Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Palmatine Inhibits Up-Regulation of GRP78 and CALR Protein in an STZ-Induced Diabetic Rat Model

Author(s): Patrick N. Okechukwu*, Sophia O. Ekeuku, Hor K. Chan, Kalpana Eluri and Gabriele R.A. Froemming

Volume 22, Issue 2, 2021

Published on: 30 July, 2020

Page: [288 - 298] Pages: 11

DOI: 10.2174/1389201021666200730124208

Price: $65

conference banner
Abstract

Background: Diabetes Mellitus (DM) is characterized by hyperglycemia (high blood glucose levels) which is due to the destruction of insulin-producing β-cells in the islets of Langerhans in the pancreas. It is associated with oxidative and endoplasmic reticulum stress. The plant alkaloid Palmatine has been previously reported to possess antidiabetic and antioxidant properties as well as other protective properties against kidney and liver tissue damage.

Objective: Here, we investigated the ability of Palmatine to reduce the up-regulation of chaperone proteins Glucose Regulatory Protein 78 (GRP78), and Calreticulin (CALR) protein in a Streptozotocin (STZ)-induced diabetic rat model.

Methods: Streptozotocin (STZ) induced diabetes in Sprague Dawley rats treated with 2mg/kg of Palmatine for 12 weeks after the elevation of plasma glucose levels above 11mmol/L post-STZ administration. Proteins were extracted from the pancreas after treatment and Two-Dimensional gel electrophoresis (2-DE), PDQuest 2-D analysis software genomic solutions and mass spectrometer were used to analyze differentially expressed protein. Mass Spectrometry (MS/MS), Multidimensional Protein Identification Technology (MudPIT) was used for protein identification.

Results: There was an up-regulation of the expression of chaperone proteins CALR and GRP78 and down-regulation of the expression of antioxidant and protection proteins peroxidoxin 4 (Prdx4), protein disulfide isomerase (PDIA2/3), Glutathione-S-Transferase (GSTs), and Serum Albumin (ALB) in non-diabetic rats. Palmatine treatment down-regulated the expression of chaperone proteins CALR and GRP78 and up-regulated the expression of Prdx4, PDIA2/3, GST, and ALB.

Conclusion: Palmatine may have activated antioxidant proteins, which protected the cells against reactive oxygen species and endoplasmic stress. The result is in consonance with our previous report on Palmatine.

Keywords: Diabetes mellitus, Palmatine, 2-DE, GRP78, CALR, Streptozotocin.

Graphical Abstract
[1]
Deepa, J.; Aleykutty, N.A.; Jyoti, H. Effect of combination of two plant extracts on diabetes mellitus. Int. J. Pharm. Pharm. Sci., 2018, 10(4), 49-52.
[http://dx.doi.org/10.22159/ijpps.2018v10i4.24100]
[2]
Suaifan, G.A.; Shehadeh, M.B.; Darwish, R.M.; Al-Ijel, H.; Abbate, V. Design, synthesis and in vivo evaluation of novel glycosylated sulfonylureas as antihyperglycemic agents. Molecules, 2015, 20(11), 20063-20078.
[http://dx.doi.org/10.3390/molecules201119676] [PMID: 26561797]
[3]
Khuwaja, A.K.; Rafique, G.; White, F.; Azam, S.I. Macrovascular complications and their associated factors among persons with type 2 diabetes in Karachi, Pakistan-a multi-center study. J. Pak. Med. Assoc., 2004, 54(2), 60-66.
[PMID: 15134205]
[4]
Araki, E.; Oyadomari, S.; Mori, M. Endoplasmic reticulum stress and diabetes mellitus. Intern. Med., 2003, 42(1), 7-14.
[http://dx.doi.org/10.2169/internalmedicine.42.7] [PMID: 12583611]
[5]
Kim, I.; Xu, W.; Reed, J.C. Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov., 2008, 7(12), 1013-1030.
[http://dx.doi.org/10.1038/nrd2755] [PMID: 19043451]
[6]
Minamino, T.; Kitakaze, M. ER stress in cardiovascular disease. J. Mol. Cell. Cardiol., 2010, 48(6), 1105-1110.
[http://dx.doi.org/10.1016/j.yjmcc.2009.10.026] [PMID: 19913545]
[7]
Thoms, S.; Grønborg, S.; Gärtner, J. Organelle interplay in peroxisomal disorders. Trends Mol. Med., 2009, 15(7), 293-302.
[http://dx.doi.org/10.1016/j.molmed.2009.05.002] [PMID: 19560974]
[8]
Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol., 2007, 8(7), 519-529.
[http://dx.doi.org/10.1038/nrm2199] [PMID: 17565364]
[9]
Rutkowski, D.T.; Hegde, R.S. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J. Cell Biol., 2010, 189(5), 783-794.
[http://dx.doi.org/10.1083/jcb.201003138] [PMID: 20513765]
[10]
Qi, W.; Mu, J.; Luo, Z.F.; Zeng, W.; Guo, Y.H.; Pang, Q.; Ye, Z.L.; Liu, L.; Yuan, F.H.; Feng, B. Attenuation of DN in diabetes rats induced by streptozotocin by regulating the endoplasmic reticulum stress inflammatory response. Metabolism, 2011, 60, 594-603.
[http://dx.doi.org/10.1016/j.metabol.2010.07.021] [PMID: 20817186]
[11]
Lupachyk, S.; Watcho, P.; Stavniichuk, R.; Shevalye, H.; Obrosova, I.G. Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy. Diabetes, 2013, 62(3), 944-952.
[http://dx.doi.org/10.2337/db12-0716] [PMID: 23364451]
[12]
Sgambato, A.; Ardito, R.; Faraglia, B.; Boninsegna, A.; Wolf, F.I.; Cittadini, A. Resveratrol, a natural phenolic compound, inhibits cell proliferation and prevents oxidative DNA damage. Mutat. Res., 2001, 496(1-2), 171-180.
[http://dx.doi.org/10.1016/S1383-5718(01)00232-7] [PMID: 11551493]
[13]
Rubiolo, J.A.; Mithieux, G.; Vega, F.V. Resveratrol protects primary rat hepatocytes against oxidative stress damage: Activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur. J. Pharmacol., 2008, 591(1-3), 66-72.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.067] [PMID: 18616940]
[14]
Chen, X.; Tang, J.; Xie, W.; Wang, J.; Jin, J.; Ren, J.; Jin, L.; Lu, J. Protective effect of the polysaccharide from Ophiopogon japonicus on streptozotocin-induced diabetic rats. Carbohydr. Polym., 2013, 94(1), 378-385.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.037] [PMID: 23544552]
[15]
Fujita, A.; Sasaki, H.; Ogawa, K.; Okamoto, K.; Matsuno, S.; Matsumoto, E.; Furuta, H.; Nishi, M.; Nakao, T.; Tsuno, T.; Taniguchi, H.; Nanjo, K. Increased gene expression of antioxidant enzymes in KKAy diabetic mice but not in STZ diabetic mice. Diabetes Res. Clin. Pract., 2005, 69(2), 113-119.
[http://dx.doi.org/10.1016/j.diabres.2004.11.016] [PMID: 16005359]
[16]
Roden, M.; Bernroider, E. Hepatic glucose metabolism in humans-its role in health and disease. Best Pract. Res. Clin. Endocrinol. Metab., 2003, 17(3), 365-383.
[http://dx.doi.org/10.1016/S1521-690X(03)00031-9] [PMID: 12962691]
[17]
Zhang, H.N.; He, J.H.; Yuan, L.; Lin, Z.B. In vitro and in vivo protective effect of Ganoderma lucidum polysaccharides on alloxan-induced pancreatic islets damage. Life Sci., 2003, 73(18), 2307-2319.
[http://dx.doi.org/10.1016/S0024-3205(03)00594-0] [PMID: 12941433]
[18]
Can, A.; Akev, N.; Ozsoy, N.; Bolkent, S.; Arda, B.P.; Yanardag, R.; Okyar, A. Effect of Aloe vera leaf gel and pulp extracts on the liver in type-II diabetic rat models. Biol. Pharm. Bull., 2004, 27(5), 694-698.
[http://dx.doi.org/10.1248/bpb.27.694] [PMID: 15133247]
[19]
Yu, J.; Cui, P.J.; Zeng, W.L.; Xie, X.L.; Liang, W.J.; Lin, G.B.; Zeng, L. Protective effect of selenium-polysaccharides from the mycelia of Coprinus comatus on alloxan-induced oxidative stress in mice. Food Chem., 2009, 117, 42-47.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.073]
[20]
Zhao, L.Y.; Lan, Q.J.; Huang, Z.C.; Ouyang, L.J.; Zeng, F.H. Antidiabetic effect of a newly identified component of Opuntia dillenii polysaccharides. Phytomedicine, 2011, 18(8-9), 661-668.
[http://dx.doi.org/10.1016/j.phymed.2011.01.001] [PMID: 21300531]
[21]
Liu, Y.; Sun, J.; Rao, S.; Su, Y.; Yang, Y. Antihyperglycemic, antihyperlipidemic and antioxidant activities of polysaccharides from Catathelasma ventricosum in streptozotocin-induced diabetic mice. Food Chem. Toxicol., 2013, 57, 39-45.
[http://dx.doi.org/10.1016/j.fct.2013.03.001] [PMID: 23500773]
[22]
Yuan, D.; Liu, X.M.; Fang, Z.; Du, L.L.J.; Chang, J.; Lin, S.H. Protective effect of resveratrol on kidney in rats with diabetic nephropathy and its effect on endoplasmic reticulum stress. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(5), 1485-1493.
[PMID: 29565511]
[23]
Ekeuku, S.O.; Okechukwu, P.N.; Gabriel, A.A.; Teo, S.S.; Stepfanie, N.S. Froemming, GRA plasma glucose lowering activity of palmatine and its effect on liver, kidney and antioxidant enzymes parameters in STZ induced diabetic rat model. Curr. Bioact. Compd., 2015, 11, 256-263.
[http://dx.doi.org/10.2174/1573407212666151105185802]
[24]
Okechukwu, P.N.; Mohamed, N.; Soelaiman, I.N.; Froemming, GRA.; Idorus, M.Y. Bone proteome study in ovariectomised rats supplemented with palm vitamin E. World Acad. Sci. Engin. Technol., 2012, 72, 383-387.
[25]
Liu, S.Q.; Kang, J.; Li, C.J.; Tang, E.J.; Wen, B.; Cai, R.; Yang, H.J. Differences in expression of retinal proteins between diabetic and normal rats. World J. Gastroenterol., 2007, 13(14), 2118-2124.
[http://dx.doi.org/10.3748/wjg.v13.i14.2118] [PMID: 17465459]
[26]
Dey, L.; Xie, J.T.; Wang, A.; Wu, J.; Maleckar, S.A.; Yuan, C.S. Anti-hyperglycemic effects of ginseng: Comparison between root and berry. Phytomedicine, 2003, 10(6-7), 600-605.
[http://dx.doi.org/10.1078/094471103322331908] [PMID: 13678250]
[27]
De, S.; Rapior, D.D.; Hyde, S.; Bahkal, K. Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Divers., 2012, 56, 1-29.
[http://dx.doi.org/10.1007/s13225-012-0187-4]
[28]
Kuzuya, T.; Nakagawa, S.; Satoh, J.; Kanazawa, Y.; Iwamoto, Y.; Kobayashi, M.; Nanjo, K.; Sasaki, A.; Seino, Y.; Ito, C.; Shima, K.; Nonaka, K.; Kadowaki, T. Committee of the Japan Diabetes Society on the diagnostic criteria of diabetes mellitus. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res. Clin. Pract., 2002, 55(1), 65-85.
[http://dx.doi.org/10.1016/S0168-8227(01)00365-5] [PMID: 11755481]
[29]
Kakkar, R.; Mantha, S.V.; Radhi, J.; Prasad, K.; Kalra, J. Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin. Sci. (Lond.), 1998, 94(6), 623-632.
[http://dx.doi.org/10.1042/cs0940623] [PMID: 9854460]
[30]
Mohamed, A.K.; Bierhaus, A.; Schiekofer, S.; Tritschler, H.; Ziegler, R.; Nawroth, P.P. The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors, 1999, 10(2-3), 157-167.
[http://dx.doi.org/10.1002/biof.5520100211] [PMID: 10609877]
[31]
Agrawal, R.P.; Sharma, P.; Pal, M.; Kochar, A.; Kochar, D.K. Magnitude of dyslipedemia and its association with micro and macro vascular complications in type 2 diabetes: A hospital based study from Bikaner (Northwest India). Diabetes Res. Clin. Pract., 2006, 73(2), 211-214.
[http://dx.doi.org/10.1016/j.diabres.2006.01.006] [PMID: 16580758]
[32]
Woo, M.N.; Bok, S.H.; Lee, M.K.; Kim, H.J.; Jeon, S.M.; Do, G.M.; Shin, S.K.; Ha, T.Y.; Choi, M.S. Anti-obesity and hypolipidemic effects of a proprietary herb and fiber combination (S&S PWH) in rats fed high-fat diets. J. Med. Food, 2008, 11(1), 169-178.
[http://dx.doi.org/10.1089/jmf.2007.082] [PMID: 18361753]
[33]
Young, I.S.; Woodside, J.V.J.V. Antioxidants are molecules that inhibit or quench free radical reactions and delay or inhibit cellular damage. J. Clin. Pathol., 2001, 54, 176-186.
[http://dx.doi.org/10.1136/jcp.54.3.176] [PMID: 11253127]
[34]
Bagchi, K.; Puri, S. Normal biochemical reactions, increased exposure to the environment, and higher levels of dietary xenobiotics result in the generation of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). Meditrr. Health. J., 1998, 4, 350-360.
[35]
Kim, Y.W.; Byzova, T.V. ROS and RNS are responsible for the oxidative stress in different pathophysiological conditions, in which cellular constituents of our body are altered resulting in various disease states such as DM. Byzova. Blood, 2014, 123, 625-631.
[http://dx.doi.org/10.1182/blood-2013-09-512749] [PMID: 24300855]
[36]
Pal, D.K.; Nimse, S.B. The oxidative stress can be effectively neutralized by enhancing cellular defenses in the form of antioxidants. Asian J. Chem., 2006, 13, 3004-3008.
[37]
Thomas, C.E.; Kalyanaraman, B. Oxygen Radical and the Disease Process; Harvard Academic Publishers: Netherlands, 1997.
[38]
Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv., 2015, 5(35), 27986-28006.
[http://dx.doi.org/10.1039/C4RA13315C]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy