Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Uncovering Active Ingredients and Mechanisms of Spica Prunellae in the Treatment of Colon Adenocarcinoma: A Study Based on Network Pharmacology and Bioinformatics

Author(s): Yan Lei, Hao Yuan, Liyue Gai, Xuelian Wu and Zhixiao Luo*

Volume 24, Issue 2, 2021

Published on: 30 July, 2020

Page: [306 - 318] Pages: 13

DOI: 10.2174/1386207323999200730210536

Price: $65

conference banner
Abstract

Background: As a well-known herb used in the treatment of colon adenocarcinoma (COAD), Spica Prunellae (SP) shows favorable clinical effect and safety in China for many years, but its active ingredients and therapeutic mechanisms against COAD remain poorly understood. Therefore, this study aims to uncover active ingredients and mechanisms of SP in the treatment of COAD using a combined approach of network pharmacology and bioinformatics.

Methods: A comprehensive approach mainly comprised of target prediction, network construction, pathway and functional enrichment analysis, and hub genes verification was adopted in the current study.

Results: We collected 102 compounds-related genes and 3549 differently expressed genes (DEGs) following treatment with SP, and 64 disease-drug target genes between them were recognized. In addition, a total of 25 active ingredients in SP were identified. Pathway and functional enrichment analyses suggested that the mechanisms of SP against COAD might be to induce apoptosis of colon cancer cells by regulating PI3K-Akt and TNF signaling pathways. Recognition of hub genes and core functional modules was performed by constructing protein-protein interaction (PPI) network, from which TP53, MYC, MAPK8 and CASP3 were found as the hub target genes that might play an important part in therapy for COAD. Subsequently we further compared the differential expression level and assessed the prognostic value of these four hub genes. These result of verification suggested that SP exerted therapeutic effects against COAD via a PPI network involving TP53, MYC, MAPK8 and CASP3.

Conclusion: In this study, active ingredients and mechanisms of SP in the treatment of COAD were systematically discussed, which provided the foundation for further experimental studies and might act to promote its appropriate clinical application.

Keywords: Spica Prunellae, colon adenocarcinoma, network pharmacology, bioinformatics, active ingredients, hub gene.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; Ogunbiyi, O.J.; Azevedo, E. Silva, G.; Chen, W.Q.; Eser, S.; Engholm, G.; Stiller, C.A.; Monnereau, A.; Woods, R.R.; Visser, O.; Lim, G.H.; Aitken, J.; Weir, H.K.; Coleman, M.P.; Group, C.W. CONCORD Working Group. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018, 391(10125), 1023-1075.
[http://dx.doi.org/10.1016/S0140-6736(17)33326-3] [PMID: 29395269]
[3]
Chen, W.; Zheng, R.; Zeng, H.; Zhang, S. The incidence and mortality of major cancers in China, 2012. Chin. J. Cancer, 2016, 35(1), 73.
[http://dx.doi.org/10.1186/s40880-016-0137-8] [PMID: 27484217]
[4]
Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Cederquist, L.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Engstrom, P.F.; Garrido-Laguna, I.; Grem, J.L.; Grothey, A.; Hochster, H.S.; Hoffe, S.; Hunt, S.; Kamel, A.; Kirilcuk, N.; Krishnamurthi, S.; Messersmith, W.A.; Meyerhardt, J.; Miller, E.D.; Mulcahy, M.F.; Murphy, J.D.; Nurkin, S.; Saltz, L.; Sharma, S.; Shibata, D.; Skibber, J.M.; Sofocleous, C.T.; Stoffel, E.M.; Stotsky-Himelfarb, E.; Willett, C.G.; Wuthrick, E.; Gregory, K.M.; Freedman-Cass, D.A. NCCN guidelines insights: colon cancer, version 2.2018. J. Natl. Compr. Canc. Netw., 2018, 16(4), 359-369.
[http://dx.doi.org/10.6004/jnccn.2018.0021] [PMID: 29632055]
[5]
Watanabe, T.; Muro, K.; Ajioka, Y.; Hashiguchi, Y.; Ito, Y.; Saito, Y.; Hamaguchi, T.; Ishida, H.; Ishiguro, M.; Ishihara, S.; Kanemitsu, Y.; Kawano, H.; Kinugasa, Y.; Kokudo, N.; Murofushi, K.; Nakajima, T.; Oka, S.; Sakai, Y.; Tsuji, A.; Uehara, K.; Ueno, H.; Yamazaki, K.; Yoshida, M.; Yoshino, T.; Boku, N.; Fujimori, T.; Itabashi, M.; Koinuma, N.; Morita, T.; Nishimura, G.; Sakata, Y.; Shimada, Y.; Takahashi, K.; Tanaka, S.; Tsuruta, O.; Yamaguchi, T.; Yamaguchi, N.; Tanaka, T.; Kotake, K.; Sugihara, K. Japanese Society for Cancer of the Colon and Rectum. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int. J. Clin. Oncol., 2018, 23(1), 1-34.
[http://dx.doi.org/10.1007/s10147-017-1101-6] [PMID: 28349281]
[6]
Chen, Y.; Zhang, X.; Guo, Q.; Liu, L.; Li, C.; Cao, L.; Qin, Q.; Zhao, M.; Wang, W. Effects of UV-B radiation on the content of bioactive components and the antioxidant activity of Prunella vulgaris L. spica during development. Molecules, 2018, 23(5)E989
[http://dx.doi.org/10.3390/molecules23050989] [PMID: 29695057]
[7]
Bai, Y.; Xia, B.; Xie, W.; Zhou, Y.; Xie, J.; Li, H.; Liao, D.; Lin, L.; Li, C. Phytochemistry and pharmacological activities of the genus Prunella. Food Chem., 2016, 204, 483-496.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.047] [PMID: 26988527]
[8]
Lin, W.; Zheng, L.; Zhuang, Q.; Zhao, J.; Cao, Z.; Zeng, J.; Lin, S.; Xu, W.; Peng, J. Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway. BMC Complement. Altern. Med., 2013, 13, 144.
[http://dx.doi.org/10.1186/1472-6882-13-144] [PMID: 23800091]
[9]
Hopkins, A.L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[10]
Kibble, M.; Saarinen, N.; Tang, J.; Wennerberg, K.; Mäkelä, S.; Aittokallio, T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat. Prod. Rep., 2015, 32(8), 1249-1266.
[http://dx.doi.org/10.1039/C5NP00005J] [PMID: 26030402]
[11]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[12]
Li, S.; Zhang, B.; Zhang, N. Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst. Biol., 2011, 5(Suppl. 1), S10.
[http://dx.doi.org/10.1186/1752-0509-5-S1-S10] [PMID: 21689469]
[13]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6, 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[14]
Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[15]
Tao, W.; Xu, X.; Wang, X.; Li, B.; Wang, Y.; Li, Y.; Yang, L. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J. Ethnopharmacol., 2013, 145(1), 1-10.
[http://dx.doi.org/10.1016/j.jep.2012.09.051] [PMID: 23142198]
[16]
Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1), 139-140.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[17]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The genecards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics, 2016, 54, 1.
[18]
Pinero, J.; Ramirez-Anguita, J.M.; Sauch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2019.
[PMID: 31680165]
[19]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[20]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[21]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[22]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(Suppl. 4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[23]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[24]
Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res., 2017, 77(21), e108-e110.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[25]
Yoo, B.H.; Lee, B.H.; Kim, J.S.; Kim, N.J.; Kim, S.H.; Ryu, K.W. Effects of Shikunshito-Kamiho on fecal enzymes and formation of aberrant crypt foci induced by 1,2-dimethylhydrazine. Biol. Pharm. Bull., 2001, 24(6), 638-642.
[http://dx.doi.org/10.1248/bpb.24.638] [PMID: 11411551]
[26]
Lee, M.K.; Ahn, Y.M.; Lee, K.R.; Jung, J.H.; Jung, O.S.; Hong, J. Development of a validated liquid chromatographic method for the quality control of Prunellae Spica: determination of triterpenic acids. Anal. Chim. Acta, 2009, 633(2), 271-277.
[http://dx.doi.org/10.1016/j.aca.2008.12.038] [PMID: 19166733]
[27]
Psotová, J.; Kolár, M.; Sousek, J.; Svagera, Z.; Vicar, J.; Ulrichová, J. Biological activities of Prunella vulgaris extract. Phytother. Res., 2003, 17(9), 1082-1087.
[http://dx.doi.org/10.1002/ptr.1324] [PMID: 14595592]
[28]
Cheung, H.Y.; Zhang, Q.F. Enhanced analysis of triterpenes, flavonoids and phenolic compounds in Prunella vulgaris L. by capillary zone electrophoresis with the addition of running buffer modifiers. J. Chromatogr. A, 2008, 1213(2), 231-238.
[http://dx.doi.org/10.1016/j.chroma.2008.10.033] [PMID: 18980769]
[29]
Nelson, A.T.; Camelio, A.M.; Claussen, K.R.; Cho, J.; Tremmel, L.; DiGiovanni, J.; Siegel, D. Synthesis of oxygenated oleanolic and ursolic acid derivatives with anti-inflammatory properties. Bioorg. Med. Chem. Lett., 2015, 25(19), 4342-4346.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.029] [PMID: 26259803]
[30]
Feng, L.; Au-Yeung, W.; Xu, Y.H.; Wang, S.S.; Zhu, Q.; Xiang, P. Oleanolic acid from Prunella vulgaris L. induces SPC-A-1 cell line apoptosis via regulation of Bax, Bad and Bcl-2 expression. Asian Pac. J. Cancer Prev., 2011, 12(2), 403-408.
[PMID: 21545203]
[31]
Yan, S.L.; Huang, C.Y.; Wu, S.T.; Yin, M.C. Oleanolic acid and ursolic acid induce apoptosis in four human liver cancer cell lines. Toxicol. In Vitro, 2010, 24(3), 842-848.
[http://dx.doi.org/10.1016/j.tiv.2009.12.008] [PMID: 20005942]
[32]
Ryu, S.Y.; Oak, M.H.; Yoon, S.K.; Cho, D.I.; Yoo, G.S.; Kim, T.S.; Kim, K.M. Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris. Planta Med., 2000, 66(4), 358-360.
[http://dx.doi.org/10.1055/s-2000-8531] [PMID: 10865455]
[33]
Gautam, R.; Singh, M.; Gautam, S.; Rawat, J.K.; Saraf, S.A.; Kaithwas, G. Rutin attenuates intestinal toxicity induced by Methotrexate linked with anti-oxidative and anti-inflammatory effects. BMC Complement. Altern. Med., 2016, 16, 99.
[http://dx.doi.org/10.1186/s12906-016-1069-1] [PMID: 26965456]
[34]
Chen, H.; Miao, Q.; Geng, M.; Liu, J.; Hu, Y.; Tian, L.; Pan, J.; Yang, Y. Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. ScientificWorldJournal, 2013, 2013269165
[http://dx.doi.org/10.1155/2013/269165] [PMID: 24459422]
[35]
Wei, L.; Zheng, L.; Zhao, J.; Zhuang, Q.; Hong, Z.; Wei, X.; Chen, Y.; Sferra, T. J.; Peng, J. Anti-angiogenic effect of Spica Prunellae extract in vivo and in vitro., 2011, (5)24, 2647-2654.
[36]
Sun, H.X.; Qin, F.; Pan, Y.J. In vitro and in vivo immunosuppressive activity of Spica prunellae ethanol extract on the immune responses in mice. J. Ethnopharmacol., 2005, 101(1-3), 31-36.
[http://dx.doi.org/10.1016/j.jep.2005.03.023] [PMID: 15919165]
[37]
Collins, N.H.; Lessey, E.C.; DuSell, C.D.; McDonnell, D.P.; Fowler, L.; Palomino, W.A.; Illera, M.J.; Yu, X.; Mo, B.; Houwing, A.M.; Lessey, B.A. Characterization of antiestrogenic activity of the Chinese herb, Prunella vulgaris, using in vitro and in vivo (Mouse Xenograft) models. Biol. Reprod., 2009, 80(2), 375-383.
[http://dx.doi.org/10.1095/biolreprod.107.065375] [PMID: 18923163]
[38]
Lin, W.; Zheng, L.; Zhuang, Q.; Shen, A.; Liu, L.; Chen, Y.; Sferra, T.J.; Peng, J. Spica Prunellae extract inhibits the proliferation of human colon carcinoma cells via the regulation of the cell cycle. Oncol. Lett., 2013, 6(4), 1123-1127.
[http://dx.doi.org/10.3892/ol.2013.1512] [PMID: 24137475]
[39]
Feng, L.; Jia, X.; Zhu, M.; Chen, Y.; Shi, F. Chemoprevention by Prunella vulgaris L. extract of non-small cell lung cancer via promoting apoptosis and regulating the cell cycle. Asian Pac. J. Cancer Prev., 2010, 11(5), 1355-1358.
[PMID: 21198292]
[40]
Zheng, L.; Chen, Y.; Wei, L.; Zhuang, Q.; Sferra, T.J. Spica Prunellae extract promotes mitochondrion- dependent apoptosis in human colon carcinoma cell line. Afr. J. Pharm. Pharmacol., 2011, 5(3), 327-335.
[http://dx.doi.org/10.5897/AJPP10.354]
[41]
Russo, A.; Bazan, V.; Iacopetta, B.; Kerr, D.; Soussi, T.; Gebbia, N.; Group, T.C.C.S. TP53-CRC Collaborative Study Group. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J. Clin. Oncol., 2005, 23(30), 7518-7528.
[http://dx.doi.org/10.1200/JCO.2005.00.471] [PMID: 16172461]
[42]
Iacopetta, B. TP53 mutation in colorectal cancer. Hum. Mutat., 2003, 21(3), 271-276.
[http://dx.doi.org/10.1002/humu.10175] [PMID: 12619112]
[43]
Boudjadi, S.; Carrier, J.C.; Groulx, J.F.; Beaulieu, J.F. Integrin α1β1 expression is controlled by c-MYC in colorectal cancer cells. Oncogene, 2016, 35(13), 1671-1678.
[http://dx.doi.org/10.1038/onc.2015.231] [PMID: 26096932]
[44]
Zalata, K.R.; Elshal, M.F.; Foda, A.A.; Shoma, A. Genetic dissimilarity between primary colorectal carcinomas and their lymph node metastases: ploidy, p53, bcl-2, and c-myc expression--a pilot study. Tumour Biol., 2015, 36(8), 6579-6584.
[http://dx.doi.org/10.1007/s13277-015-3353-y] [PMID: 25840688]
[45]
Dong, S.; Ding, Z.; Zhang, H.; Chen, Q. Identification of prognostic biomarkers and drugs targeting them in colon adenocarcinoma: a bioinformatic analysis. Integr. Cancer Ther., 2019, 181534735419864434
[http://dx.doi.org/10.1177/1534735419864434] [PMID: 31370719]
[46]
Zhou, M.; Liu, X.; Li, Z.; Huang, Q.; Li, F.; Li, C.Y. Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells. Int. J. Cancer, 2018, 143(4), 921-930.
[http://dx.doi.org/10.1002/ijc.31374] [PMID: 29524226]
[47]
Choi, Y.H.; Kong, K.R.; Kim, Y.A.; Jung, K.O.; Kil, J.H.; Rhee, S.H.; Park, K.Y. Induction of Bax and activation of caspases during beta-sitosterol-mediated apoptosis in human colon cancer cells. Int. J. Oncol., 2003, 23(6), 1657-1662.
[PMID: 14612938]
[48]
Nafees, S.; Mehdi, S.H.; Zafaryab, M.; Zeya, B.; Sarwar, T.; Rizvi, M.A. Synergistic Interaction of rutin and silibinin on human colon cancer cell line. Arch. Med. Res., 2018, 49(4), 226-234.
[http://dx.doi.org/10.1016/j.arcmed.2018.09.008] [PMID: 30314650]
[49]
Lee, H.S.; Cho, H.J.; Yu, R.; Lee, K.W.; Chun, H.S.; Park, J.H. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells. Int. J. Mol. Sci., 2014, 15(2), 2722-2737.
[http://dx.doi.org/10.3390/ijms15022722] [PMID: 24549175]
[50]
Wang, J.; Liu, L.; Qiu, H.; Zhang, X.; Guo, W.; Chen, W.; Tian, Y.; Fu, L.; Shi, D.; Cheng, J.; Huang, W.; Deng, W. Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells. PLoS One, 2013, 8(5)e63872
[http://dx.doi.org/10.1371/journal.pone.0063872] [PMID: 23737956]
[51]
Tong, C.; Yin, Z.; Song, Z.; Dockendorff, A.; Huang, C.; Mariadason, J.; Flavell, R.A.; Davis, R.J.; Augenlicht, L.H.; Yang, W. c-Jun NH2-terminal kinase 1 plays a critical role in intestinal homeostasis and tumor suppression. Am. J. Pathol., 2007, 171(1), 297-303.
[http://dx.doi.org/10.2353/ajpath.2007.061036] [PMID: 17591974]
[52]
Hu, D.; Fang, W.; Han, A.; Gallagher, L.; Davis, R.J.; Xiong, B.; Yang, W. c-Jun N-terminal kinase 1 interacts with and negatively regulates Wnt/beta-catenin signaling through GSK3beta pathway. Carcinogenesis, 2008, 29(12), 2317-2324.
[http://dx.doi.org/10.1093/carcin/bgn239] [PMID: 18952597]
[53]
Jemaà, M.; Abassi, Y.; Kifagi, C.; Fezai, M.; Daams, R.; Lang, F.; Massoumi, R. Reversine inhibits colon carcinoma cell migration by targeting JNK1. Sci. Rep., 2018, 8(1), 11821.
[http://dx.doi.org/10.1038/s41598-018-30251-w] [PMID: 30087398]
[54]
Kalaitsidou, M.; Kueberuwa, G.; Schütt, A.; Gilham, D.E. CAR T-cell therapy: toxicity and the relevance of preclinical models. Immunotherapy, 2015, 7(5), 487-497.
[http://dx.doi.org/10.2217/imt.14.123] [PMID: 26065475]
[55]
Gust, J.; Taraseviciute, A.; Turtle, C.J. neurotoxicity associated with CD19-targeted CAR-T cell therapies. CNS Drugs, 2018, 32(12), 1091-1101.
[http://dx.doi.org/10.1007/s40263-018-0582-9] [PMID: 30387077]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy