Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Cellular Uptake Pathways of Nanoparticles: Process of Endocytosis and Factors Affecting their Fate

Author(s): Sameer Varma*, Smita Dey and Dhanabal Palanisamy

Volume 23, Issue 5, 2022

Published on: 14 July, 2021

Page: [679 - 706] Pages: 28

DOI: 10.2174/1389201022666210714145356

Price: $65

conference banner
Abstract

Background: Efficient and controlled internalization of NPs into the cells depends on their physicochemical properties and dynamics of the plasma membrane. NPs-cell interaction is a complex process that decides the fate of NPs internalization through different endocytosis pathways.

Objectives: The aim of this review is to highlight the physicochemical properties of synthesized nanoparticles (NPs) and their interaction with the cellular-dynamics and pathways like phagocytosis, pinocytosis, macropinocytosis, clathrin, and caveolae-mediated endocytosis, and the involvement of effector proteins domain such as clathrin, AP2, caveolin, Arf6, Cdc42, dynamin and cell surface receptors in the endocytosis process of NPs.

Methods: An electronic search was performed to explore the focused reviews and research articles on types of endocytosis and physicochemical properties of nanoparticles and their impact on cellular internalizations. The search was limited to peer-reviewed journals in the PubMed database.

Results: This article discusses in detail, how different types of NPs and their physicochemical properties such as size, shape, aspect ratio, surface charge, hydrophobicity, elasticity, stiffness, corona formation, and surface functionalization change the pattern of endocytosis in the presence of different pharmacological blockers. Some external forces like a magnetic field, electric field, and ultrasound exploit the cell membrane dynamics to permeabilize them for efficient internalization with respect to fundamental principles of membrane bending and pore formation.

Conclusion: This review will be useful to attract and guide the audience to understand the endocytosis mechanism and its pattern with respect to physicochemical properties of NPs to improve their efficacy and targeting to achieve the impactful outcome in drug-delivery and theranostic applications.

Keywords: Internalization, functionalization, permeation, magnetic field, ultrasound, phagocytosis, clathrin, caveolae, macropinocytosis.

Graphical Abstract
[1]
Hu, P.; Zhang, X.; Zhang, C.; Chen, Z. Molecular interactions between gold nanoparticles and model cell membranes. Phys. Chem. Chem. Phys., 2015, 17(15), 9873-9884.
[http://dx.doi.org/10.1039/C5CP00477B] [PMID: 25776800]
[2]
Engin, A.B.; Nikitovic, D.; Neagu, M.; Henrich-Noack, P.; Docea, A.O.; Shtilman, M.I.; Golokhvast, K.; Tsatsakis, A.M. Mechanistic understanding of nanoparticles interactions with extracellular matrix: The cell and immune system. Part. Fibre Toxicol., 2017, 14(1), 22.
[http://dx.doi.org/10.1186/s12989-017-0199-z] [PMID: 28646905]
[3]
Contini, C.; Schneemilch, M.; Gaisford, S.; Quirke, N. Nanoparticle–membrane interactions. J. Exp. Nanosci., 2018, 13(1), 62-81.
[http://dx.doi.org/10.1080/17458080.2017.1413253]
[4]
Leroueil, P.R.; Hong, S.; Mecke, A.; Baker, J.R., Jr; Orr, B.G.; Banaszak Holl, M.M. Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face? Acc. Chem. Res., 2007, 40(5), 335-342.
[http://dx.doi.org/10.1021/ar600012y] [PMID: 17474708]
[5]
Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev., 2019, 143, 68-96.
[http://dx.doi.org/10.1016/j.addr.2019.04.008] [PMID: 31022434]
[6]
Drasler, B.; Vanhecke, D.; Rodriguez-Lorenzo, L.; Petri-Fink, A.; Rothen-Rutishauser, B. Quantifying nanoparticle cellular uptake: Which method is best? Nanomedicine (Lond.), 2017, 12(10), 1095-1099.
[http://dx.doi.org/10.2217/nnm-2017-0071] [PMID: 28447906]
[7]
Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett., 2018, 13(1), 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[8]
Yang, K.; Ma, Y-Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat. Nanotechnol., 2010, 5(8), 579-583.
[http://dx.doi.org/10.1038/nnano.2010.141] [PMID: 20657599]
[9]
Li, Y.; Chen, X.; Gu, N. Computational investigation of interaction between nanoparticles and membranes: Hydrophobic/hydrophilic effect. J. Phys. Chem. B, 2008, 112(51), 16647-16653.
[http://dx.doi.org/10.1021/jp8051906] [PMID: 19032046]
[10]
Chithrani, B.D.; Chan, W.C.W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett., 2007, 7(6), 1542-1550.
[http://dx.doi.org/10.1021/nl070363y] [PMID: 17465586]
[11]
Jin, J.; Bhujwalla, Z.M. Biomimetic nanoparticles camouflaged in cancer cell membranes and their applications in cancer theranostics. Front. Oncol., 2020, 9, 1560.
[http://dx.doi.org/10.3389/fonc.2019.01560] [PMID: 32039028]
[12]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[13]
Baer, D.R.; Engelhard, M.H.; Johnson, G.E.; Laskin, J.; Lai, J.; Mueller, K.; Munusamy, P.; Thevuthasan, S.; Wang, H.; Washton, N.; Elder, A.; Baisch, B.L.; Karakoti, A.; Kuchibhatla, S.V.; Moon, D. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. J. Vac. Sci. Technol. A, 2013, 31(5), 50820.
[http://dx.doi.org/10.1116/1.4818423] [PMID: 24482557]
[14]
Gawande, M.B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A.V.; Peng, D-L.; Zboril, R.; Varma, R.S. Core-shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev., 2015, 44(21), 7540-7590.
[http://dx.doi.org/10.1039/C5CS00343A] [PMID: 26288197]
[15]
Wagner, O.; Schultz, M.; Edri, E.; Meir, R.; Barnoy, E.; Meiri, A.; Shpaisman, H.; Sloutskin, E.; Zalevsky, Z. Imaging of nanoparticle dynamics in live and apoptotic cells using temporally-modulated polarization. Sci. Rep., 2019, 9(1), 1650.
[http://dx.doi.org/10.1038/s41598-018-38375-9] [PMID: 30733548]
[16]
Rees, P.; Wills, J.W.; Brown, M.R.; Barnes, C.M.; Summers, H.D. The origin of heterogeneous nanoparticle uptake by cells. Nat. Commun., 2019, 10(1), 2341.
[http://dx.doi.org/10.1038/s41467-019-10112-4] [PMID: 31138801]
[17]
Zanella, D.; Bossi, E.; Gornati, R.; Faria, N.; Powell, J.; Bernardini, G. The direct permeation of nanoparticles through the plasma membrane transiently modifies its properties. Biochim. Biophys. Acta Biomembr., 2019, 1861(10)182997
[http://dx.doi.org/10.1016/j.bbamem.2019.05.019] [PMID: 31150635]
[18]
Vercauteren, D.; Piest, M.; van der Aa, L.J.; Al Soraj, M.; Jones, A.T.; Engbersen, J.F.J.; De Smedt, S.C.; Braeckmans, K. Flotillin-dependent endocytosis and a phagocytosis-like mechanism for cellular internalization of disulfide-based poly(amido amine)/DNA polyplexes. Biomaterials, 2011, 32(11), 3072-3084.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.045] [PMID: 21262529]
[19]
Levin, R.; Grinstein, S.; Schlam, D. Phosphoinositides in phagocytosis and macropinocytosis. Biochim. Biophys. Acta, 2015, 1851(6), 805-823.
[http://dx.doi.org/10.1016/j.bbalip.2014.09.005] [PMID: 25238964]
[20]
Hanawa-Suetsugu, K.; Itoh, Y.; Ab Fatah, M.; Nishimura, T.; Takemura, K.; Takeshita, K.; Kubota, S.; Miyazaki, N.; Wan Mohamad Noor, W.N.I.; Inaba, T.; Nguyen, N.T.H.; Hamada-Nakahara, S.; Oono-Yakura, K.; Tachikawa, M.; Iwasaki, K.; Kohda, D.; Yamamoto, M.; Kitao, A.; Shimada, A.; Suetsugu, S. Phagocytosis is mediated by two-dimensional assemblies of the F-BAR protein GAS7. Nat. Commun., 2019, 10(1), 4763.
[http://dx.doi.org/10.1038/s41467-019-12738-w] [PMID: 31628328]
[21]
Yeo, J.C.; Wall, A.A.; Luo, L.; Stow, J.L. Sequential recruitment of Rab GTPases during early stages of phagocytosis. Cell. Logist., 2016, 6(1)e1140615
[http://dx.doi.org/10.1080/21592799.2016.1140615] [PMID: 27217977]
[22]
Van Acker, T.; Tavernier, J.; Peelman, F. The small gtpase arf6: An overview of its mechanisms of action and of its role in hostpathogen interactions and innate immunity. Int. J. Mol. Sci., 2019, 20(9)E2209
[http://dx.doi.org/10.3390/ijms20092209] [PMID: 31060328]
[23]
Ding, L.; Yao, C.; Yin, X.; Li, C.; Huang, Y.; Wu, M.; Wang, B.; Guo, X.; Wang, Y.; Wu, M. Size, shape, and protein corona determine cellular uptake and removal mechanisms of gold nanoparticles. Small, 2018, 14(42)e1801451
[http://dx.doi.org/10.1002/smll.201801451] [PMID: 30239120]
[24]
Garrett, W.S.; Chen, L.M.; Kroschewski, R.; Ebersold, M.; Turley, S.; Trombetta, S.; Galán, J.E.; Mellman, I. Developmental control of endocytosis in dendritic cells by Cdc42. Cell, 2000, 102(3), 325-334.
[http://dx.doi.org/10.1016/S0092-8674(00)00038-6] [PMID: 10975523]
[25]
Lin, H.P.; Singla, B.; Ghoshal, P.; Faulkner, J.L.; Cherian-Shaw, M.; O’Connor, P.M.; She, J.X.; Belin de Chantemele, E.J.; Csányi, G. Identification of novel macropinocytosis inhibitors using a rational screen of Food and Drug Administration-approved drugs. Br. J. Pharmacol., 2018, 175(18), 3640-3655.
[http://dx.doi.org/10.1111/bph.14429] [PMID: 29953580]
[26]
Francia, V.; Yang, K.; Deville, S.; Reker-Smit, C.; Nelissen, I.; Salvati, A. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano, 2019, 13(10), 11107-11121.
[http://dx.doi.org/10.1021/acsnano.9b03824] [PMID: 31525954]
[27]
Dawson, J.C.; Legg, J.A.; Machesky, L.M. Bar domain proteins: A role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. Trends Cell Biol., 2006, 16(10), 493-498.
[http://dx.doi.org/10.1016/j.tcb.2006.08.004] [PMID: 16949824]
[28]
Sabharanjak, S.; Sharma, P.; Parton, R.G.; Mayor, S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell, 2002, 2(4), 411-423.
[http://dx.doi.org/10.1016/S1534-5807(02)00145-4] [PMID: 11970892]
[29]
Meinecke, M.; Boucrot, E.; Camdere, G.; Hon, W.C.; Mittal, R.; McMahon, H.T. Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission. J. Biol. Chem., 2013, 288(9), 6651-6661.
[http://dx.doi.org/10.1074/jbc.M112.444869] [PMID: 23297414]
[30]
Hayakawa, A.; Leonard, D.; Murphy, S.; Hayes, S.; Soto, M.; Fogarty, K.; Standley, C.; Bellve, K.; Lambright, D.; Mello, C.; Corvera, S. The WD40 and FYVE domain containing protein 2 defines a class of early endosomes necessary for endocytosis. Proc. Natl. Acad. Sci. USA, 2006, 103(32), 11928-11933.
[http://dx.doi.org/10.1073/pnas.0508832103] [PMID: 16873553]
[31]
Harder, T.; Simons, K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr. Opin. Cell Biol., 1997, 9(4), 534-542.
[http://dx.doi.org/10.1016/S0955-0674(97)80030-0] [PMID: 9261060]
[32]
Smart, E.J.; Graf, G.A.; McNiven, M.A.; Sessa, W.C.; Engelman, J.A.; Scherer, P.E.; Okamoto, T.; Lisanti, M.P. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol., 1999, 19(11), 7289-7304.
[http://dx.doi.org/10.1128/MCB.19.11.7289] [PMID: 10523618]
[33]
Kasper, J.; Hermanns, M.I.; Bantz, C.; Utech, S.; Koshkina, O.; Maskos, M.; Brochhausen, C.; Pohl, C.; Fuchs, S.; Unger, R.E.; Kirkpatrick, C.J. Flotillin-involved uptake of silica nanoparticles and responses of an alveolar-capillary barrier in vitro. Eur. J. Pharm. Biopharm., 2013, 84(2), 275-287.
[http://dx.doi.org/10.1016/j.ejpb.2012.10.011] [PMID: 23183446]
[34]
McIntosh, D.P.; Schnitzer, J.E. Caveolae require intact VAMP for targeted transport in vascular endothelium. Am. J. Physiol., 1999, 277(6), H2222-H2232.
[http://dx.doi.org/10.1152/ajpheart.1999.277.6.H2222] [PMID: 10600840]
[35]
Bohmer, N.; Jordan, A. Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells. Beilstein J. Nanotechnol., 2015, 6(1), 167-176.
[http://dx.doi.org/10.3762/bjnano.6.16] [PMID: 25671161]
[36]
Chadda, R.; Howes, M.T.; Plowman, S.J.; Hancock, J.F.; Parton, R.G.; Mayor, S. Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway. Traffic, 2007, 8(6), 702-717.
[http://dx.doi.org/10.1111/j.1600-0854.2007.00565.x] [PMID: 17461795]
[37]
Okada, R.; Yamauchi, Y.; Hongu, T.; Funakoshi, Y.; Ohbayashi, N.; Hasegawa, H.; Kanaho, Y. Activation of the small G protein Arf6 by dynamin2 through guanine nucleotide exchange factors in endocytosis. Sci. Rep., 2015, 5(September), 14919.
[http://dx.doi.org/10.1038/srep14919] [PMID: 26503427]
[38]
Otto, G.P.; Nichols, B.J. The roles of flotillin microdomains-endocytosis and beyond. J. Cell Sci., 2011, 124(Pt 23), 3933-3940.
[http://dx.doi.org/10.1242/jcs.092015] [PMID: 22194304]
[39]
Luby, A.O.; Breitner, E.K.; Comfort, K.K. Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency. Appl. Nanosci., 2016, 6(6), 827-836.
[http://dx.doi.org/10.1007/s13204-015-0501-z]
[40]
Mahmoudi, M.; Abdelmonem, A.M.; Behzadi, S.; Clement, J.H.; Dutz, S.; Ejtehadi, M.R.; Hartmann, R.; Kantner, K.; Linne, U.; Maffre, P.; Metzler, S.; Moghadam, M.K.; Pfeiffer, C.; Rezaei, M.; Ruiz-Lozano, P.; Serpooshan, V.; Shokrgozar, M.A.; Nienhaus, G.U.; Parak, W.J. Temperature: The “ignored” factor at the NanoBio interface. ACS Nano, 2013, 7(8), 6555-6562.
[http://dx.doi.org/10.1021/nn305337c] [PMID: 23808533]
[41]
Kapara, A.; Brunton, V.; Graham, D.; Faulds, K. Investigation of cellular uptake mechanism of functionalised gold nanoparticles into breast cancer using SERS. Chem. Sci. (Camb.), 2020, 11(22), 5819-5829.
[http://dx.doi.org/10.1039/D0SC01255F]
[42]
Sun, S.; Huang, Y.; Zhou, C.; Chen, S.; Yu, M.; Liu, J.; Zheng, J. Effect of hydrophobicity on nano-bio interactions of zwitterionic luminescent gold nanoparticles at the cellular level. Bioconjug. Chem., 2018, 29(6), 1841-1846.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00202] [PMID: 29775044]
[43]
Huang, L.H.; Han, J.; Ouyang, J.M.; Gui, B.S. Shape-dependent adhesion and endocytosis of hydroxyapatite nanoparticles on A7R5 aortic smooth muscle cells. J. Cell. Physiol., 2020, 235(1), 465-479.
[http://dx.doi.org/10.1002/jcp.28987] [PMID: 31222743]
[44]
Banquy, X.; Suarez, F.; Argaw, A.; Rabanel, J.M.; Grutter, P.; Bouchard, J.F.; Hildgen, P.; Giasson, S. Effect of mechanical properties of hydrogel nanoparticles on macrophage cell uptake. Soft Matter, 2009, 5(20), 3984-3991.
[http://dx.doi.org/10.1039/b821583a]
[45]
Arvizo, R.R.; Miranda, O.R.; Thompson, M.A.; Pabelick, C.M.; Bhattacharya, R.; Robertson, J.D.; Rotello, V.M.; Prakash, Y.S.; Mukherjee, P. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett., 2010, 10(7), 2543-2548.
[http://dx.doi.org/10.1021/nl101140t] [PMID: 20533851]
[46]
Shen, Z.; Ye, H.; Yi, X.; Li, Y. Membrane wrapping efficiency of elastic nanoparticles during endocytosis: Size and shape matter. ACS Nano, 2019, 13(1), 215-228.
[http://dx.doi.org/10.1021/acsnano.8b05340] [PMID: 30557506]
[47]
Thompson, G.L.; Roth, C.; Tolstykh, G.; Kuipers, M.; Ibey, B.L. Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields. Bioelectromagnetics, 2014, 35(4), 262-272.
[http://dx.doi.org/10.1002/bem.21845] [PMID: 24619788]
[48]
Kulbacka, J.; Pucek, A.; Wilk, K.A.; Dubińska-Magiera, M.; Rossowska, J.; Kulbacki, M.; Kotulska, M. The effect of millisecond pulsed electric fields (mspef) on intracellular drug transport with negatively charged large nanocarriers made of solid lipid nanoparticles (sLN): In vitro study. J. Membr. Biol., 2016, 249(5), 645-661.
[http://dx.doi.org/10.1007/s00232-016-9906-1] [PMID: 27173678]
[49]
Pliquett, U. Joule heating during solid tissue electroporation. Med. Biol. Eng. Comput., 2003, 41(2), 215-219.
[http://dx.doi.org/10.1007/BF02344892] [PMID: 12691444]
[50]
Phonesouk, E.; Lechevallier, S.; Ferrand, A.; Rols, M.P.; Bezombes, C.; Verelst, M.; Golzio, M. Increasing uptake of silica nanoparticles with electroporation: From cellular characterization to potential applications. Materials (Basel), 2019, 12(1)E179
[http://dx.doi.org/10.3390/ma12010179] [PMID: 30621089]
[51]
Graybill, P.M.; Davalos, R.V. Cytoskeletal disruption after electroporation and its significance to pulsed electric field therapies. Cancers (Basel), 2020, 12(5), 29-32.
[http://dx.doi.org/10.3390/cancers12051132] [PMID: 32366043]
[52]
Miyakoshi, J. The review of cellular effects of a static magnetic field. Sci. Technol. Adv. Mater., 2006, 7(4), 305-307.
[http://dx.doi.org/10.1016/j.stam.2006.01.004]
[53]
Vergallo, C.; Panzarini, E.; Tenuzzo, B.A.; Mariano, S.; Tata, A.M.; Dini, L. Moderate static magnetic field (6 mt)-induced lipid rafts rearrangement increases silver nps uptake in human lymphocytes. Molecules, 2020, 25(6), 1398.
[http://dx.doi.org/10.3390/molecules25061398] [PMID: 32204392]
[54]
Wosik, J.; Chen, W.; Qin, K.; Ghobrial, R.M.; Kubiak, J.Z.; Kloc, M. Magnetic field changes macrophage phenotype. Biophys. J., 2018, 114(8), 2001-2013.
[http://dx.doi.org/10.1016/j.bpj.2018.03.002] [PMID: 29694876]
[55]
Chionna, A.; Dwikat, M.; Panzarini, E.; Tenuzzo, B.; Carlà, E.C.; Verri, T.; Pagliara, P.; Abbro, L.; Dini, L. Cell shape and plasma membrane alterations after static magnetic fields exposure. Eur. J. Histochem., 2003, 47(4), 299-308.
[http://dx.doi.org/10.4081/840] [PMID: 14706925]
[56]
Loria, R.; Giliberti, C.; Bedini, A.; Palomba, R.; Caracciolo, G.; Ceci, P.; Falvo, E.; Marconi, R.; Falcioni, R.; Bossi, G.; Strigari, L. Very low intensity ultrasounds as a new strategy to improve selective delivery of nanoparticles-complexes in cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 1.
[http://dx.doi.org/10.1186/s13046-018-1018-6] [PMID: 30606223]
[57]
Roovers, S.; Deprez, J.; Priwitaningrum, D.; Lajoinie, G.; Rivron, N.; Declercq, H.; De Wever, O.; Stride, E.; Le Gac, S.; Versluis, M.; Prakash, J.; De Smedt, S.C.; Lentacker, I. Sonoprinting liposomes on tumor spheroids by microbubbles and ultrasound. J. Control. Release, 2019, 316, 79-92.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.051] [PMID: 31676384]
[58]
De Cock, I.; Lajoinie, G.; Versluis, M.; De Smedt, S.C.; Lentacker, I. Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials, 2016, 83, 294-307.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.022] [PMID: 26796042]
[59]
Roovers, S.; Lajoinie, G.; De Cock, I.; Brans, T.; Dewitte, H.; Braeckmans, K.; Versuis, M.; De Smedt, S.C.; Lentacker, I. Sonoprinting of nanoparticle-loaded microbubbles: Unraveling the multi-timescale mechanism. Biomaterials, 2019, 217(217)119250
[http://dx.doi.org/10.1016/j.biomaterials.2019.119250] [PMID: 31288172]
[60]
Mullin, L.B.; Phillips, L.C.; Dayton, P.A. Nanoparticle delivery enhancement with acoustically activated microbubbles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2013, 60(1), 65-77.
[http://dx.doi.org/10.1109/TUFFC.2013.2538] [PMID: 23287914]
[61]
Ono, S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. Int. Rev. Cytol., 2007, 258, 1-82.
[http://dx.doi.org/10.1016/S0074-7696(07)58001-0] [PMID: 17338919]
[62]
Yang, W.J.; Lee, J.H.; Hong, S.C.; Lee, J.; Lee, J.; Han, D.W. Difference between toxicities of iron oxide magnetic nanoparticles with various surface-functional groups against human normal fibroblasts and fibrosarcoma cells. Materials (Basel), 2013, 6(10), 4689-4706.
[http://dx.doi.org/10.3390/ma6104689] [PMID: 28788355]
[63]
Corradi, V.; Mendez-Villuendas, E.; Ingólfsson, H.I.; Gu, R-X.; Siuda, I.; Melo, M.N.; Moussatova, A.; DeGagné, L.J.; Sejdiu, B.I.; Singh, G.; Wassenaar, T.A.; Delgado Magnero, K.; Marrink, S.J.; Tieleman, D.P. Lipid-protein interactions are unique fingerprints for membrane proteins. ACS Cent. Sci., 2018, 4(6), 709-717.
[http://dx.doi.org/10.1021/acscentsci.8b00143] [PMID: 29974066]
[64]
Mager, M.D.; Lapointe, V.; Stevens, M.M. Exploring and exploiting chemistry at the cell surface. Nature chemistry; Nature Publishing Group, 2011, pp. 582-589.
[65]
Bohdanowicz, M.; Grinstein, S. Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol. Rev., 2013, 93(1), 69-106.
[http://dx.doi.org/10.1152/physrev.00002.2012] [PMID: 23303906]
[66]
Eichmann, T.O.; Lass, A. DAG tales: The multiple faces of diacylglycerol-stereochemistry, metabolism, and signaling. Cell. Mol. Life Sci., 2015, 72(20), 3931-3952.
[http://dx.doi.org/10.1007/s00018-015-1982-3] [PMID: 26153463]
[67]
van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 112-124.
[http://dx.doi.org/10.1038/nrm2330] [PMID: 18216768]
[68]
Nyholm, T.K.M. Lipid-protein interplay and lateral organization in biomembranes. Chem. Phys. Lipids, 2015, 189, 48-55.
[http://dx.doi.org/10.1016/j.chemphyslip.2015.05.008] [PMID: 26036778]
[69]
Ingólfsson, H.I.; Melo, M.N.; van Eerden, F.J.; Arnarez, C.; Lopez, C.A.; Wassenaar, T.A.; Periole, X.; de Vries, A.H.; Tieleman, D.P.; Marrink, S.J. Lipid organization of the plasma membrane. J. Am. Chem. Soc., 2014, 136(41), 14554-14559.
[http://dx.doi.org/10.1021/ja507832e] [PMID: 25229711]
[70]
Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol., 2018, 19(5), 281-296.
[http://dx.doi.org/10.1038/nrm.2017.138] [PMID: 29410529]
[71]
Haucke, V.; Kozlov, M.M. Membrane remodeling in clathrin-mediated endocytosis. J. Cell Sci., 2018, 131(17), 1-10.
[http://dx.doi.org/10.1242/jcs.216812] [PMID: 30177505]
[72]
Hu, T.Y.; Frieman, M.; Wolfram, J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat. Nanotechnol., 2020, 15(4), 247-249.
[http://dx.doi.org/10.1038/s41565-020-0674-9] [PMID: 32203437]
[73]
Stuermer, C.A.O. Reggie/flotillin and the targeted delivery of cargo. J. Neurochem., 2011, 116(5), 708-713.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07007.x] [PMID: 21214550]
[74]
Tan-Chen, S.; Guitton, J.; Bourron, O.; Le Stunff, H.; Hajduch, E. Sphingolipid metabolism and signaling in skeletal muscle: From physiology to physiopathology. Front. Endocrinol. (Lausanne), 2020, 11, 491.
[http://dx.doi.org/10.3389/fendo.2020.00491] [PMID: 32849282]
[75]
Sprong, H.; Kruithof, B.; Leijendekker, R.; Slot, J.W.; van Meer, G.; van der Sluijs, P. UDP-galactose:Ceramide galactosyl-transferase is a class I integral membrane protein of the endoplasmic reticulum. J. Biol. Chem., 1998, 273(40), 25880-25888.
[http://dx.doi.org/10.1074/jbc.273.40.25880] [PMID: 9748263]
[76]
Aerts, J.M.F.G.; Artola, M.; van Eijk, M.; Ferraz, M.J.; Boot, R.G. Glycosphingolipids and infection. Potential new therapeutic avenues. Front. Cell Dev. Biol., 2019, 7, 324.
[http://dx.doi.org/10.3389/fcell.2019.00324] [PMID: 31867330]
[77]
Sonnino, S.; Mauri, L.; Chigorno, V.; Prinetti, A. Gangliosides as components of lipid membrane domains. Glycobiology, 2007, 17(1), 1R-13R.
[http://dx.doi.org/10.1093/glycob/cwl052] [PMID: 16982663]
[78]
Yu, R.K.; Tsai, Y-T.; Ariga, T.; Yanagisawa, M. Structures, biosynthesis, and functions of gangliosides--an overview. J. Oleo Sci., 2011, 60(10), 537-544.
[http://dx.doi.org/10.5650/jos.60.537] [PMID: 21937853]
[79]
Su, T.; Qin, X-Y.; Dohmae, N.; Wei, F.; Furutani, Y.; Kojima, S.; Yu, W. Inhibition of ganglioside synthesis suppressed liver cancer cell proliferation through targeting kinetochore metaphase signaling. Metabolites, 2021, 11(3), 167.
[http://dx.doi.org/10.3390/metabo11030167] [PMID: 33803928]
[80]
Lopez, P.H.H.; Schnaar, R.L. Gangliosides in cell recognition and membrane protein regulation. Curr. Opin. Struct. Biol., 2009, 19(5), 549-557.
[http://dx.doi.org/10.1016/j.sbi.2009.06.001] [PMID: 19608407]
[81]
Casares, D.; Escribá, P.V.; Rosselló, C.A. Membrane lipid composition: Effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci., 2019, 20(9)E2167
[http://dx.doi.org/10.3390/ijms20092167] [PMID: 31052427]
[82]
Kay, J.G.; Fairn, G.D. Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Commun. Signal., 2019, 17(1), 126.
[http://dx.doi.org/10.1186/s12964-019-0438-z] [PMID: 31615534]
[83]
Campelo, F.; Arnarez, C.; Marrink, S.J.; Kozlov, M.M. Helfrich model of membrane bending: From gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers.Advances in colloid and interface science; Elsevier B.V., 2014, pp. 25-33.
[84]
Wang, L.; Hartel, N.; Ren, K.; Graham, N.A.; Malmstadt, N. Effect of protein corona on nanoparticle-plasma membrane and nanoparticle-biomimetic membrane interactions. Environ. Sci. Nano, 2020, 7(3), 963-974.
[http://dx.doi.org/10.1039/D0EN00035C]
[85]
Xia, Z.; Woods, A.; Quirk, A.; Burgess, I.J.; Lau, B.L.T. Interactions between polystyrene nanoparticles and supported lipid bilayers: Impact of charge and hydrophobicity modification by specific anions. Environ. Sci. Nano, 2019, 6(6), 1829-1837.
[http://dx.doi.org/10.1039/C9EN00055K]
[86]
Oh, N.; Park, J.H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine, 2014, 9(Suppl. 1), 51-63.
[http://dx.doi.org/10.2147/IJN.S26592] [PMID: 24872703]
[87]
Zhang, S.; Gao, H.; Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano, 2015, 9(9), 8655-8671.
[http://dx.doi.org/10.1021/acsnano.5b03184] [PMID: 26256227]
[88]
Kou, L.; Sun, J.; Zhai, Y.; He, Z. The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian J. Pharm. Sci., 2013, 8(1), 1-10.
[http://dx.doi.org/10.1016/j.ajps.2013.07.001]
[89]
Sahay, G.; Alakhova, D.Y.; Kabanov, A.V. Endocytosis of nanomedicines. J. Control. Release, 2010, 145(3), 182-195.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.036] [PMID: 20226220]
[90]
Xie, S.; Bahl, K.; Reinecke, J.B.; Hammond, G.R.V.; Naslavsky, N.; Caplan, S. The endocytic recycling compartment maintains cargo segregation acquired upon exit from the sorting endosome. Mol. Biol. Cell, 2016, 27(1), 108-126.
[http://dx.doi.org/10.1091/mbc.E15-07-0514] [PMID: 26510502]
[91]
Decuzzi, P.; Ferrari, M. The receptor-mediated endocytosis of nonspherical particles. Biophys. J., 2008, 94(10), 3790-3797.
[http://dx.doi.org/10.1529/biophysj.107.120238] [PMID: 18234813]
[92]
Kaur, G.; Lakkaraju, A. Early Endosome Morphology in Health and Disease. Adv. Exp. Med. Biol., 2018, 1074, 335-343.
[http://dx.doi.org/10.1007/978-3-319-75402-4_41] [PMID: 29721961]
[93]
Scott, C.C.; Vacca, F.; Gruenberg, J. Endosome maturation, transport and functions. Semin. Cell Dev. Biol., 2014, 31, 2-10.
[http://dx.doi.org/10.1016/j.semcdb.2014.03.034] [PMID: 24709024]
[94]
Huotari, J.; Helenius, A. Endosome maturation. EMBO J., 2011, 30(17), 3481-3500.
[http://dx.doi.org/10.1038/emboj.2011.286] [PMID: 21878991]
[95]
Hu, Y-B.; Dammer, E.B.; Ren, R-J.; Wang, G. The endosomal-lysosomal system: From acidification and cargo sorting to neurodegeneration. Transl. Neurodegener., 2015, 4(1), 18.
[http://dx.doi.org/10.1186/s40035-015-0041-1] [PMID: 26448863]
[96]
Nagano, M.; Toshima, J.Y.; Siekhaus, D.E.; Toshima, J. Rab5-mediated endosome formation is regulated at the trans-Golgi network. Commun. Biol., 2019, 2(1), 419.
[http://dx.doi.org/10.1038/s42003-019-0670-5] [PMID: 31754649]
[97]
Ross, J.L.; Shuman, H.; Holzbaur, E.L.F.; Goldman, Y.E. Kinesin and dynein-dynactin at intersecting microtubules: Motor density affects dynein function. Biophys. J., 2008, 94(8), 3115-3125.
[http://dx.doi.org/10.1529/biophysj.107.120014] [PMID: 18227130]
[98]
Elkin, S.R.; Lakoduk, A.M.; Schmid, S.L. Endocytic pathways and endosomal trafficking: A primer. Wien. Med. Wochenschr., 2016, 166(7-8), 196-204.
[http://dx.doi.org/10.1007/s10354-016-0432-7] [PMID: 26861668]
[99]
Hui, Y.; Yi, X.; Wibowo, D.; Yang, G.; Middelberg, A.P.J.; Gao, H.; Zhao, C.X. Nanoparticle elasticity regulates phagocytosis and cancer cell uptake. Sci. Adv., 2020, 6(16)eaaz4316
[http://dx.doi.org/10.1126/sciadv.aaz4316] [PMID: 32426455]
[100]
Rougerie, P.; Miskolci, V.; Cox, D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: Role and regulation of the actin cytoskeleton. Immunol. Rev., 2013, 256(1), 222-239.
[http://dx.doi.org/10.1111/imr.12118] [PMID: 24117824]
[101]
Aderem, A.; Underhill, D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol., 1999, 17, 593-623.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.593] [PMID: 10358769]
[102]
Sarkar, K.; Kruhlak, M.J.; Erlandsen, S.L.; Shaw, S. Selective inhibition by rottlerin of macropinocytosis in monocyte-derived dendritic cells. Immunology, 2005, 116(4), 513-524.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02253.x] [PMID: 16313365]
[103]
Williamson, C.D.; Donaldson, J.G. Arf6, JIP3, and dynein shape and mediate macropinocytosis. Mol. Biol. Cell, 2019, 30(12), 1477-1489.
[http://dx.doi.org/10.1091/mbc.E19-01-0022] [PMID: 30969891]
[104]
Meng, H.; Yang, S.; Li, Z.; Xia, T.; Chen, J.; Ji, Z.; Zhang, H.; Wang, X.; Lin, S.; Huang, C.; Zhou, Z.H.; Zink, J.I.; Nel, A.E. Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano, 2011, 5(6), 4434-4447.
[http://dx.doi.org/10.1021/nn103344k] [PMID: 21563770]
[105]
Liu, Z.; Xu, E.; Zhao, H.T.; Cole, T.; West, A.B. LRRK2 and Rab10 coordinate macropinocytosis to mediate immunological responses in phagocytes. EMBO J., 2020, 39(20)e104862
[http://dx.doi.org/10.15252/embj.2020104862] [PMID: 32853409]
[106]
Wolfram, J.; Nizzero, S.; Liu, H.; Li, F.; Zhang, G.; Li, Z.; Shen, H.; Blanco, E.; Ferrari, M. A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci. Rep., 2017, 7(1), 13738.
[http://dx.doi.org/10.1038/s41598-017-14221-2] [PMID: 29062065]
[107]
Nagai, N.; Ogata, F.; Otake, H.; Nakazawa, Y.; Kawasaki, N. Energy-dependent endocytosis is responsible for drug transcorneal penetration following the instillation of ophthalmic formulations containing indomethacin nanoparticles. Int. J. Nanomedicine, 2019, 14, 1213-1227.
[http://dx.doi.org/10.2147/IJN.S196681] [PMID: 30863055]
[108]
Preta, G.; Cronin, J.G.; Sheldon, I.M. Dynasore - not just a dynamin inhibitor. Cell Commun. Signal., 2015, 13, 24.
[http://dx.doi.org/10.1186/s12964-015-0102-1] [PMID: 25889964]
[109]
Kim, H.B.; Lee, S.; Chung, J.H.; Kim, S.N.; Sung, C.K.; Baik, K.Y. Effects of actin cytoskeleton disruption on electroporation in vitro. Appl. Biochem. Biotechnol., 2020, 191(4), 1545-1561.
[http://dx.doi.org/10.1007/s12010-020-03271-4] [PMID: 32157625]
[110]
dos Santos, T.; Varela, J.; Lynch, I.; Salvati, A.; Dawson, K.A. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One, 2011, 6(9)e24438
[http://dx.doi.org/10.1371/journal.pone.0024438] [PMID: 21949717]
[111]
Vergallo, C.; Panzarini, E.; Izzo, D.; Carata, E.; Mariano, S.; Buccolieri, A.; Serra, A.; Manno, D.; Dini, L. Cytotoxicity of β-d-glucose coated silver nanoparticles on human lymphocytes.AIP Conf. Proc.,; , 2015. 2014(1603), 78-85.
[http://dx.doi.org/10.1063/1.4883045]
[112]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[113]
Zelmer, C.; Zweifel, L.P.; Kapinos, L.E.; Craciun, I.; Güven, Z.P.; Palivan, C.G.; Lim, R.Y.H. Organelle-specific targeting of polymersomes into the cell nucleus. Proc. Natl. Acad. Sci. USA, 2020, 117(6), 2770-2778.
[http://dx.doi.org/10.1073/pnas.1916395117] [PMID: 31988132]
[114]
Jones, A.T. Macropinocytosis: Searching for an endocytic identity and role in the uptake of cell penetrating peptides. J. Cell. Mol. Med., 2007, 11(4), 670-684.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00062.x] [PMID: 17760832]
[115]
Fratini, M.; Wiegand, T.; Funaya, C.; Jiang, Z.; Shah, P.N.M.; Spatz, J.P.; Cavalcanti-Adam, E.A.; Boulant, S. Surface immobilization of viruses and nanoparticles elucidates early events in clathrin-mediated endocytosis. ACS Infect. Dis., 2018, 4(11), 1585-1600.
[http://dx.doi.org/10.1021/acsinfecdis.8b00134] [PMID: 30200751]
[116]
Hansen, C.G.; Nichols, B.J. Exploring the caves: Cavins, caveolins and caveolae. Trends Cell Biol., 2010, 20(4), 177-186.
[http://dx.doi.org/10.1016/j.tcb.2010.01.005] [PMID: 20153650]
[117]
Qi, S.; Su, L.; Li, J.; Zhang, C.; Ma, Z.; Liu, G.; Zhang, Q.; Jia, G.; Piao, Y.; Zhang, S. Arf6-driven endocytic recycling of CD147 determines HCC malignant phenotypes. J. Exp. Clin. Cancer Res., 2019, 38(1), 471.
[http://dx.doi.org/10.1186/s13046-019-1464-9] [PMID: 31752956]
[118]
Schweitzer, J.K.; Sedgwick, A.E.; D’Souza-Schorey, C. ARF6-mediated endocytic recycling impacts cell movement, cell division and lipid homeostasis. Semin. Cell Dev. Biol., 2011, 22(1), 39-47.
[http://dx.doi.org/10.1016/j.semcdb.2010.09.002] [PMID: 20837153]
[119]
Shitara, A.; Malec, L.; Ebrahim, S.; Chen, D.; Bleck, C.; Hoffman, M.P.; Weigert, R. Cdc42 negatively regulates endocytosis during apical membrane maintenance in live animals. Mol. Biol. Cell, 2019, 30(3), 324-332.
[http://dx.doi.org/10.1091/mbc.E18-10-0615] [PMID: 30540520]
[120]
Germain, R.N. An innately interesting decade of research in immunology. Nat. Med., 2004, 10(12), 1307-1320.
[http://dx.doi.org/10.1038/nm1159] [PMID: 15580257]
[121]
Yi, X.; Gao, H. Phase diagrams and morphological evolution in wrapping of rod-shaped elastic nanoparticles by cell membrane: A two-dimensional study. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2014, 89(6)062712
[http://dx.doi.org/10.1103/PhysRevE.89.062712] [PMID: 25019819]
[122]
Tsai, C-Y.; Lu, S-L.; Hu, C-W.; Yeh, C-S.; Lee, G-B.; Lei, H-Y. Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. J. Immunol., 2012, 188(1), 68-76.
[http://dx.doi.org/10.4049/jimmunol.1100344] [PMID: 22156340]
[123]
Capasso, M. Proton channels in non-phagocytic cells of the immune system. Wiley Interdiscip. Rev. Membr. Transp. Signal., 2013, 2(2), 65-73.
[http://dx.doi.org/10.1002/wmts.78] [PMID: 23710424]
[124]
Seeberg, J.C.; Loibl, M.; Moser, F.; Schwegler, M.; Büttner-Herold, M.; Daniel, C.; Engel, F.B.; Hartmann, A.; Schlötzer-Schrehardt, U.; Goppelt-Struebe, M.; Schellerer, V.; Naschberger, E.; Ganzleben, I.; Heinzerling, L.; Fietkau, R.; Distel, L.V. Non-professional phagocytosis: A general feature of normal tissue cells. Sci. Rep., 2019, 9(1), 11875.
[http://dx.doi.org/10.1038/s41598-019-48370-3] [PMID: 31417141]
[125]
Dunkelberger, J.R.; Song, W-C. Complement and its role in innate and adaptive immune responses. Cell Res., 2010, 20(1), 34-50.
[http://dx.doi.org/10.1038/cr.2009.139] [PMID: 20010915]
[126]
Gavin, C.; Meinke, S.; Heldring, N.; Heck, K.A.; Achour, A.; Iacobaeus, E.; Höglund, P.; Le Blanc, K.; Kadri, N. The complement system is essential for the phagocytosis of mesenchymal stromal cells by monocytes. Front. Immunol., 2019, 10, 2249.
[http://dx.doi.org/10.3389/fimmu.2019.02249] [PMID: 31616424]
[127]
Acharya, D.; Li, X.R.L.; Heineman, R.E.; Harrison, R.E. Complement receptor-mediated phagocytosis induces proinflammatory cytokine production in murine macrophages. Front. Immunol., 2020, 10, 3049.
[http://dx.doi.org/10.3389/fimmu.2019.03049] [PMID: 31993058]
[128]
Ghotbi, Z.; Haddadi, A.; Hamdy, S.; Hung, R.W.; Samuel, J.; Lavasanifar, A. Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J. Drug Target., 2011, 19(4), 281-292.
[http://dx.doi.org/10.3109/1061186X.2010.499463] [PMID: 20590403]
[129]
LEWIS, W. Pinocytosis by malignant cells., 1937, 1(1), 666-679..
[130]
Swanson, J.A.; King, J.S. The breadth of macropinocytosis research. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2019, 374(1765), 20180146.,
[http://dx.doi.org/10.1098/rstb.2018.0146] [PMID: 30967000]
[132]
Wang, J.T.H.; Teasdale, R.D.; Liebl, D. Macropinosome quantitation assay. MethodsX, 2014, 1, 36-41.
[http://dx.doi.org/10.1016/j.mex.2014.05.002] [PMID: 26150932]
[133]
Swanson, J.A.; Yoshida, S. Macropinosomes as units of signal transduction.Philos. Trans. R. Soc. Lond. B Biol. Sci., 2019, 374(1765), 20180157.,
[http://dx.doi.org/10.1098/rstb.2018.0157] [PMID: 0967006]
[134]
Oberbanscheidt, P.; Balkow, S.; Kühnl, J.; Grabbe, S.; Bähler, M. SWAP-70 associates transiently with macropinosomes. Eur. J. Cell Biol., 2007, 86(1), 13-24.
[http://dx.doi.org/10.1016/j.ejcb.2006.08.005] [PMID: 17046101]
[135]
Kuhn, D.A.; Vanhecke, D.; Michen, B.; Blank, F.; Gehr, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol., 2014, 5, 1625-1636.
[http://dx.doi.org/10.3762/bjnano.5.174] [PMID: 25383275]
[136]
de Carvalho, T.M.U.; Barrias, E.S.; de Souza, W. Macropinocytosis: A pathway to protozoan infection. Front. Physiol., 2015, 6, 106.
[http://dx.doi.org/10.3389/fphys.2015.00106] [PMID: 25914647]
[137]
Cossart, P.; Helenius, A. Endocytosis of viruses and bacteria. Cold Spring Harb. Perspect. Biol., 2014, 6(8)a016972
[http://dx.doi.org/10.1101/cshperspect.a016972] [PMID: 25085912]
[138]
Kerr, M.C.; Teasdale, R.D. Defining macropinocytosis. Traffic, 2009, 10(4), 364-371.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00878.x] [PMID: 19192253]
[139]
Green, D.R.; Oguin, T.H.; Martinez, J. The clearance of dying cells: Table for two. Cell Death Differ., 2016, 23(6), 915-926.
[http://dx.doi.org/10.1038/cdd.2015.172] [PMID: 26990661]
[140]
Krysko, D.V.; Vandenabeele, P. From regulation of dying cell engulfment to development of anti-cancer therapy. Cell Death Differ., 2008, 15(1), 29-38.
[http://dx.doi.org/10.1038/sj.cdd.4402271] [PMID: 18007662]
[141]
Budai, Z.; Ujlaky-Nagy, L.; Kis, G.N.; Antal, M.; Bankó, C.; Bacsó, Z.; Szondy, Z.; Sarang, Z. Macrophages engulf apoptotic and primary necrotic thymocytes through similar phosphatidylserine-dependent mechanisms. FEBS Open Bio, 2019, 9(3), 446-456.
[http://dx.doi.org/10.1002/2211-5463.12584] [PMID: 30868053]
[142]
Strojan, K.; Lojk, J.; Bregar, V.B.; Veranič, P.; Pavlin, M. Glutathione reduces cytotoxicity of polyethyleneimine coated magnetic nanoparticles in CHO cells. Toxicol. In Vitro, 2017, 41, 12-20.
[http://dx.doi.org/10.1016/j.tiv.2017.02.007] [PMID: 28216176]
[143]
Vranic, S.; Boggetto, N.; Contremoulins, V.; Mornet, S.; Reinhardt, N.; Marano, F.; Baeza-Squiban, A.; Boland, S. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part. Fibre Toxicol., 2013, 10(1), 2.
[http://dx.doi.org/10.1186/1743-8977-10-2] [PMID: 23388071]
[144]
Chiodo, F.; Bruijns, S.C. Rodriguez, E.; Li, R. J. E.; Molinaro, A.; Silipo, A.; Lorenzo, F. Di; Garcia-Rivera, D.; Valdes-Balbin, Y.; Verez-Bencomo, V. Novel ACE2-independent carbohydrate-binding of sars-cov-2 spike protein to host lectins and lung microbiota. bioRxiv, 2020.
[145]
Miller, S.E.; Mathiasen, S.; Bright, N.A.; Pierre, F.; Kelly, B.T.; Kladt, N.; Schauss, A.; Merrifield, C.J.; Stamou, D.; Höning, S.; Owen, D.J. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev. Cell, 2015, 33(2), 163-175.
[http://dx.doi.org/10.1016/j.devcel.2015.03.002] [PMID: 25898166]
[146]
Lee, S.A.; Eyeson, R.; Cheever, M.L.; Geng, J.; Verkhusha, V.V.; Burd, C.; Overduin, M.; Kutateladze, T.G. Targeting of the FYVE domain to endosomal membranes is regulated by a histidine switch. Proc. Natl. Acad. Sci. USA, 2005, 102(37), 13052-13057.
[http://dx.doi.org/10.1073/pnas.0503900102] [PMID: 16141328]
[147]
Lock, J.G.; Stow, J.L. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol. Biol. Cell, 2005, 16(4), 1744-1755.
[http://dx.doi.org/10.1091/mbc.e04-10-0867] [PMID: 15689490]
[148]
Welz, T.; Wellbourne-Wood, J.; Kerkhoff, E. Orchestration of cell surface proteins by Rab11. Trends Cell Biol., 2014, 24(7), 407-415.
[http://dx.doi.org/10.1016/j.tcb.2014.02.004] [PMID: 24675420]
[149]
Bastiani, M.; Parton, R.G. Caveolae at a glance. J. Cell Sci., 2010, 123(Pt 22), 3831-3836.
[http://dx.doi.org/10.1242/jcs.070102] [PMID: 21048159]
[150]
Bastiani, M.; Liu, L.; Hill, M.M.; Jedrychowski, M.P.; Nixon, S.J.; Lo, H.P.; Abankwa, D.; Luetterforst, R.; Fernandez-Rojo, M.; Breen, M.R.; Gygi, S.P.; Vinten, J.; Walser, P.J.; North, K.N.; Hancock, J.F.; Pilch, P.F.; Parton, R.G. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J. Cell Biol., 2009, 185(7), 1259-1273.
[http://dx.doi.org/10.1083/jcb.200903053] [PMID: 19546242]
[151]
Pietiäinen, V.; Marjomäki, V.; Upla, P.; Pelkmans, L.; Helenius, A.; Hyypiä, T. Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. Mol. Biol. Cell, 2004, 15(11), 4911-4925.
[http://dx.doi.org/10.1091/mbc.e04-01-0070] [PMID: 15356270]
[152]
Hill, M.M.; Bastiani, M.; Luetterforst, R.; Kirkham, M.; Kirkham, A.; Nixon, S.J.; Walser, P.; Abankwa, D.; Oorschot, V.M.J.; Martin, S.; Hancock, J.F.; Parton, R.G. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 2008, 132(1), 113-124.
[http://dx.doi.org/10.1016/j.cell.2007.11.042] [PMID: 18191225]
[153]
Orlandi, P.A.; Fishman, P.H. Filipin-dependent inhibition of cholera toxin: Evidence for toxin internalization and activation through caveolae-like domains. J. Cell Biol., 1998, 141(4), 905-915.
[http://dx.doi.org/10.1083/jcb.141.4.905] [PMID: 9585410]
[154]
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev., 2017, 46(14), 4218-4244.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[155]
Li, Y.; Gao, L.; Tan, X.; Li, F.; Zhao, M.; Peng, S. Lipid rafts-mediated endocytosis and physiology-based cell membrane traffic models of doxorubicin liposomes. Biochim. Biophys. Acta, 2016, 1858(8), 1801-1811.
[http://dx.doi.org/10.1016/j.bbamem.2016.04.014] [PMID: 27117641]
[156]
Fekri, F.; Abousawan, J.; Bautista, S.; Orofiamma, L.; Dayam, R.M.; Antonescu, C.N.; Karshafian, R. Targeted enhancement of flotillin-dependent endocytosis augments cellular uptake and impact of cytotoxic drugs. Sci. Rep., 2019, 9(1), 17768.
[http://dx.doi.org/10.1038/s41598-019-54062-9] [PMID: 31780775]
[157]
Kirkham, M.; Fujita, A.; Chadda, R.; Nixon, S.J.; Kurzchalia, T.V.; Sharma, D.K.; Pagano, R.E.; Hancock, J.F.; Mayor, S.; Parton, R.G. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J. Cell Biol., 2005, 168(3), 465-476.
[http://dx.doi.org/10.1083/jcb.200407078] [PMID: 15668297]
[158]
Miranda, M.A.; Silva, L.B.; Carvalho, I.P.S.; Amaral, R.; de Paula, M.H.; Swiech, K.; Bastos, J.K.; Paschoal, J.A.R.; Emery, F.S.; Dos Reis, R.B.; Bentley, M.V.L.B.; Marcato, P.D. Targeted uptake of folic acid-functionalized polymeric nanoparticles loading glycoalkaloidic extract in vitro and in vivo assays. Colloids Surf. B Biointerfaces, 2020, 192111106
[http://dx.doi.org/10.1016/j.colsurfb.2020.111106] [PMID: 32474325]
[159]
Xu, X.; Wu, C.; Bai, A.; Liu, X.; Lv, H.; Liu, Y. Folate-functionalized mesoporous silica nanoparticles as a liver tumor-targeted drug delivery system to improve the antitumor effect of paclitaxel. J. Nanomater., 2017, 20172069685
[http://dx.doi.org/10.1155/2017/2069685]
[160]
Bai, X.; Wang, S.; Yan, X.; Zhou, H.; Zhan, J.; Liu, S.; Sharma, V.K.; Jiang, G.; Zhu, H.; Yan, B. Regulation of cell uptake and cytotoxicity by nanoparticle core under the controlled shape, size, and surface chemistries. ACS Nano, 2020, 14(1), 289-302.
[http://dx.doi.org/10.1021/acsnano.9b04407] [PMID: 31869202]
[161]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[162]
Wang, S-H.; Lee, C-W.; Chiou, A.; Wei, P-K. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J. Nanobiotechnology, 2010, 8(1), 33.
[http://dx.doi.org/10.1186/1477-3155-8-33] [PMID: 21167077]
[163]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[164]
Wang, R.; Liu, J.; Liu, Y.; Zhong, R.; Yu, X.; Liu, Q.; Zhang, L.; Lv, C.; Mao, K.; Tang, P. The cell uptake properties and hyperthermia performance of Zn0.5Fe2.5O4/SiO2 nanoparticles as magnetic hyperthermia agents. R. Soc. Open Sci., 2020, 7(1)191139
[http://dx.doi.org/10.1098/rsos.191139] [PMID: 32218945]
[165]
Lima, T.; Bernfur, K.; Vilanova, M.; Cedervall, T. Understanding the lipid and protein corona formation on different sized polymeric nanoparticles. Sci. Rep., 2020, 10(1), 1129.
[http://dx.doi.org/10.1038/s41598-020-57943-6] [PMID: 31980686]
[166]
Silva, J.M.; Videira, M.; Gaspar, R.; Préat, V.; Florindo, H.F. Immune system targeting by biodegradable nanoparticles for cancer vaccines. Journal of Controlled Release, 2013, 179-199.
[167]
Calero, M.; Chiappi, M.; Lazaro-Carrillo, A.; Rodríguez, M.J.; Chichón, F.J.; Crosbie-Staunton, K.; Prina-Mello, A.; Volkov, Y.; Villanueva, A.; Carrascosa, J.L. Characterization of interaction of magnetic nanoparticles with breast cancer cells. J. Nanobiotechnology, 2015, 13(1), 16.
[http://dx.doi.org/10.1186/s12951-015-0073-9] [PMID: 25880445]
[168]
Lunnoo, T.; Assawakhajornsak, J.; Ruangchai, S.; Puangmali, T. Role of surface functionalization on cellular uptake of aunps characterized by computational microscopy. J. Phys. Chem. B, 2020, 124(10), 1898-1908.
[http://dx.doi.org/10.1021/acs.jpcb.9b11600] [PMID: 32040917]
[169]
Mahmoud, N.N.; Al-Kharabsheh, L.M.; Khalil, E.A.; Abu-Dahab, R. Interaction of gold nanorods with human dermal fibroblasts: Cytotoxicity, cellular uptake, and wound healing. Nanomaterials (Basel), 2019, 9(8), 18-20.
[http://dx.doi.org/10.3390/nano9081131] [PMID: 31390794]
[170]
Wu, M.; Guo, H.; Liu, L.; Liu, Y.; Xie, L. Size-dependent cellular uptake and localization profiles of silver nanoparticles. Int. J. Nanomedicine, 2019, 14, 4247-4259.
[http://dx.doi.org/10.2147/IJN.S201107] [PMID: 31239678]
[171]
Nehl, C.L.; Liao, H.; Hafner, J.H. Optical properties of star-shaped gold nanoparticles. Nano Lett., 2006, 6(4), 683-688.
[http://dx.doi.org/10.1021/nl052409y] [PMID: 16608264]
[172]
Albanese, A.; Chan, W.C.W. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano, 2011, 5(7), 5478-5489.
[http://dx.doi.org/10.1021/nn2007496] [PMID: 21692495]
[173]
Guo, S.; Li, H.; Ma, M.; Fu, J.; Dong, Y.; Guo, P. Size, shape, and sequence-dependent immunogenicity of rna nanoparticles. Mol. Ther. Nucleic Acids, 2017, 9(December), 399-408.
[http://dx.doi.org/10.1016/j.omtn.2017.10.010] [PMID: 29246318]
[174]
Hauck, T.S.; Ghazani, A.A.; Chan, W.C.W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small, 2008, 4(1), 153-159.
[http://dx.doi.org/10.1002/smll.200700217] [PMID: 18081130]
[175]
Tao, W.; Zeng, X.; Wu, J.; Zhu, X.; Yu, X.; Zhang, X.; Zhang, J.; Liu, G.; Mei, L. Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics, 2016, 6(4), 470-484.
[http://dx.doi.org/10.7150/thno.14184] [PMID: 26941841]
[176]
Madani, F.; Lindberg, S.; Langel, U.; Futaki, S.; Gräslund, A. Mechanisms of cellular uptake of cell-penetrating peptides. J. Biophys., 2011, 2011414729
[http://dx.doi.org/10.1155/2011/414729] [PMID: 21687343]
[177]
Kooiman, K.; Roovers, S.; Langeveld, S.A.G.; Kleven, R.T.; Dewitte, H.; O’Reilly, M.A.; Escoffre, J-M.; Bouakaz, A.; Verweij, M.D.; Hynynen, K.; Lentacker, I.; Stride, E.; Holland, C.K. Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med. Biol., 2020, 46(6), 1296-1325.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2020.01.002] [PMID: 32165014]
[178]
Zu, Y.; Huang, S.; Liao, W-C.; Lu, Y.; Wang, S. Gold nanoparticles enhanced electroporation for mammalian cell transfection. J. Biomed. Nanotechnol., 2014, 10(6), 982-992.
[http://dx.doi.org/10.1166/jbn.2014.1797] [PMID: 24749393]
[179]
Beloqui, A.; Brayden, D.J.; Artursson, P.; Préat, V.; des Rieux, A. A human intestinal M-cell-like model for investigating particle, antigen and microorganism translocation. Nat. Protoc., 2017, 12(7), 1387-1399.
[http://dx.doi.org/10.1038/nprot.2017.041] [PMID: 28617450]
[180]
Young, K.D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev., 2006, 70(3), 660-703.
[http://dx.doi.org/10.1128/MMBR.00001-06] [PMID: 16959965]
[181]
Guo, P.; Liu, D.; Subramanyam, K.; Wang, B.; Yang, J.; Huang, J.; Auguste, D.T.; Moses, M.A. Nanoparticle elasticity directs tumor uptake. Nat. Commun., 2018, 9(1), 130.
[http://dx.doi.org/10.1038/s41467-017-02588-9] [PMID: 29317633]
[182]
Guo, D.; Xie, G.; Luo, J. Mechanical properties of nanoparticles: Basics and applications. J. Phys. D Appl. Phys., 2013, 47(1), 13001.
[http://dx.doi.org/10.1088/0022-3727/47/1/013001]
[183]
Hartmann, R.; Weidenbach, M.; Neubauer, M.; Fery, A.; Parak, W.J. Stiffness-dependent in vitro uptake and lysosomal acidification of colloidal particles. Angew. Chem. Int. Ed. Engl., 2015, 54(4), 1365-1368.
[http://dx.doi.org/10.1002/anie.201409693] [PMID: 25483403]
[184]
Law, K.Y. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: Getting the basics right. J. Phys. Chem. Lett., 2014, 5(4), 686-688.
[http://dx.doi.org/10.1021/jz402762h] [PMID: 26270837]
[185]
Olubummo, A.; Schulz, M.; Lechner, B-D.; Scholtysek, P.; Bacia, K.; Blume, A.; Kressler, J.; Binder, W.H. Controlling the localization of polymer-functionalized nanoparticles in mixed lipid/polymer membranes. ACS Nano, 2012, 6(10), 8713-8727.
[http://dx.doi.org/10.1021/nn3023602] [PMID: 22950802]
[186]
Wang, S.; Guo, H.; Li, Y.; Li, X. Penetration of nanoparticles across a lipid bilayer: Effects of particle stiffness and surface hydrophobicity. Nanoscale, 2019, 11(9), 4025-4034.
[http://dx.doi.org/10.1039/C8NR09381D] [PMID: 30768108]
[187]
Bannunah, A.M.; Vllasaliu, D.; Lord, J.; Stolnik, S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: Effect of size and surface charge. Mol. Pharm., 2014, 11(12), 4363-4373.
[http://dx.doi.org/10.1021/mp500439c] [PMID: 25327847]
[188]
Gliga, A.R.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol., 2014, 11(1), 11.
[http://dx.doi.org/10.1186/1743-8977-11-11] [PMID: 24529161]
[189]
Zablotskii, V.; Lunov, O.; Dejneka, A.; Jastrabk, L.; Polyakova, T.; Syrovets, T.; Simmet, T. Nanomechanics of magnetically driven cellular endocytosis. Appl. Phys. Lett., 2011, 99(18), 1-4.
[http://dx.doi.org/10.1063/1.3656020]
[190]
Xiong, J.; Jiang, B.; Luo, Y.; Zou, J.; Gao, X.; Xu, D.; Du, Y.; Hao, L. Multifunctional nanoparticles encapsulating astragalus polysaccharide and gold nanorods in combination with focused ultrasound for the treatment of breast cancer. Int. J. Nanomedicine, 2020, 15, 4151-4169.
[http://dx.doi.org/10.2147/IJN.S246447] [PMID: 32606670]
[191]
Vyas, S.P.; Goswami, R. Size-dependent cellular uptake and TLR4 attenuation by gold nanoparticles in lung adenocarcinoma cells. Nanomedicine (Lond.), 2019, 14(3), 229-253.
[http://dx.doi.org/10.2217/nnm-2018-0266] [PMID: 30657415]
[192]
Farvadi, F.; Ghahremani, M.H.; Hashemi, F.; Reza Hormozi-Nezhad, M.; Raoufi, M.; Zanganeh, S.; Atyabi, F.; Dinarvand, R.; Mahmoudi, M. Cell shape affects nanoparticle uptake and toxicity: An overlooked factor at the nanobio interfaces. J. Colloid Interface Sci., 2018, 531, 245-252.
[http://dx.doi.org/10.1016/j.jcis.2018.07.013] [PMID: 30032011]
[193]
dos Santos, T.; Varela, J.; Lynch, I.; Salvati, A.; Dawson, K.A. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small, 2011, 7(23), 3341-3349.
[http://dx.doi.org/10.1002/smll.201101076] [PMID: 22009913]
[194]
Thurn, K.T.; Arora, H.; Paunesku, T.; Wu, A.; Brown, E.M.B.; Doty, C.; Kremer, J.; Woloschak, G. Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomedicine (Lond.), 2011, 7(2), 123-130.
[http://dx.doi.org/10.1016/j.nano.2010.09.004] [PMID: 20887814]
[195]
Gu, Y.; Li, J.; Li, Y.; Song, L.; Li, D.; Peng, L.; Wan, Y.; Hua, S. Nanomicelles loaded with doxorubicin and curcumin for alleviating multidrug resistance in lung cancer. Int. J. Nanomedicine, 2016, 11, 5757-5770.
[http://dx.doi.org/10.2147/IJN.S118568] [PMID: 27843316]
[196]
Li, Q.; Liu, C-G.; Yu, Y. Separation of monodisperse alginate nanoparticles and effect of particle size on transport of vitamin E. Carbohydr. Polym., 2015, 124, 274-279.
[http://dx.doi.org/10.1016/j.carbpol.2015.02.007] [PMID: 25839821]
[197]
Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. The effect of particle design on cellular internalization pathways.Proc. Natl. Acad. Sci., 2008, 105(33), pp. 11613 LP-11618 LP.,
[http://dx.doi.org/10.1073/pnas.0801763105]
[198]
Carnevale, K.J.F.; Muroski, M.E.; Vakil, P.N.; Foley, M.E.; Laufersky, G.; Kenworthy, R.; Zorio, D.A.R.; Morgan, T.J., Jr; Levenson, C.W.; Strouse, G.F. Selective uptake into drug resistant mammalian cancer by cell penetrating peptide-mediated delivery. Bioconjug. Chem., 2018, 29(10), 3273-3284.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00429] [PMID: 30240193]
[199]
Chai, G-H.; Hu, F-Q.; Sun, J.; Du, Y-Z.; You, J.; Yuan, H. Transport pathways of solid lipid nanoparticles across Madin-Darby canine kidney epithelial cell monolayer. Mol. Pharm., 2014, 11(10), 3716-3726.
[http://dx.doi.org/10.1021/mp5004674] [PMID: 25197948]
[200]
Hühn, D.; Kantner, K.; Geidel, C.; Brandholt, S.; De Cock, I.; Soenen, S.J.H.; Rivera Gil, P.; Montenegro, J.M.; Braeckmans, K.; Müllen, K.; Nienhaus, G.U.; Klapper, M.; Parak, W.J. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge. ACS Nano, 2013, 7(4), 3253-3263.
[http://dx.doi.org/10.1021/nn3059295] [PMID: 23566380]
[201]
Yeh, Y-C.; Saha, K.; Yan, B.; Miranda, O.R.; Yu, X.; Rotello, V.M. The role of ligand coordination on the cytotoxicity of cationic quantum dots in HeLa cells. Nanoscale, 2013, 5(24), 12140-12143.
[http://dx.doi.org/10.1039/c3nr04037b] [PMID: 24173625]
[202]
Xie, J.; Pan, X.; Wang, M.; Ma, J.; Fei, Y.; Wang, P-N.; Mi, L. The role of surface modification for TiO2 nanoparticles in cancer cells. Colloids Surf. B Biointerfaces, 2016, 143, 148-155.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.029] [PMID: 27003465]
[203]
Cho, E.C.; Xie, J.; Wurm, P.A.; Xia, Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett., 2009, 9(3), 1080-1084.
[http://dx.doi.org/10.1021/nl803487r] [PMID: 19199477]
[204]
Nguyen, V.H.; Lee, B.J. Protein corona: A new approach for nanomedicine design. Int. J. Nanomedicine, 2017, 12, 3137-3151.
[http://dx.doi.org/10.2147/IJN.S129300] [PMID: 28458536]
[205]
Jamburidze, A.; Huerre, A.; Baresch, D.; Poulichet, V.; De Corato, M.; Garbin, V. Nanoparticle-coated microbubbles for combined ultrasound imaging and drug delivery. Langmuir, 2019, 35(31), 10087-10096.
[http://dx.doi.org/10.1021/acs.langmuir.8b04008] [PMID: 31033294]
[206]
Carrasco, G.; López-Marín, L. M.; Fernández, F.; Salas, P.; Loske, A. M.; Millán-Chiu, B. E. Biomimetic coat enables the use of sonoporation to assist delivery of silica nanoparticle-cargoes into human cells.Biointerphases, 2016, 11(4), 04B303.,
[http://dx.doi.org/10.1116/1.4965704]
[207]
Perera, P.G.T.; Nguyen, T.H.P.; Dekiwadia, C.; Wandiyanto, J.V.; Sbarski, I.; Bazaka, O.; Bazaka, K.; Crawford, R.J.; Croft, R.J.; Ivanova, E.P. Exposure to high-frequency electromagnetic field triggers rapid uptake of large nanosphere clusters by pheochromocytoma cells. Int. J. Nanomedicine, 2018, 13, 8429-8442.
[http://dx.doi.org/10.2147/IJN.S183767] [PMID: 30587969]
[208]
Chopinet, L.; Roduit, C.; Rols, M-P.; Dague, E. Destabilization induced by electropermeabilization analyzed by atomic force microscopy. Biochim. Biophys. Acta, 2013, 1828(9), 2223-2229.
[http://dx.doi.org/10.1016/j.bbamem.2013.05.035] [PMID: 23756780]
[209]
Perrier, D.L.; Vahid, A.; Kathavi, V.; Stam, L.; Rems, L.; Mulla, Y.; Muralidharan, A.; Koenderink, G.H.; Kreutzer, M.T.; Boukany, P.E. Response of an actin network in vesicles under electric pulses. Sci. Rep., 2019, 9(1), 8151.
[http://dx.doi.org/10.1038/s41598-019-44613-5] [PMID: 31148577]
[210]
Török, Z.; Crul, T.; Maresca, B.; Schütz, G.J.; Viana, F.; Dindia, L.; Piotto, S.; Brameshuber, M.; Balogh, G.; Péter, M.; Porta, A.; Trapani, A.; Gombos, I.; Glatz, A.; Gungor, B.; Peksel, B.; Vigh, L., Jr; Csoboz, B.; Horváth, I.; Vijayan, M.M.; Hooper, P.L.; Harwood, J.L.; Vigh, L. Plasma membranes as heat stress sensors: From lipid-controlled molecular switches to therapeutic applications. Biochim. Biophys. Acta, 2014, 1838(6), 1594-1618.
[http://dx.doi.org/10.1016/j.bbamem.2013.12.015] [PMID: 24374314]
[211]
Djaldetti, M.; Bessler, H. High temperature affects the phagocytic activity of human peripheral blood mononuclear cells. Scand. J. Clin. Lab. Invest., 2015, 75(6), 482-486.
[http://dx.doi.org/10.3109/00365513.2015.1052550] [PMID: 26067609]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy