Mini-Review Article

结直肠癌临床前药物发现:天然化合物的焦点

卷 22, 期 9, 2021

发表于: 05 April, 2021

页: [977 - 997] 页: 21

弟呕挨: 10.2174/1389450122666210405105206

价格: $65

conference banner
摘要

背景:结直肠癌(CRC)被认为是全球最主要和最致命的癌症之一。目前,这种癌症的主要临床管理包括化疗和手术;然而,这些治疗会导致耐药性和严重的副作用,因此发现一种替代的和潜在的治疗结直肠癌的方法是至关重要的。许多治疗性癌症最初是从传统医学中使用的天然代谢物中识别出来的,最近几类研究表明,许多天然产物具有抗结直肠癌的潜在作用,并且可以辅助化疗治疗结直肠癌的作用。已经表明,大多数患者对天然化合物耐受性良好,即使在高剂量下也没有任何毒性迹象。常规化疗药物与天然药物化合物的相互作用在癌症探索和治疗中呈现出新的特征。大多数天然化合物通过诱导结直肠癌细胞凋亡和阻止细胞周期(特别是在G、S和G2/M期)来抑制恶性细胞增殖,从而抑制肿瘤生长。 目的:本文旨在综述天然化合物(生物碱、黄酮类、多糖、多酚、萜类、内酯、醌类等)——在体外对结直肠癌细胞系和/或在动物模型的体内实验中被鉴定具有抗结直肠癌活性。 结论:大多数研究的活性天然化合物通过不同的机制和途径在体内外具有抗结直肠癌活性,可作为临床医生支持癌症患者化疗治疗策略和治疗剂量的辅助手段。

关键词: 天然化合物,药物发现,生物标记,结直肠癌,小型综述,化疗。

« Previous
图形摘要
[1]
Huang XM, Yang ZJ, Xie Q, Zhang ZK, Zhang H, Ma JY. Natural products for treating colorectal cancer: A mechanistic review. Biomed Pharmacother 2019; 117: 109142.
[http://dx.doi.org/10.1016/j.biopha.2019.109142] [PMID: 31238258]
[2]
Peng L, Weigl K, Boakye D, Brenner H. Risk Scores for predicting advanced colorectal neoplasia in the average-risk population: A systematic review and meta-analysis. Am J Gastroenterol 2018; 113(12): 1788-800.
[http://dx.doi.org/10.1038/s41395-018-0209-2] [PMID: 30315282]
[3]
Dupaul-Chicoine J, Arabzadeh A, Dagenais M, et al. The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity 2015; 43(4): 751-63.
[http://dx.doi.org/10.1016/j.immuni.2015.08.013] [PMID: 26384545]
[4]
Koosha S, Alshawsh MA, Looi CY, Seyedan A, Mohamed Z. An association map on the effect of flavonoids on the signaling pathways in colorectal cancer. Int J Med Sci 2016; 13(5): 374-85.
[http://dx.doi.org/10.7150/ijms.14485] [PMID: 27226778]
[5]
Raina K, Agarwal C, Agarwal R. Effect of silibinin in human colorectal cancer cells: targeting the activation of NF-κB signaling. Mol Carcinog 2013; 52(3): 195-206.
[http://dx.doi.org/10.1002/mc.21843] [PMID: 22086675]
[6]
Minko T, Rodriguez-Rodriguez L, Pozharov V. Nanotechnology approaches for personalized treatment of multidrug resistant cancers. Adv Drug Deliv Rev 2013; 65(13-14): 1880-95.
[http://dx.doi.org/10.1016/j.addr.2013.09.017] [PMID: 24120655]
[7]
Golovko D, Kedrin D, Yilmaz ÖH, Roper J. Colorectal cancer models for novel drug discovery. Expert Opin Drug Discov 2015; 10(11): 1217-29.
[http://dx.doi.org/10.1517/17460441.2015.1079618] [PMID: 26295972]
[8]
Posadzki P, Watson LK, Ernst E. Adverse effects of herbal medicines: an overview of systematic reviews. Clin Med (Lond) 2013; 13(1): 7-12.
[http://dx.doi.org/10.7861/clinmedicine.13-1-7] [PMID: 23472485]
[9]
Bagherniya M, Nobili V, Blesso CN, Sahebkar A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol Res 2018; 130: 213-40.
[http://dx.doi.org/10.1016/j.phrs.2017.12.020] [PMID: 29287685]
[10]
Amado NG, Predes D, Moreno MM, Carvalho IO, Mendes FA, Abreu JG. Flavonoids and Wnt/β-catenin signaling: potential role in colorectal cancer therapies. Int J Mol Sci 2014; 15(7): 12094-106.
[http://dx.doi.org/10.3390/ijms150712094] [PMID: 25007066]
[11]
Sharma SH, Kumar JS, Chellappan DR, Nagarajan S. Molecular chemoprevention by morin - A plant flavonoid that targets nuclear factor kappa B in experimental colon cancer. Biomed Pharmacother 2018; 100: 367-73.
[http://dx.doi.org/10.1016/j.biopha.2018.02.035] [PMID: 29453046]
[12]
Fernández J, Redondo-Blanco S, Gutiérrez-del-Río I, Miguélez EM, Villar CJ, Lombó F. Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review. J Funct Foods 2016; 25: 511-22.
[http://dx.doi.org/10.1016/j.jff.2016.06.032]
[13]
Rajamanickam S, Agarwal R. Natural products and colon cancer: current status and future prospects. Drug Dev Res 2008; 69(7): 460-71.
[http://dx.doi.org/10.1002/ddr.20276] [PMID: 19884979]
[14]
Fiaschetti G, Grotzer MA, Shalaby T, Castelletti D, Arcaro A. Quassinoids: From traditional drugs to new cancer therapeutics. Curr Med Chem 2011; 18(3): 316-28.
[http://dx.doi.org/10.2174/092986711794839205] [PMID: 21143123]
[15]
Huynh N, Beutler JA, Shulkes A, Baldwin GS, He H. Glaucarubinone inhibits colorectal cancer growth by suppression of hypoxia-inducible factor 1α and β-catenin via a p-21 activated kinase 1-dependent pathway. Biochim Biophys Acta 2015; 1853(1): 157-65.
[http://dx.doi.org/10.1016/j.bbamcr.2014.10.013] [PMID: 25409929]
[16]
Zheng Z, Xu L, Zhang S, et al. Peiminine inhibits colorectal cancer cell proliferation by inducing apoptosis and autophagy and modulating key metabolic pathways. Oncotarget 2017; 8(29): 47619-31.
[http://dx.doi.org/10.18632/oncotarget.17411] [PMID: 28496003]
[17]
Zhai H, Hu S, Liu T, et al. Nitidine chloride inhibits proliferation and induces apoptosis in colorectal cancer cells by suppressing the ERK signaling pathway. Mol Med Rep 2016; 13(3): 2536-42.
[http://dx.doi.org/10.3892/mmr.2016.4827] [PMID: 26847477]
[18]
He BC, Gao JL, Zhang BQ, et al. Tetrandrine inhibits Wnt/β-catenin signaling and suppresses tumor growth of human colorectal cancer. Mol Pharmacol 2011; 79(2): 211-9.
[http://dx.doi.org/10.1124/mol.110.068668] [PMID: 20978119]
[19]
Khalife R, Hodroj MH, Fakhoury R, Rizk S. Thymoquinone from Nigella sativa seeds promotes the antitumor activity of noncytotoxic doses of topotecan in human colorectal cancer cells in vitro. Planta Med 2016; 82(4): 312-21.
[http://dx.doi.org/10.1055/s-0035-1558289] [PMID: 26848703]
[20]
Ma L, Li W. Emodin inhibits LOVO colorectal cancer cell proliferation via the regulation of the Bcl-2/Bax ratio and cytochrome c. Exp Ther Med 2014; 8(4): 1225-8.
[http://dx.doi.org/10.3892/etm.2014.1900] [PMID: 25187829]
[21]
Li W, Saud SM, Young MR, Colburn NH, Hua B. Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro. Mol Cell Biochem 2015; 406(1-2): 63-73.
[http://dx.doi.org/10.1007/s11010-015-2424-0] [PMID: 25912550]
[22]
Huu Tung N, Du GJ, Wang CZ, Yuan CS, Shoyama Y. Naphthoquinone components from Alkanna tinctoria (L.) Tausch show significant antiproliferative effects on human colorectal cancer cells. Phytother Res 2013; 27(1): 66-70.
[http://dx.doi.org/10.1002/ptr.4680] [PMID: 22473633]
[23]
Esmaeelian B, Benkendorff K, Johnston MR, Abbott CA. Purified brominated indole derivatives from Dicathais orbita induce apoptosis and cell cycle arrest in colorectal cancer cell lines. Mar Drugs 2013; 11(10): 3802-22.
[http://dx.doi.org/10.3390/md11103802] [PMID: 24152558]
[24]
Westley CB, McIver CM, Abbott CA, Le Leu RK, Benkendorff K. Enhanced acute apoptotic response to azoxymethane-induced DNA damage in the rodent colonic epithelium by Tyrian purple precursors: a potential colorectal cancer chemopreventative. Cancer Biol Ther 2010; 9(5): 371-9.
[http://dx.doi.org/10.4161/cbt.9.5.10887] [PMID: 20150770]
[25]
Naselli F, Tesoriere L, Caradonna F, et al. Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16(INK4a) gene in human colorectal carcinoma (Caco-2) cells. Biochem Biophys Res Commun 2014; 450(1): 652-8.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.029] [PMID: 24937448]
[26]
Tafakh MS, Saidijam M, Ranjbarnejad T, Malih S, Mirzamohammadi S, Najafi R. Sulforaphane, a chemopreventive compound, inhibits cyclooxygenase-2 and microsomal prostaglandin e synthase-1 expression in human HT-29 colon cancer cells. Cells Tissues Organs 2018; 206(1-2): 46-53.
[http://dx.doi.org/10.1159/000490394] [PMID: 30041241]
[27]
Tseng C-N, Huang C-F, Cho C-L, et al. Brefeldin a effectively inhibits cancer stem cell-like properties and MMP-9 activity in human colorectal cancer Colo 205 cells. Molecules 2013; 18(9): 10242-53.
[http://dx.doi.org/10.3390/molecules180910242] [PMID: 23973996]
[28]
Ding Y, Wang H, Niu J, et al. Induction of ROS overload by alantolactone prompts oxidative DNA damage and apoptosis in colorectal cancer cells. Int J Mol Sci 2016; 17(4): 558.
[http://dx.doi.org/10.3390/ijms17040558] [PMID: 27089328]
[29]
Vendramini-Costa DB, Francescone R, Posocco D, et al. Anti-inflammatory natural product goniothalamin reduces colitis-associated and sporadic colorectal tumorigenesis. Carcinogenesis 2017; 38(1): 51-63.
[http://dx.doi.org/10.1093/carcin/bgw112] [PMID: 27797827]
[30]
Li M, Song L-H, Yue GG-L, et al. Bigelovin triggered apoptosis in colorectal cancer in vitro and in vivo via upregulating death receptor 5 and reactive oxidative species. Sci Rep 2017; 7: 42176.
[http://dx.doi.org/10.1038/srep42176] [PMID: 28181527]
[31]
Yao Z, Xie F, Li M, et al. Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Cell Death Dis 2017; 8(2): e2633-3.
[http://dx.doi.org/10.1038/cddis.2017.35] [PMID: 28230866]
[32]
Mohd Izham MN, Hussin Y, Aziz MNM, et al. Preparation and characterization of self nano-emulsifying drug delivery system loaded with citraland its antiproliferative effect on colorectal cells in vitro. Nanomaterials (Basel) 2019; 9(7): 1028-45.
[http://dx.doi.org/10.3390/nano9071028] [PMID: 31323842]
[33]
Lin J, Chen Y, Wei L, Hong Z, Sferra TJ, Peng J. Ursolic acid inhibits colorectal cancer angiogenesis through suppression of multiple signaling pathways. Int J Oncol 2013; 43(5): 1666-74.
[http://dx.doi.org/10.3892/ijo.2013.2101] [PMID: 24042330]
[34]
Zhang Y, Huang L, Shi H, et al. Ursolic acid enhances the therapeutic effects of oxaliplatin in colorectal cancer by inhibition of drug resistance. Cancer Sci 2018; 109(1): 94-102.
[http://dx.doi.org/10.1111/cas.13425] [PMID: 29034540]
[35]
Li L, Wei L, Shen A, Chu J, Lin J, Peng J. Oleanolic acid modulates multiple intracellular targets to inhibit colorectal cancer growth. Int J Oncol 2015; 47(6): 2247-54.
[http://dx.doi.org/10.3892/ijo.2015.3198] [PMID: 26459864]
[36]
Zhu P, Wu Y, Yang A, Fu X, Mao M, Liu Z. Catalpol suppressed proliferation, growth and invasion of CT26 colon cancer by inhibiting inflammation and tumor angiogenesis. Biomed Pharmacother 2017; 95: 68-76.
[http://dx.doi.org/10.1016/j.biopha.2017.08.049] [PMID: 28826099]
[37]
Huang YH, Sun Y, Huang FY, et al. Toxicarioside O induces protective autophagy in a sirtuin-1-dependent manner in colorectal cancer cells. Oncotarget 2017; 8(32): 52783-91.
[http://dx.doi.org/10.18632/oncotarget.17189] [PMID: 28881770]
[38]
Hsu YC, Huang TY, Chen MJ. Therapeutic ROS targeting of GADD45γ in the induction of G2/M arrest in primary human colorectal cancer cell lines by cucurbitacin E. Cell Death Dis 2014; 5(4): e1198-8.
[http://dx.doi.org/10.1038/cddis.2014.151] [PMID: 24763055]
[39]
Fan L, Li Y, Sun Y, et al. Paris saponin VII inhibits metastasis by modulating matrix metalloproteinases in colorectal cancer cells. Mol Med Rep 2015; 11(1): 705-11.
[http://dx.doi.org/10.3892/mmr.2014.2728] [PMID: 25333739]
[40]
Xia X, Jiang B, Liu W, et al. Anti-tumor activity of three novel derivatives of ginsenoside on colorectal cancer cells. Steroids 2014; 80: 24-9.
[http://dx.doi.org/10.1016/j.steroids.2013.11.018] [PMID: 24316234]
[41]
Kang J-H, Jang J-E, Mishra SK, et al. Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer. J Ethnopharmacol 2015; 173: 303-12.
[http://dx.doi.org/10.1016/j.jep.2015.07.030] [PMID: 26210065]
[42]
Kim WK, Pyee Y, Chung H-J, et al. Antitumor activity of spicatoside A by modulation of autophagy and apoptosis in human colorectal cancer cells. J Nat Prod 2016; 79(4): 1097-104.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00006] [PMID: 27064730]
[43]
Suman S, Das TP, Sirimulla S, Alatassi H, Ankem MK, Damodaran C. Withaferin-A suppress AKT induced tumor growth in colorectal cancer cells. Oncotarget 2016; 7(12): 13854-64.
[http://dx.doi.org/10.18632/oncotarget.7351] [PMID: 26883103]
[44]
Choi BY, Kim B-W. Withaferin-A inhibits colon cancer cell growth by blocking STAT3 transcriptional activity. J Cancer Prev 2015; 20(3): 185-92.
[http://dx.doi.org/10.15430/JCP.2015.20.3.185] [PMID: 26473157]
[45]
Sithara T, Dhanya BP, Arun KB, et al. Zerumbone, a cyclic sesquiterpene from Zingiber zerumbet induces apoptosis, cell cycle arrest, and antimigratory effects in SW480 colorectal cancer cells. J Agric Food Chem 2018; 66(3): 602-12.
[http://dx.doi.org/10.1021/acs.jafc.7b04472] [PMID: 29276946]
[46]
Chen J, Wang C, Lan W, et al. Gliotoxin inhibits proliferation and induces apoptosis in colorectal cancer cells. Mar Drugs 2015; 13(10): 6259-73.
[http://dx.doi.org/10.3390/md13106259] [PMID: 26445050]
[47]
Bajbouj K, Schulze-Luehrmann J, Diermeier S, Amin A, Schneider-Stock R. The anticancer effect of saffron in two p53 isogenic colorectal cancer cell lines. BMC Complement Altern Med 2012; 12(1): 69.
[http://dx.doi.org/10.1186/1472-6882-12-69] [PMID: 22640402]
[48]
Ray P, Guha D, Chakraborty J, et al. Crocetin exploits p53-induced death domain (PIDD) and FAS-associated death domain (FADD) proteins to induce apoptosis in colorectal cancer. Sci Rep 2016; 6: 32979.
[http://dx.doi.org/10.1038/srep32979] [PMID: 27622714]
[49]
Sriyatep T, Tantapakul C, Andersen RJ, et al. Resolution and identification of scalemic caged xanthones from the leaf extract of Garcinia propinqua having potent cytotoxicities against colon cancer cells. Fitoterapia 2018; 124: 34-41.
[http://dx.doi.org/10.1016/j.fitote.2017.10.009] [PMID: 29031558]
[50]
Yadav VR, Prasad S, Sung B, et al. Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers. Int J Cancer 2012; 130(9): 2176-84.
[http://dx.doi.org/10.1002/ijc.26251] [PMID: 21702037]
[51]
Rahman HS. Phytochemical analysis and antioxidant and anticancer activities of mastic gum resin from Pistacia atlantica subspecies kurdica. OncoTargets Ther 2018; 11: 4559-72.
[http://dx.doi.org/10.2147/OTT.S170827] [PMID: 30122948]
[52]
Chen C, Ma T, Zhang C, et al. Down-regulation of aquaporin 5-mediated epithelial-mesenchymal transition and anti-metastatic effect by natural product Cairicoside E in colorectal cancer. Mol Carcinog 2017; 56(12): 2692-705.
[http://dx.doi.org/10.1002/mc.22712] [PMID: 28833571]
[53]
Shi D-B, Li X-X, Zheng H-T, et al. Icariin-mediated inhibition of NF-κB activity enhances the in vitro and in vivo antitumour effect of 5-fluorouracil in colorectal cancer. Cell Biochem Biophys 2014; 69(3): 523-30.
[http://dx.doi.org/10.1007/s12013-014-9827-5] [PMID: 24435883]
[54]
Encalada MA, Rehecho S, Ansorena D, Astiasarán I, Cavero RY, Calvo MI. Antiproliferative effect of phenylethanoid glycosides from Verbena officinalis L. on colon cancer cell lines. Lebensm Wiss Technol 2015; 63(2): 1016-22.
[http://dx.doi.org/10.1016/j.lwt.2015.03.065]
[55]
Vittoria G, Monica S, Valentina B, et al. Metabolomic approach for a rapid identification of natural products with cytotoxic activity against human colorectal cancer cells. Sci Rep 2018; 8(1): 1-11.
[PMID: 29311619]
[56]
Pan MH, Lai CS, Wu JC, Ho CT. Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol Nutr Food Res 2011; 55(1): 32-45.
[http://dx.doi.org/10.1002/mnfr.201000412] [PMID: 21207511]
[57]
Raina K, Kumar S, Dhar D, Agarwal R. Silibinin and colorectal cancer chemoprevention: a comprehensive review on mechanisms and efficacy. J Biomed Res 2016; 30(6): 452-65.
[PMID: 27476880]
[58]
Akhtar R, Ali M, Mahmood S, Sanyal SN. Anti-proliferative action of silibinin on human colon adenomatous cancer HT-29 cells. Nutr Hosp 2014; 29(2): 388-92.
[PMID: 24528358]
[59]
Abaza MSI, Orabi KY, Al-Quattan E, Al-Attiyah RJ. Growth inhibitory and chemo-sensitization effects of naringenin, a natural flavanone purified from Thymus vulgaris, on human breast and colorectal cancer. Cancer Cell Int 2015; 15(1): 46.
[http://dx.doi.org/10.1186/s12935-015-0194-0] [PMID: 26074733]
[60]
Liu Y, Lang T, Jin B, et al. Luteolin inhibits colorectal cancer cell epithelial-to-mesenchymal transition by suppressing CREB1 expression revealed by comparative proteomics study. J Proteomics 2017; 161: 1-10.
[http://dx.doi.org/10.1016/j.jprot.2017.04.005] [PMID: 28391045]
[61]
Xiao X, Liu Z, Wang R, et al. Genistein suppresses FLT4 and inhibits human colorectal cancer metastasis. Oncotarget 2015; 6(5): 3225-39.
[http://dx.doi.org/10.18632/oncotarget.3064] [PMID: 25605009]
[62]
Qin J, Teng J, Zhu Z, Chen J, Huang W-J. Genistein induces activation of the mitochondrial apoptosis pathway by inhibiting phosphorylation of Akt in colorectal cancer cells. Pharm Biol 2016; 54(1): 74-9.
[http://dx.doi.org/10.3109/13880209.2015.1014921] [PMID: 25880142]
[63]
Charepalli V, Reddivari L, Radhakrishnan S, Vadde R, Agarwal R, Vanamala JK. Anthocyanin-containing purple-fleshed potatoes suppress colon tumorigenesis via elimination of colon cancer stem cells. J Nutr Biochem 2015; 26(12): 1641-9.
[http://dx.doi.org/10.1016/j.jnutbio.2015.08.005] [PMID: 26383537]
[64]
Mazewski C, Liang K, Gonzalez de Mejia E. Comparison of the effect of chemical composition of anthocyanin-rich plant extracts on colon cancer cell proliferation and their potential mechanism of action using in vitro, in silico, and biochemical assays. Food Chem 2018; 242: 378-88.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.086] [PMID: 29037704]
[65]
Subramaniyan B, Polachi N, Mathan G. Isocoreopsin: An active constituent of n-butanol extract of Butea monosperma flowers against colorectal cancer (CRC). J Pharm Anal 2016; 6(5): 318-25.
[http://dx.doi.org/10.1016/j.jpha.2016.04.007] [PMID: 29403999]
[66]
Sun G, Zheng Z, Lee M-H, et al. Chemoprevention of colorectal cancer by artocarpin, a dietary phytochemical from Artocarpus heterophyllus. J Agric Food Chem 2017; 65(17): 3474-80.
[http://dx.doi.org/10.1021/acs.jafc.7b00278] [PMID: 28391699]
[67]
Yang N, Zhao Y, Wang Z, Liu Y, Zhang Y. Scutellarin suppresses growth and causes apoptosis of human colorectal cancer cells by regulating the p53 pathway. Mol Med Rep 2017; 15(2): 929-35.
[http://dx.doi.org/10.3892/mmr.2016.6081] [PMID: 28035355]
[68]
Xu M, Wang S, Song YU, Yao J, Huang K, Zhu X. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncol Lett 2016; 11(5): 3075-80.
[http://dx.doi.org/10.3892/ol.2016.4331] [PMID: 27123066]
[69]
Tsai H-L, Tai C-J, Huang C-W, Chang F-R, Wang J-Y. Efficacy of low-molecular-weight fucoidan as a supplemental therapy in metastatic colorectal cancer patients: A double-blind randomized controlled trial. Mar Drugs 2017; 15(4): 122.
[http://dx.doi.org/10.3390/md15040122] [PMID: 28430159]
[70]
Maehara Y, Tsujitani S, Saeki H, et al. Biological mechanism and clinical effect of protein-bound polysaccharide K (KRESTIN(®)): review of development and future perspectives. Surg Today 2012; 42(1): 8-28.
[http://dx.doi.org/10.1007/s00595-011-0075-7] [PMID: 22139128]
[71]
Abaza MSI, Afzal M, Al-Attiyah RJ, Guleri R. Methylferulate from Tamarix aucheriana inhibits growth and enhances chemosensitivity of human colorectal cancer cells: possible mechanism of action. BMC Complement Altern Med 2016; 16(1): 384.
[http://dx.doi.org/10.1186/s12906-016-1358-8] [PMID: 27716288]
[72]
El-Readi MZ, Eid S, Abdelghany AA, Al-Amoudi HS, Efferth T, Wink M. Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. Phytomedicine 2019; 55: 269-81.
[http://dx.doi.org/10.1016/j.phymed.2018.06.046] [PMID: 30668439]
[73]
Patel VB, Misra S, Patel BB, Majumdar AP. Colorectal cancer: chemopreventive role of curcumin and resveratrol. Nutr Cancer 2010; 62(7): 958-67.
[http://dx.doi.org/10.1080/01635581.2010.510259] [PMID: 20924971]
[74]
Howells LM, Berry DP, Elliott PJ, et al. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res (Phila) 2011; 4(9): 1419-25.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0148] [PMID: 21680702]
[75]
Guo LD, Chen XJ, Hu YH, Yu ZJ, Wang D, Liu JZ. Curcumin inhibits proliferation and induces apoptosis of human colorectal cancer cells by activating the mitochondria apoptotic pathway. Phytother Res 2013; 27(3): 422-30.
[http://dx.doi.org/10.1002/ptr.4731] [PMID: 22628241]
[76]
Lee Y-H, Song N-Y, Suh J, et al. Curcumin suppresses oncogenicity of human colon cancer cells by covalently modifying the cysteine 67 residue of SIRT1. Cancer Lett 2018; 431: 219-29.
[http://dx.doi.org/10.1016/j.canlet.2018.05.036] [PMID: 29807115]
[77]
Carroll RE, Benya RV, Turgeon DK, et al. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila) 2011; 4(3): 354-64.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0098] [PMID: 21372035]
[78]
Irving GR, Iwuji CO, Morgan B, et al. Combining curcumin (C3-complex, Sabinsa) with standard care FOLFOX chemotherapy in patients with inoperable colorectal cancer (CUFOX): study protocol for a randomised control trial. Trials 2015; 16(1): 110.
[http://dx.doi.org/10.1186/s13063-015-0641-1] [PMID: 25872567]
[79]
Wen C, Huang L, Chen J, et al. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells. Int J Oncol 2015; 47(5): 1663-71.
[http://dx.doi.org/10.3892/ijo.2015.3166] [PMID: 26397804]
[80]
Won S-J, Lin T-Y, Yen C-H, et al. A novel natural tautomeric pair of garcinielliptone FC suppressed nuclear factor κB and induced apoptosis in human colorectal cancer cells. J Funct Foods 2016; 24: 568-78.
[http://dx.doi.org/10.1016/j.jff.2016.05.003]
[81]
Chen Y, Wang X-Q, Zhang Q, et al. (−)-Epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing Wnt/β-catenin pathway. Nutrients 2017; 9(6): 572.
[http://dx.doi.org/10.3390/nu9060572] [PMID: 28587207]
[82]
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol 2020; 10: 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[83]
Chemopreventive Effects of Epigallocatechin Gallate (EGCG) in Colorectal Cancer (CRC) Patients. https://clinicaltrials.gov/ct2/show/NCT02891538
[84]
Kang YJ, Park HJ, Chung HJ, et al. Wnt/β-catenin signaling mediates the antitumor activity of magnolol in colorectal cancer cells. Mol Pharmacol 2012; 82(2): 168-77.
[http://dx.doi.org/10.1124/mol.112.078535] [PMID: 22550094]
[85]
Tortora K, Femia AP, Romagnoli A, et al. Pomegranate by-products in colorectal cancer chemoprevention: Effects in apc-mutated pirc rats and mechanistic studies in vitro and ex vivo. Mol Nutr Food Res 2018; 62(2): 1700401.
[http://dx.doi.org/10.1002/mnfr.201700401] [PMID: 28948694]
[86]
He G, Feng C, Vinothkumar R, et al. Curcumin analog EF24 induces apoptosis via ROS-dependent mitochondrial dysfunction in human colorectal cancer cells. Cancer Chemother Pharmacol 2016; 78(6): 1151-61.
[http://dx.doi.org/10.1007/s00280-016-3172-x] [PMID: 27787644]
[87]
Jing Z, Fei W, Zhou J, et al. Salvianolic acid B, a novel autophagy inducer, exerts antitumor activity as a single agent in colorectal cancer cells. Oncotarget 2016; 7(38): 61509-19.
[http://dx.doi.org/10.18632/oncotarget.11385] [PMID: 27557491]
[88]
Xue JY, Zhou GX, Chen T, Gao S, Choi MY, Wong YS. Desacetyluvaricin induces S phase arrest in SW480 colorectal cancer cells through superoxide overproduction. J Cell Biochem 2014; 115(3): 464-75.
[http://dx.doi.org/10.1002/jcb.24680] [PMID: 24591255]
[89]
Cai F, Sorg O, Granci V, et al. Interaction of ω-3 polyunsaturated fatty acids with radiation therapy in two different colorectal cancer cell lines. Clin Nutr 2014; 33(1): 164-70.
[http://dx.doi.org/10.1016/j.clnu.2013.04.005] [PMID: 23672803]
[90]
Yang MH, Kim J, Khan IA, Walker LA, Khan SI. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents. Life Sci 2014; 100(2): 75-84.
[http://dx.doi.org/10.1016/j.lfs.2014.01.075] [PMID: 24530873]
[91]
Shin SY, Kim JH, Lee JH, Lim Y, Lee YH. 2′-Hydroxyflavanone induces apoptosis through Egr-1 involving expression of Bax, p21, and NAG-1 in colon cancer cells. Mol Nutr Food Res 2012; 56(5): 761-74.
[http://dx.doi.org/10.1002/mnfr.201100651] [PMID: 22648623]
[92]
Lim JH, Woo SM, Min KJ, et al. Rottlerin induces apoptosis of HT29 colon carcinoma cells through NAG-1 upregulation via an ERK and p38 MAPK-dependent and PKC δ-independent mechanism. Chem Biol Interact 2012; 197(1): 1-7.
[http://dx.doi.org/10.1016/j.cbi.2012.02.003] [PMID: 22410117]
[93]
Auyeung KK, Cho CH, Ko JK. A novel anticancer effect of Astragalus saponins: Transcriptional activation of NSAID-activated gene. Int J Cancer 2009; 125(5): 1082-91.
[http://dx.doi.org/10.1002/ijc.24397] [PMID: 19384947]
[94]
Tan W, Lu J, Huang M, et al. Anti-cancer natural products isolated from Chinese medicinal herbs. Chin Med 2011; 6(1): 27.
[http://dx.doi.org/10.1186/1749-8546-6-27] [PMID: 21777476]
[95]
Dreher ML. Dietary patterns, whole plant foods, nutrients and phytochemicals in colorectal cancer prevention and management. In: Dietary patterns and whole plant foods in aging and disease. Springer 2018; pp. 521-55.
[http://dx.doi.org/10.1007/978-3-319-59180-3_19]
[96]
Sriram N, Kalayarasan S, Ashokkumar P, Sureshkumar A, Sudhandiran G. Diallyl sulfide induces apoptosis in Colo 320 DM human colon cancer cells: involvement of caspase-3, NF-kappaB, and ERK-2. Mol Cell Biochem 2008; 311(1-2): 157-65.
[http://dx.doi.org/10.1007/s11010-008-9706-8] [PMID: 18256791]
[97]
Druesne N, Pagniez A, Mayeur C, et al. Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines. Carcinogenesis 2004; 25(7): 1227-36.
[http://dx.doi.org/10.1093/carcin/bgh123] [PMID: 14976134]
[98]
Ban JO, Yuk DY, Woo KS, et al. Inhibition of cell growth and induction of apoptosis via inactivation of NF-kappaB by a sulfurcompound isolated from garlic in human colon cancer cells. J Pharmacol Sci 2007; 104(4): 374-83.
[http://dx.doi.org/10.1254/jphs.FP0070789] [PMID: 17721042]
[99]
Huang Wl, Wu Sf. Xu St, Ma Yc, Wang R, Jin S, Zhou S: Allicin enhances the radiosensitivity of colorectal cancer cells via inhibition of NF‐κB signaling pathway. J Food Sci 2020; 85(6): 1924-31.
[http://dx.doi.org/10.1111/1750-3841.15156]
[100]
Tanaka S, Haruma K, Yoshihara M, et al. Aged garlic extract has potential suppressive effect on colorectal adenomas in humans. J Nutr 2006; 136(3)(Suppl.): 821S-6S.
[http://dx.doi.org/10.1093/jn/136.3.821S] [PMID: 16484573]
[101]
Chang T-C, Wei P-L, Makondi PT, Chen W-T, Huang C-Y, Chang Y-J. Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS One 2019; 14(1): e0210274.
[http://dx.doi.org/10.1371/journal.pone.0210274] [PMID: 30657763]
[102]
Vrieling A, Voskuil DW, Bonfrer JM, et al. Lycopene supplementation elevates circulating insulin-like growth factor binding protein-1 and -2 concentrations in persons at greater risk of colorectal cancer. Am J Clin Nutr 2007; 86(5): 1456-62.
[http://dx.doi.org/10.1093/ajcn/86.5.1456] [PMID: 17991659]
[103]
Bamehr H, Saidijam M, Dastan D, Amini R, Pourjafar M, Najafi R. Ferula pseudalliacea induces apoptosis in human colorectal cancer HCT-116 cells via mitochondria-dependent pathway. Arch Physiol Biochem 2019; 125(3): 284-91.
[http://dx.doi.org/10.1080/13813455.2018.1455710] [PMID: 29587544]
[104]
Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol 2007; 9(12): 767-76.
[http://dx.doi.org/10.1007/s12094-007-0138-9] [PMID: 18158980]
[105]
Juan ME, Alfaras I, Planas JM. Colorectal cancer chemoprevention by trans-resveratrol. Pharmacol Res 2012; 65(6): 584-91.
[http://dx.doi.org/10.1016/j.phrs.2012.03.010] [PMID: 22465196]
[106]
Bordonaro M, Drago E, Atamna W, Lazarova DL. Comprehensive suppression of all apoptosis-induced proliferation pathways as a proposed approach to colorectal cancer prevention and therapy. PLoS One 2014; 9(12): e115068.
[http://dx.doi.org/10.1371/journal.pone.0115068] [PMID: 25500581]
[107]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75(3): 311-35.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[108]
Schumacher M, Kelkel M, Dicato M, Diederich M. A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2010. Molecules 2011; 16(7): 5629-46.
[http://dx.doi.org/10.3390/molecules16075629] [PMID: 21993222]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy