa S, Fujiwara Y, Konoshima T. The constituents of Taxillus kaempferi and the host, Pinus thunbergii. I. Catechins and flavones of Taxillus kaempferi. Yakugaku Zasshi 1996; 116(2): 148-57.
[http://dx.doi.org/10.1248/yakushi1947.116.2_148] [PMID: 8717281]
[73]
Çirak C, Radusiene J, Ivanauskas L, Jakstas V, Çamaş N. Population variability of main secondary metabolites in Hypericum lydium Boiss. (Hypericaceae). Iran J Pharm Res 2015; 14(3): 969-78.
[PMID: 26330888]
[74]
Hanen F, Riadh K, Samia O, Sylvain G, Christian M, Chedly A. Interspecific variability of antioxidant activities and phenolic composition in Mesembryanthemum genus. Food Chem Toxicol 2009; 47(9): 2308-13.
[http://dx.doi.org/10.1016/j.fct.2009.06.025] [PMID: 19540899]
[75]
El-Azizi MM, Ateya AM, Svoboda GH, Schiff PL Jr, Slatkin DJ, Knapp JE. Chemical constituents of Curatella americana (Dilleniaceae). J Pharm Sci 1980; 69(3): 360-1.
[http://dx.doi.org/10.1002/jps.2600690333] [PMID: 7381724]
[76]
Patel K, Kumar V, Verma A, Rahman M, Kumar Patel D. Health benefits of furanocoumarins ‘Psoralidin’ an active phytochemical of Psoralea corylifolia: The present, past and future scenario. Curr Bioact Compd 2019; 15: 369-76.
[http://dx.doi.org/10.2174/1573407214666180511153438]
[77]
Patel K, Patel DK. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J Tradit Complement Med 2016; 7(3): 360-6.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[78]
Patel K, Kumar V, Rahman M, Verma A, Patel DK. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni Suef Univ J Basic Appl Sci 2018; 7: 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[79]
Patel K, Kumar V, Rahman M, Verma A, Patel DK. Rhamnazin: a systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr Tradit Med 2018; 4: 120-7.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[80]
C T S. Balachandran I. LC/MS characterization of antioxidant flavonoids from Tragia involucrata L. Beni Suef Univ J Basic Appl Sci 2016; 5: 231-5.
[http://dx.doi.org/10.1016/j.bjbas.2016.06.001]
[81]
Sandoval-Yañez C, Mascayano C, Martínez-Araya JI. A theoretical assessment of antioxidant capacity of flavonoids by means of local hyper–softness. Arab J Chem 2018; 11: 554-63.
[http://dx.doi.org/10.1016/j.arabjc.2017.10.011]
[82]
Rauf A, Imran M, Abu-Izneid T, et al. Proanthocyanidins: A comprehensive review. Biomed Pharmacother 2019; 116: 108999.
[http://dx.doi.org/10.1016/j.biopha.2019.108999] [PMID: 31146109]
[83]
Tebou PLF, Tamokou J-D, Ngnokam D, Voutquenne-Nazabadioko L, Kuiate J-R, Bag PK. Flavonoids from Maytenus buchananii as potential cholera chemotherapeutic agents. S Afr J Bot 2017; 109: 58-65.
[http://dx.doi.org/10.1016/j.sajb.2016.12.019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy