Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

H101G Mutation in Rat Lens αB-Crystallin Alters Chaperone Activity and Divalent Metal Ion Binding

Author(s): Yi-Ying Wu, Naveen Kumar Reddy Desu, Shou-Yun Lu, Bi-Yu Yu, Ramya Kumar and Fu-Yung Huang*

Volume 23, Issue 5, 2022

Published on: 02 July, 2021

Page: [719 - 727] Pages: 9

DOI: 10.2174/1389201022666210702130843

Price: $65

conference banner
Abstract

Background: The molecular chaperone function of αB-crystallins is heavily involved in maintaining lens transparency and the development of cataracts.

Objectives: The aim of the study was to investigate whether divalent metal ion binding improves the stability and αB-crystallin chaperone activity.

Methods: In this study, we have developed an H101G αB-crystallin mutant and compared the surface hydrophobicity, chaperone activity, and secondary and tertiary structure with the wild type in the presence and absence of metal ions.

Results: Substitution of His101 with glycine resulted in structural and functional changes. Spectral analysis and chaperone-like activity assays showed that substitution of glycine resulted in a higher percentage of random coils, increased hydrophobicity, and 22±2% higher chaperone-like activity. Whereas in the presence of the Cu2+ ion, H101G exhibited 32±1% less chaperone-like activity compared to the wild type.

Conclusion: Cu2+ has been reported to enhance the chaperone-like activity of lens α-crystallin. Our results indicate that H101 is the predominant Cu2+ binding site, and the mutation resulted in a partial unfolding that impaired the binding of Cu2+ to H101 residue. In conclusion, this study further helps to understand the important binding site for Cu2+ to αB-crystallin.

Keywords: αB-crystallin, chaperone activity, hydrophobicity, site-directed mutagenesis, circular dichroism, far-UV CD spectra.

Graphical Abstract
[1]
Clark, A.R.; Lubsen, N.H.; Slingsby, C. sHSP in the eye lens: Crystallin mutations, cataract and proteostasis. Int. J. Biochem. Cell Biol., 2012, 44(10), 1687-1697.
[http://dx.doi.org/10.1016/j.biocel.2012.02.015] [PMID: 22405853]
[2]
Lindberg, I.; Shorter, J.; Wiseman, R.L.; Chiti, F.; Dickey, C.A.; McLean, P.J. Chaperones in neurodegeneration. J. Neurosci., 2015, 35(41), 13853-13859.
[http://dx.doi.org/10.1523/JNEUROSCI.2600-15.2015] [PMID: 26468185]
[3]
Fujii, N.; Hiroki, K.; Matsumoto, S.; Masuda, K.; Inoue, M.; Tanaka, Y.; Awakura, M.; Akaboshi, M. Correlation between the loss of the chaperone-like activity and the oxidation, isomerization and racemization of gamma-irradiated alpha-crystallin. Photochem. Photobiol., 2001, 74(3), 477-482.
[http://dx.doi.org/10.1562/0031-8655(2001)074<0477:CBTLOT>2.0.CO;2] [PMID: 11594064]
[4]
Taylor, R.P.; Benjamin, I.J. Small heat shock proteins: A new classification scheme in mammals. J. Mol. Cell. Cardiol., 2005, 38(3), 433-444.
[http://dx.doi.org/10.1016/j.yjmcc.2004.12.014] [PMID: 15733903]
[5]
Treweek, T.M.; Meehan, S.; Ecroyd, H.; Carver, J.A. Small heat-shock proteins: Important players in regulating cellular proteostasis. Cell. Mol. Life Sci., 2015, 72(3), 429-451.
[http://dx.doi.org/10.1007/s00018-014-1754-5] [PMID: 25352169]
[6]
Ito, H.; Kamei, K.; Iwamoto, I.; Inaguma, Y.; Nohara, D.; Kato, K. Phosphorylation-induced change of the oligomerization state of α B-crystallin. J. Biol. Chem., 2001, 276(7), 5346-5352.
[http://dx.doi.org/10.1074/jbc.M009004200] [PMID: 11096101]
[7]
Tyedmers, J.; Mogk, A.; Bukau, B. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol., 2010, 11(11), 777-788.
[http://dx.doi.org/10.1038/nrm2993] [PMID: 20944667]
[8]
Gupta, R.; Srivastava, O.P. Deamidation affects structural and functional properties of human alphaA-crystallin and its oligomerization with alphaB-crystallin. J. Biol. Chem., 2004, 279(43), 44258-44269.
[http://dx.doi.org/10.1074/jbc.M405648200] [PMID: 15284238]
[9]
Chan, S.K.; Lui, P.C.; Tan, P.H.; Yamaguchi, R.; Moriya, T.; Yu, A.M.; Shao, M.M.; Hliang, T.; Wong, S.I.; Tse, G.M. Increased α-B-crystallin expression in mammary metaplastic carcinomas. Histopathology, 2011, 59(2), 247-255.
[http://dx.doi.org/10.1111/j.1365-2559.2011.03882.x] [PMID: 21884203]
[10]
Tang, Q.; Liu, Y.F.; Zhu, X.J.; Li, Y.H.; Zhu, J.; Zhang, J.P.; Feng, Z.Q.; Guan, X.H. Expression and prognostic significance of the α B-crystallin gene in human hepatocellular carcinoma. Hum. Pathol., 2009, 40(3), 300-305.
[http://dx.doi.org/10.1016/j.humpath.2008.09.002] [PMID: 18992912]
[11]
Shi, T.; Dong, F.; Liou, L.S.; Duan, Z.H.; Novick, A.C.; DiDonato, J.A. Differential protein profiling in renal-cell carcinoma. Mol. Carcinog., 2004, 40(1), 47-61.
[http://dx.doi.org/10.1002/mc.20015] [PMID: 15108329]
[12]
Derham, B.K.; Harding, J.J. α-crystallin as a molecular chaperone. Prog. Retin. Eye Res., 1999, 18(4), 463-509.
[http://dx.doi.org/10.1016/S1350-9462(98)00030-5] [PMID: 10217480]
[13]
Cherian, M.; Abraham, E.C. Decreased molecular chaperone property of α-crystallins due to posttranslational modifications. Biochem. Biophys. Res. Commun., 1995, 208(2), 675-679.
[http://dx.doi.org/10.1006/bbrc.1995.1391] [PMID: 7695622]
[14]
Biswas, A.; Miller, A.; Oya-Ito, T.; Santhoshkumar, P.; Bhat, M.; Nagaraj, R.H. Effect of site-directed mutagenesis of methylglyoxal-modifiable arginine residues on the structure and chaperone function of human alpha-crystallin. Biochemistry, 2006, 45(14), 4569-4577.
[http://dx.doi.org/10.1021/bi052574s] [PMID: 16584192]
[15]
Bloemendal, H. Lens proteins. CRC Crit. Rev. Biochem., 1982, 12(1), 1-38.
[http://dx.doi.org/10.3109/10409238209105849] [PMID: 7037295]
[16]
de Jong, W.W.; Caspers, G.J.; Leunissen, J.A. Genealogy of the α-crystallin--small heat-shock protein superfamily. Int. J. Biol. Macromol., 1998, 22(3-4), 151-162.
[http://dx.doi.org/10.1016/S0141-8130(98)00013-0] [PMID: 9650070]
[17]
de Jong, W.W.; Leunissen, J.A.; Voorter, C.E. Evolution of the alpha-crystallin/small heat-shock protein family. Mol. Biol. Evol., 1993, 10(1), 103-126.
[http://dx.doi.org/10.1093/oxfordjournals.molbev.a039992] [PMID: 8450753]
[18]
Marini, I.; Bucchioni, L.; Voltarelli, M.; Del Corso, A.; Mura, U. α-crystallin-like molecular chaperone against the thermal denaturation of lens aldose reductase: The effect of divalent metal ions. Biochem. Biophys. Res. Commun., 1995, 212(2), 413-420.
[http://dx.doi.org/10.1006/bbrc.1995.1985] [PMID: 7626055]
[19]
del Valle, L.J.; Escribano, C.; Pérez, J.J.; Garriga, P. Calcium-induced decrease of the thermal stability and chaperone activity of α-crystallin. Biochim. Biophys. Acta, 2002, 1601(1), 100-109.
[http://dx.doi.org/10.1016/S1570-9639(02)00429-6] [PMID: 12429508]
[20]
Okuyama, S.; Hashimoto, S.; Aihara, H.; Willingham, W.M.; Sorenson, J.R. Copper complexes of non-steroidal antiinflammatory agents: Analgesic activity and possible opioid receptor activation. Agents Actions, 1987, 21(1-2), 130-144.
[http://dx.doi.org/10.1007/BF01974933] [PMID: 2820213]
[21]
Hawse, J.R.; Cumming, J.R.; Oppermann, B.; Sheets, N.L.; Reddy, V.N.; Kantorow, M. Activation of metallothioneins and α-crystallin/sHSPs in human lens epithelial cells by specific metals and the metal content of aging clear human lenses. Invest. Ophthalmol. Vis. Sci., 2003, 44(2), 672-679.
[http://dx.doi.org/10.1167/iovs.02-0018] [PMID: 12556398]
[22]
Andley, U.P. Crystallins in the eye: Function and pathology. Prog. Retin. Eye Res., 2007, 26(1), 78-98.
[http://dx.doi.org/10.1016/j.preteyeres.2006.10.003] [PMID: 17166758]
[23]
Baldwin, A.J.; Lioe, H.; Hilton, G.R.; Baker, L.A.; Rubinstein, J.L.; Kay, L.E.; Benesch, J.L. The polydispersity of αB-crystallin is rationalized by an interconverting polyhedral architecture. Structure, 2011, 19(12), 1855-1863.
[http://dx.doi.org/10.1016/j.str.2011.09.015] [PMID: 22153508]
[24]
Kim, K.K.; Kim, R.; Kim, S.H. Crystal structure of a small heat-shock protein. Nature, 1998, 394(6693), 595-599.
[http://dx.doi.org/10.1038/29106] [PMID: 9707123]
[25]
van Montfort, R.L.M.; Basha, E.; Friedrich, K.L.; Slingsby, C.; Vierling, E. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol., 2001, 8(12), 1025-1030.
[http://dx.doi.org/10.1038/nsb722] [PMID: 11702068]
[26]
Koteiche, H.A.; Mchaourab, H.S. Folding pattern of the α-crystallin domain in alphaA-crystallin determined by site-directed spin labeling. J. Mol. Biol., 1999, 294(2), 561-577.
[http://dx.doi.org/10.1006/jmbi.1999.3242] [PMID: 10610780]
[27]
Tardieu, A. alpha-Crystallin quaternary structure and interactive properties control eye lens transparency. Int. J. Biol. Macromol., 1998, 22(3-4), 211-217.
[http://dx.doi.org/10.1016/S0141-8130(98)00018-X] [PMID: 9650075]
[28]
Muchowski, P.J.; Wu, G.J.S.; Liang, J.J.N.; Adman, E.T.; Clark, J.I. Site-directed mutations within the core “α-crystallin” domain of the small heat-shock protein, human alphaB-crystallin, decrease molecular chaperone functions. J. Mol. Biol., 1999, 289(2), 397-411.
[http://dx.doi.org/10.1006/jmbi.1999.2759] [PMID: 10366513]
[29]
Guruprasad, K.; Kumari, K. Three-dimensional models corresponding to the C-terminal domain of human alphaA- and alphaB-crystallins based on the crystal structure of the small heat-shock protein HSP16.9 from wheat. Int. J. Biol. Macromol., 2003, 33(1-3), 107-112.
[http://dx.doi.org/10.1016/S0141-8130(03)00074-6] [PMID: 14599592]
[30]
Ganadu, M.L.; Aru, M.; Mura, G.M.; Coi, A.; Mlynarz, P.; Kozlowski, H. Effects of divalent metal ions on the alphaB-crystallin chaperone-like activity: Spectroscopic evidence for a complex between copper(II) and protein. J. Inorg. Biochem., 2004, 98(6), 1103-1109.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.03.013] [PMID: 15149821]
[31]
Coi, A.; Bianucci, A.M.; Ganadu, M.L.; Mura, G.M. A modeling study of alphaB-crystallin in complex with zinc for seeking of correlations between chaperone-like activity and exposure of hydrophobic surfaces. Int. J. Biol. Macromol., 2005, 36(4), 208-214.
[http://dx.doi.org/10.1016/j.ijbiomac.2005.06.009] [PMID: 16098576]
[32]
Lu, S-Y.; Huang, F-Y. Effects of divalent metal ions on the chaperone activity and structure of rat lens H18G mutant αB-crystallin. J. Chin. Chem. Soc. (Taipei), 2013, 60, 1225-1233.
[http://dx.doi.org/10.1002/jccs.201300110]
[33]
Huang, F-Y.; Ho, Y.; Shaw, T-S.; Chuang, S.A. Functional and structural studies of α-crystallin from galactosemic rat lenses. Biochem. Biophys. Res. Commun., 2000, 273(1), 197-202.
[http://dx.doi.org/10.1006/bbrc.2000.2924] [PMID: 10873586]
[34]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[35]
Liu, Z.; Wang, C.; Li, Y.; Zhao, C.; Li, T.; Li, D.; Zhang, S.; Liu, C. Mechanistic insights into the switch of αB-crystallin chaperone activity and self-multimerization. J. Biol. Chem., 2018, 293(38), 14880-14890.
[http://dx.doi.org/10.1074/jbc.RA118.004034] [PMID: 30076220]
[36]
Saxena, V.P.; Wetlaufer, D.B. A new basis for interpreting the circular dichroic spectra of proteins. Proc. Natl. Acad. Sci. USA, 1971, 68(5), 969-972.
[http://dx.doi.org/10.1073/pnas.68.5.969] [PMID: 5280530]
[37]
Das, K.P.; Choo-Smith, L.P.; Petrash, J.M.; Surewicz, W.K. Insight into the secondary structure of non-native proteins bound to a molecular chaperone α-crystallin. An isotope-edited infrared spectroscopic study. J. Biol. Chem., 1999, 274(47), 33209-33212.
[http://dx.doi.org/10.1074/jbc.274.47.33209] [PMID: 10559193]
[38]
Reddy, G.B.; Das, K.P.; Petrash, J.M.; Surewicz, W.K. Temperature-dependent chaperone activity and structural properties of human alphaA- and alphaB-crystallins. J. Biol. Chem., 2000, 275(7), 4565-4570.
[http://dx.doi.org/10.1074/jbc.275.7.4565] [PMID: 10671481]
[39]
Biswas, A.; Das, K.P. SDS induced structural changes in α-crystallin and it’s effect on refolding. Protein J., 2004, 23(8), 529-538.
[http://dx.doi.org/10.1007/s10930-004-7880-4] [PMID: 15648975]
[40]
Provencher, S.W.; Glöckner, J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry, 1981, 20(1), 33-37.
[http://dx.doi.org/10.1021/bi00504a006] [PMID: 7470476]
[41]
Johnson, W.C. Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins, 1999, 35(3), 307-312.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19990515)35:3<307:AID-PROT4>3.0.CO;2-3] [PMID: 10328265]
[42]
Sreerama, N.; Venyaminov, S.Y.; Woody, R.W. Estimation of the number of α-helical and β-strand segments in proteins using circular dichroism spectroscopy. Protein Sci., 1999, 8(2), 370-380.
[http://dx.doi.org/10.1110/ps.8.2.370] [PMID: 10048330]
[43]
Sun, T.X.; Das, B.K.; Liang, J.J. Conformational and functional differences between recombinant human lens alphaA- and alphaB-crystallin. J. Biol. Chem., 1997, 272(10), 6220-6225.
[http://dx.doi.org/10.1074/jbc.272.10.6220] [PMID: 9045637]
[44]
Liang, J.N.; Chakrabarti, B. Spectroscopic investigations of bovine lens crystallins. 1. Circular dichroism and intrinsic fluorescence. Biochemistry, 1982, 21(8), 1847-1852.
[http://dx.doi.org/10.1021/bi00537a022] [PMID: 7082650]
[45]
Patel, R.; Zenith, R.K.; Chandra, A.; Ali, A. Novel mutations in the crystallin gene in age-related cataract patients from a north Indian population. Mol. Syndromol., 2017, 8(4), 179-186.
[http://dx.doi.org/10.1159/000471992] [PMID: 28690483]
[46]
Andley, U.P.; Song, Z.; Wawrousek, E.F.; Fleming, T.P.; Bassnett, S. Differential protective activity of alphaA- and alphaB-crystallin in lens epithelial cells. J. Biol. Chem., 2000, 275(47), 36823-36831.
[http://dx.doi.org/10.1074/jbc.M004233200] [PMID: 10967101]
[47]
Bova, M.P.; Yaron, O.; Huang, Q.; Ding, L.; Haley, D.A.; Stewart, P.L.; Horwitz, J. Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proc. Natl. Acad. Sci. USA, 1999, 96(11), 6137-6142.
[http://dx.doi.org/10.1073/pnas.96.11.6137] [PMID: 10339554]
[48]
Houck, S.A.; Clark, J.I. Dynamic subunit exchange and the regulation of microtubule assembly by the stress response protein human alphaB crystallin. PLoS One, 2010, 5(7)e11795
[http://dx.doi.org/10.1371/journal.pone.0011795] [PMID: 20668689]
[49]
McGreal, R.S.; Kantorow, W.L.; Chauss, D.C.; Wei, J.; Brennan, L.A.; Kantorow, M. αB-crystallin/sHSP protects cytochrome c and mitochondrial function against oxidative stress in lens and retinal cells. Biochim. Biophys. Acta, 2012, 1820(7), 921-930.
[http://dx.doi.org/10.1016/j.bbagen.2012.04.004] [PMID: 22521365]
[50]
Lin, H.; Xu, H.; Liang, F.Q.; Liang, H.; Gupta, P.; Havey, A.N.; Boulton, M.E.; Godley, B.F. Mitochondrial DNA damage and repair in RPE associated with aging and age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2011, 52(6), 3521-3529.
[http://dx.doi.org/10.1167/iovs.10-6163] [PMID: 21273542]
[51]
Huang, L.; Tang, D.; Yappert, M.C.; Borchman, D. Oxidation-induced changes in human lens epithelial cells 2. Mitochondria and the generation of reactive oxygen species. Free Radic. Biol. Med., 2006, 41(6), 926-936.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.05.023] [PMID: 16934675]
[52]
Sheng, B.; Wang, X.; Su, B.; Lee, H.G.; Casadesus, G.; Perry, G.; Zhu, X. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J. Neurochem., 2012, 120(3), 419-429.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07581.x] [PMID: 22077634]
[53]
Correia, S.C.; Santos, R.X.; Perry, G.; Zhu, X.; Moreira, P.I.; Smith, M.A. Mitochondrial importance in Alzheimer’s, Huntington’s and Parkinson’s diseases. Adv. Exp. Med. Biol., 2012, 724, 205-221.
[http://dx.doi.org/10.1007/978-1-4614-0653-2_16] [PMID: 22411245]
[54]
Raju, M.; Santhoshkumar, P.; Henzl, T.M.; Sharma, K.K. Identification and characterization of a copper-binding site in αA-crystallin. Free Radic. Biol. Med., 2011, 50(10), 1429-1436.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.036] [PMID: 21300147]
[55]
Mainz, A.; Bardiaux, B.; Kuppler, F.; Multhaup, G.; Felli, I.C.; Pierattelli, R.; Reif, B. Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin. J. Biol. Chem., 2012, 287(2), 1128-1138.
[http://dx.doi.org/10.1074/jbc.M111.309047] [PMID: 22090033]
[56]
Gorjizadeh, N.; Shahsavani, M.B.; Moosavi-Movahedi, F.; Yousefi, R. Analyzing structure, chaperone activity and aggregation of human αB-crystallin in the presence of copper ions and glutathione. JMBS, 2020, 11(2), 155-166. Available from: http://biot.modares.ac.ir/article-22-38025-en.html
[57]
van Boekel, M.A.; de Lange, F.; de Grip, W.J.; de Jong, W.W. Eye lens alphaA- and alphaB-crystallin: Complex stability versus chaperone-like activity. Biochim. Biophys. Acta, 1999, 1434(1), 114-123.
[http://dx.doi.org/10.1016/S0167-4838(99)00178-8] [PMID: 10556565]
[58]
Datta, S.A.; Rao, C.M. Differential temperature-dependent chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates. J. Biol. Chem., 1999, 274(49), 34773-34778.
[http://dx.doi.org/10.1074/jbc.274.49.34773] [PMID: 10574947]
[59]
Biswas, A.; Das, K.P. Zn2+ enhances the molecular chaperone function and stability of α-crystallin. Biochemistry, 2008, 47(2), 804-816.
[http://dx.doi.org/10.1021/bi7011965] [PMID: 18095658]
[60]
Yan, K-M.; Huang, S-H.; Subhan, D.; Huang, F-Y. Temperature effects on structural and functional properties of rat lens Phe71 mutant αA-crystallins. J. Chin. Chem. Soc. (Taipei), 2008, 55(5), 1001-1010.
[http://dx.doi.org/10.1002/jccs.200800147]
[61]
Mainz, A.; Peschek, J.; Stavropoulou, M.; Back, K.C.; Bardiaux, B.; Asami, S.; Prade, E.; Peters, C.; Weinkauf, S.; Buchner, J.; Reif, B. The chaperone αB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nat. Struct. Mol. Biol., 2015, 22(11), 898-905.
[http://dx.doi.org/10.1038/nsmb.3108] [PMID: 26458046]
[62]
Delbecq, S.P.; Rosenbaum, J.C.; Klevit, R.E. A mechanism of subunit recruitment in human small heat shock protein oligomers. Biochemistry, 2015, 54(28), 4276-4284.
[http://dx.doi.org/10.1021/acs.biochem.5b00490] [PMID: 26098708]
[63]
Peschek, J.; Braun, N.; Rohrberg, J.; Back, K.C.; Kriehuber, T.; Kastenmüller, A.; Weinkauf, S.; Buchner, J. Regulated structural transitions unleash the chaperone activity of αB-crystallin. Proc. Natl. Acad. Sci. USA, 2013, 110(40), E3780-E3789.
[http://dx.doi.org/10.1073/pnas.1308898110] [PMID: 24043785]
[64]
Ciano, M.; Allocca, S.; Ciardulli, M.C.; Della Volpe, L.; Bonatti, S.; D’Agostino, M. Differential phosphorylation-based regulation of αB-crystallin chaperone activity for multipass transmembrane proteins. Biochem. Biophys. Res. Commun., 2016, 479(2), 325-330.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.071] [PMID: 27641668]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy