Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Synthesis and Biological Evaluation of Amoxicillin Loaded Hybrid Material Composite Spheres Against Methicillin-Resistant Staphylococcus aureus

Author(s): Muhammad A. Yameen*, Amir Zeb, Raza E. Mustafa, Sana Mushtaq, Nargis Aman, Muhammad Samie, Khizar H. Shah and Jamshed Iqbal

Volume 22, Issue 5, 2021

Published on: 21 December, 2020

Page: [686 - 696] Pages: 11

DOI: 10.2174/1389201021666201221143537

Price: $65

Abstract

Background: Incoherent use of antibiotics has led toward resistance in MRSA, becoming multidrug-resistant with a high rate of virulence in the community and hospital settings.

Objective: Synergistic anti-MRSA activity was investigated in this study for hybrid material composite spheres of amoxicillin, Ag nanoparticles, and chitosan, which were prepared by one-step synthesis method, and various characterizations were performed.

Methods: Antimicrobial-susceptibility assay on MRSA was achieved by disc diffusion and agar dilution techniques, while agar well diffusion was used for hybrid composite spheres. The in vitro and cytotoxicity studies were conducted on the skin abrasion mouse model and MTT assay on RD cell, respectively.

Results: All isolates showed resistance to the tested antibiotics except vancomycin. MIC against MRSA showed high resistance with amoxicillin from 4 to 128 mg L-1. The mean diameter of chitosan spheres and Ag nanoparticles was 02 mm and 277 nm, respectively. Morphology of spheres was uneven, varied, porous, and irregular in SEM, and Ag nanoparticles presence and formation was also seen in the micrograph. No substantial interface among drug, nanoparticles, and polymer was found in XRD, and IR showed characteristic peaks of all compounds in the formulation. The in vitro assay showed augmented anti-MRSA activity with amoxicillin loaded hybrid composite spheres (22-29 mm). A significant reduction in microbial burden (~6.5 log10 CFU mL-1) was seen in vivo with loaded hybrid composite spheres formulation. The MTT assay indicated no potential cytotoxicity with hybrid composite spheres.

Conclusion: The synergistic effect of Amoxycillin in the current study predicts a promising hybrid formulation with enhanced anti-MRSA activity.

Keywords: Multidrug-resistance, MRSA, amoxicillin, Ag nanoparticles/chitosan hybrid composite spheres, synergistic anti- MRSA activity, cytotoxicity.

Graphical Abstract
[1]
Harkins, C.P.; Pichon, B.; Doumith, M.; Parkhill, J.; Westh, H.; Tomasz, A.; de Lencastre, H.; Bentley, S.D.; Kearns, A.M.; Holden, M.T.G. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol., 2017, 18(1), 130.
[http://dx.doi.org/10.1186/s13059-017-1252-9] [PMID: 28724393]
[2]
Yamakawa, K.; Tasaki, O.; Fukuyama, M.; Kitayama, J.; Matsuda, H.; Nakamori, Y.; Fujimi, S.; Ogura, H.; Kuwagata, Y.; Hamasaki, T.; Shimazu, T. Assessment of risk factors related to healthcare-associated methicillin-resistant Staphylococcus aureus infection at patient admission to an intensive care unit in Japan. BMC Infect. Dis., 2011, 11, 303.
[http://dx.doi.org/10.1186/1471-2334-11-303] [PMID: 22044716]
[3]
Demling, R.H.; Waterhouse, B. The increasing problem of wound bacterial burden and infection in acute and chronic soft-tissue wounds caused by methicillin-resistant Staphylococcus aureus. J. Burns Wounds, 2007, 7(e8), e8.
[PMID: 18091985]
[4]
Frei, C.R.; Makos, B.R.; Daniels, K.R.; Oramasionwu, C.U. Emergence of community-acquired methicillin-resistant Staphylococcus aureus skin and soft tissue infections as a common cause of hospitalization in United States children. J. Pediatr. Surg., 2010, 45(10), 1967-1974.
[http://dx.doi.org/10.1016/j.jpedsurg.2010.05.009] [PMID: 20920714]
[5]
Bretado Aragón, L.; Jiménez Mejía, R.; López-Meza, J.; Loeza-Lara, P. Composites of silver-chitosan nanoparticles: a potential source for new antimicrobial therapies. Rev. Mex. Cienc. Farm., 2018, 47, 7-25.
[6]
Vinogradov, S.V.; Bronich, T.K.; Kabanov, A.V. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev., 2002, 54(1), 135-147.
[http://dx.doi.org/10.1016/S0169-409X(01)00245-9] [PMID: 11755709]
[7]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[PMID: 11356986]
[8]
Abdelhakim, H.K.; El-Sayed, E.R.; Rashidi, F.B. Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. J. Appl. Microbiol., 2020, 128(6), 1634-1646.
[http://dx.doi.org/10.1111/jam.14581] [PMID: 31954094]
[9]
El-Sayed, E.R.; Abdelhakim, H.K.; Ahmed, A.S. Solid-state fermentation for enhanced production of selenium nanoparticles by gamma-irradiated Monascus purpureus and their biological evaluation and photocatalytic activities. Bioprocess Biosyst. Eng., 2020, 43(5), 797-809.
[http://dx.doi.org/10.1007/s00449-019-02275-7] [PMID: 31898764]
[10]
El-Sayed, E.R.; Abdelhakim, H.K.; Zakaria, Z. Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: Yield enhancement by gamma irradiation. Mater. Sci. Eng. C, 2020, 107, 110318.
[http://dx.doi.org/10.1016/j.msec.2019.110318] [PMID: 31761250]
[11]
Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1272-1291.
[http://dx.doi.org/10.1080/21691401.2016.1241792] [PMID: 27825269]
[12]
Holubnycha, V.; Kalinkevich, O.; Ivashchenko, O.; Pogorielov, M. Antibacterial Activity of In Situ Prepared Chitosan/Silver Nanoparticles Solution Against Methicillin-Resistant Strains of Staphylococcus aureus. Nanoscale Res. Lett., 2018, 13(1), 71.
[http://dx.doi.org/10.1186/s11671-018-2482-9] [PMID: 29500654]
[13]
Wang, X.H.; Wang, Z.; Zhang, J.; Qi, H.X.; Chen, J.; Xu, M. Cytotoxicity of AgNPs/CS composite films: AgNPs immobilized in chitosan matrix contributes a higher inhibition rate to cell proliferation. Bioengineered, 2016, 7(5), 283-290.
[http://dx.doi.org/10.1080/21655979.2016.1197683] [PMID: 27285857]
[14]
Brasselet, C.; Pierre, G.; Dubessay, P.; Dols-Lafargue, M.; Coulon, J.; Maupeu, J. Modification of Chitosan for the Generation of Functional Derivatives. Appl. Sci. (Basel), 2019, 9(7), 1321.
[http://dx.doi.org/10.3390/app9071321]
[15]
Ghannam, H.E.; Talab, A.S.; Dolganova, N.V.; Hussein, A.M.S.; Abdelmaguid, N.M. Characterization of Chitosan Extracted from Different Crustacean Shell Wastes. J. Appl. Sci. (Faisalabad), 2019, 16(10), 454-461.
[http://dx.doi.org/10.3923/jas.2016.454.461]
[16]
Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnology, 2017, 15(1), 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[17]
EUCAST. Antimicrobial susceptibility testing of bacteria: European Committee on Antimicrobial Susceptibility Testing, 2019.http://www.eucast.org/ast_of_bacteria/
[18]
Wang, L.S.; Wang, C.Y.; Yang, C.H.; Hsieh, C.L.; Chen, S.Y.; Shen, C.Y.; Wang, J.J.; Huang, K.S. Synthesis and anti-fungal effect of silver nanoparticles-chitosan composite particles. Int. J. Nanomedicine, 2015, 10, 2685-2696.
[PMID: 25878501]
[19]
Dai, T.; Tegos, G.P.; Zhiyentayev, T.; Mylonakis, E.; Hamblin, M.R. Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg. Med., 2010, 42(1), 38-44.
[http://dx.doi.org/10.1002/lsm.20887] [PMID: 20077489]
[20]
Premjeet, S.; Ajay, B.; Sunil, K.; Bhawana, K.; Sahil, K.; Divashish, R.; Sudeep, B. Additives in topical dosage forms. Int. J. Pharm. Chem. Biol. Sci., 2012, 2(1), 78-96.
[21]
Yadav, S; Papneja, P; Batra, S; Sharma, M Formulation and evaluation of ointment and cream with their mathematical treatment of absorption skin: A review. World J. Clin. Pharmacol. Microbiol. Toxicol, 2015, 1(1), 9-26.
[22]
Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J. Cell Viability Assays.Assay Guidance Manual; Markossian, S.S.G; Grossman, A., Ed.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, 2016.
[23]
Zhuanga, S.; Wang, J. Removal of cobalt ion from aqueous solution using magnetic graphene oxide/chitosan composite. Environ Prog Sustain., 2018, 38(s1), S32-S41.
[http://dx.doi.org/10.1002/ep.12912]
[24]
Wanule, D.; Balkhande, D.J.; Ratnakar, P.U.; Kulkarni N.A.; Bhowate, S.C. Extraction and FTIR Analysis of Chitosan from American cockroach. Periplaneta americana. IJESIT, 2014, 3(3), 299-304.
[25]
Saifuddin, N.; Nian, C.Y.; Zhan, L.W.; Ning, K.X. Chitosan-silver Nanoparticles Composite as Point-of-use Drinking Water Filtration System for Household to Remove Pesticides in Water. Asian J Biochem., 2011, 6(2), 142-159.
[http://dx.doi.org/10.3923/ajb.2011.142.159]
[26]
Silva, S.M.L.; Braga, C.R.C.; Fook, M.V.L.; Raposo, C.M.O.; Carvalho, L.H. Canedo, E.L. Application of infrared spectroscopy to analysis of chitosan/clay nanocomposites. Infrared Spectroscopy - Materials Science, Engineering and Technology: IntechOpen, 2012.
[27]
Zainal, Z.; Hui, L.K.; Hussein, M.Z.; Abdullah, A.H.; Hamadneh, I.M. Characterization of TiO(2)-chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process. J. Hazard. Mater., 2009, 164(1), 138-145.
[http://dx.doi.org/10.1016/j.jhazmat.2008.07.154] [PMID: 18809254]
[28]
Arafat, A.; Samad, S.A.; Masum, S.M.; Moniruzzaman, M. Preparation and Characterization of Chitosan from Shrimp shell waste. IJSER, 2015, 6(5), 538-541.
[29]
Rahmanifar, B.; Moradi Dehaghi, S. Removal of organochlorine pesticides by chitosan loaded with silver oxide nanoparticles from water. Clean Technol Envir., 2013, 16(8), 1781-1786.
[http://dx.doi.org/10.1007/s10098-013-0692-5]
[30]
Ugwu, M.; Anie, C.; Ibezim, E.; Esimone, C. Antimicrobial evaluation of methicillin-resistant Staphylococcus aureus nasal carriage amongst healthy students in Agbor, Delta State, Nigeria. Arch Clin Microbiol., 2016, 7(2), 1-4.
[31]
Sharma, P.; Vishwanath, G. Study of vancomycin susceptibility in methicillin-resistant Staphylococcus aureus isolated from clinical samples. Ann Trop Med PH., 2012, 5(3), 178-180.
[http://dx.doi.org/10.4103/1755-6783.98609]
[32]
Hu, Y.; Liu, A.; Vaudrey, J.; Vaiciunaite, B.; Moigboi, C.; McTavish, S.M.; Kearns, A.; Coates, A. Combinations of β-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus. PLoS One, 2015, 10(2), e0117664.
[http://dx.doi.org/10.1371/journal.pone.0117664] [PMID: 25692771]
[33]
Cinteza, L.O.; Scomoroscenco, C.; Voicu, S.N.; Nistor, C.L.; Nitu, S.G.; Trica, B.; Jecu, M.L.; Petcu, C. Chitosan-Stabilized Ag Nanoparticles with Superior Biocompatibility and Their Synergistic Antibacterial Effect in Mixtures with Essential Oils. Nanomaterials (Basel), 2018, 8(10), 826.
[http://dx.doi.org/10.3390/nano8100826] [PMID: 30322127]
[34]
Rheder, D.T.; Guilger, M.; Bilesky-José, N.; Germano-Costa, T.; Pasquoto-Stigliani, T.; Gallep, T.B.B.; Grillo, R.; Carvalho, C.D.S.; Fraceto, L.F.; Lima, R. Synthesis of biogenic silver nanoparticles using Althaea officinalis as reducing agent: evaluation of toxicity and ecotoxicity. Sci. Rep., 2018, 8(1), 12397.
[http://dx.doi.org/10.1038/s41598-018-30317-9] [PMID: 30120279]
[35]
Thombre, N.A.; Gide, P.S. Floating-bioadhesive gastroretentive Caesalpinia pulcherrima-based beads of amoxicillin trihydrate for Helicobacter pylori eradication. Drug Deliv., 2016, 23(2), 405-419.
[http://dx.doi.org/10.3109/10717544.2014.916766] [PMID: 24870198]
[36]
Pinto, R.J.; Fernandes, S.C.; Freire, C.S.; Sadocco, P.; Causio, J.; Neto, C.P.; Trindade, T. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydr. Res., 2012, 348, 77-83.
[http://dx.doi.org/10.1016/j.carres.2011.11.009] [PMID: 22154478]
[37]
Jena, P.; Mohanty, S.; Mallick, R.; Jacob, B.; Sonawane, A. Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. Int. J. Nanomedicine, 2012, 7, 1805-1818.
[PMID: 22619529]
[38]
Huy, T.Q.; Hien Thanh, N.T.; Thuy, N.T.; Chung, P.V.; Hung, P.N.; Le, A-T.; Hong Hanh, N.T. Cytotoxicity and antiviral activity of electrochemical - synthesized silver nanoparticles against poliovirus. J. Virol. Methods, 2017, 241, 52-57.
[http://dx.doi.org/10.1016/j.jviromet.2016.12.015] [PMID: 28040515]
[39]
Bouhenna, M.; Salah, R.; Bakour, R.; Drouiche, N.; Abdi, N.; Grib, H.; Lounici, H.; Mameri, N. Effects of chitin and its derivatives on human cancer cells lines. Environ. Sci. Pollut. Res. Int., 2015, 22(20), 15579-15586.
[http://dx.doi.org/10.1007/s11356-015-4712-3] [PMID: 26013739]
[40]
Al-Rawi, M.S.; Hussei, D.F.; Al-Taie, A.F.; Al-Halbosiy, M.M.; Hameed, B.A. Cytotoxic effects of new synthesis heterocyclic derivatives of Amoxicillin on some cancer cell lines. J. Phys. Conf. Ser., 2018, (May), 1003.
[http://dx.doi.org/10.1088/1742-6596/1003/1/012012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy