Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Correlation Between BCL2 and Mcl1 Single Nucleotide Polymorphisms and Chemotherapy Response in Jordanian Patients with Colorectal Cancer

Author(s): Nizar M. Mhaidat*, Haneen Amawi and Karem H. Alzoubi

Volume 22, Issue 5, 2021

Published on: 03 July, 2020

Page: [646 - 653] Pages: 8

DOI: 10.2174/1389201021666200703200126

Price: $65

Abstract

Background: Colorectal cancer is one of the most common types of cancer worldwide and a leading cause of death in Jordan. BCL-2 and MCL-1 are anti-apoptotic proteins that inhibit programmed cell death and their over-expression has been shown to be associated with reduced sensitivity to chemotherapy and poor survival in cancer patients.

Objectives: In the present study, three SNPs in the promoter region of antiapoptotic genes were investigated in an effort to inspect the occurrences of SNPs (rs2279115, rs4987852) in the promoter region of BCL2 and SNP (rs9803935) in the promoter region of MCL1 in Jordanian patients with CRC, and investigate correlations between BCL2 and MCL1 SNPs and clinical outcomes.

Methods: PCR-restriction fragment length polymorphism (RFLP)-based analysis was used for samples genotyping.

Results: The BCL2 rs2279115 and MCL1 rs9803935 SNPs showed significant distribution where mutant and hetero genotypes are more prominent in CRC patients. Additionally, the rs2279115 genotypes and alleles were associated with stages of disease, its recurrence and metastasis. The MCL1 rs9803935 genotypes were associated disease metastasis. However, for BCL2 rs4987852 SNP, there was no association of genotypes or alleles with any of the disease variables.

Conclusion: The BCL2 SNPs (rs2279115) and MCL1 SNP (rs9803935) present as important determinants of the progress of CRC in Jordanian patients.

Keywords: BCL2, MCL1, SNP, Chemotherapy, colorectal cancer, Jordan.

Graphical Abstract
[1]
Sharkas, G.F.; Arqoub, K.H.; Khader, Y.S.; Tarawneh, M.R.; Nimri, O.F.; Al-Zaghal, M.J.; Subih, H.S. Colorectal Cancer in Jordan: Survival Rate and Its Related Factors. J. Oncol., 2017, 20173180762
[http://dx.doi.org/10.1155/2017/3180762] [PMID: 28458690]
[2]
Al-Tarawneh, M.; Khatib, S.; Arqub, K. Cancer incidence in Jordan, 1996-2005. East. Mediterr. Health J., 2010, 16(8), 837-845.
[http://dx.doi.org/10.26719/2010.16.8.837] [PMID: 21469565]
[3]
Gunderson, L.L.; Jessup, J.M.; Sargent, D.J.; Greene, F.L.; Stewart, A.K. Revised TN categorization for colon cancer based on national survival outcomes data. J. Clin. Oncol., 2010, 28(2), 264-271.
[http://dx.doi.org/10.1200/JCO.2009.24.0952] [PMID: 19949014]
[4]
Goldberg, R.M.; Fleming, T.R.; Tangen, C.M.; Moertel, C.G.; Macdonald, J.S.; Haller, D.G.; Laurie, J.A. Surgery for recurrent colon cancer: strategies for identifying resectable recurrence and success rates after resection. Eastern Cooperative Oncology Group, the North Central Cancer Treatment Group, and the Southwest Oncology Group. Ann. Intern. Med., 1998, 129(1), 27-35.
[http://dx.doi.org/10.7326/0003-4819-129-1-199807010-00007] [PMID: 9652996]
[5]
Beverly, L.J.; Varmus, H.E. MYC-induced myeloid leukemogenesis is accelerated by all six members of the antiapoptotic BCL family. Oncogene, 2009, 28(9), 1274-1279.
[http://dx.doi.org/10.1038/onc.2008.466] [PMID: 19137012]
[6]
Giam, M.; Huang, D.C.; Bouillet, P. BH3-only proteins and their roles in programmed cell death. Oncogene, 2008, 27(Suppl. 1), S128-S136.
[http://dx.doi.org/10.1038/onc.2009.50] [PMID: 19641498]
[7]
Bedi, A.; Zehnbauer, B.A.; Barber, J.P.; Sharkis, S.J.; Jones, R.J. Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood, 1994, 83(8), 2038-2044.
[http://dx.doi.org/10.1182/blood.V83.8.2038.2038] [PMID: 8161775]
[8]
Kim, D.H.; Xu, W.; Ma, C.; Liu, X.; Siminovitch, K.; Messner, H.A.; Lipton, J.H. Genetic variants in the candidate genes of the apoptosis pathway and susceptibility to chronic myeloid leukemia. Blood, 2009, 113(11), 2517-2525.
[http://dx.doi.org/10.1182/blood-2008-07-169110] [PMID: 19141860]
[9]
Hirata, H.; Hinoda, Y.; Nakajima, K.; Kikuno, N.; Suehiro, Y.; Tabatabai, Z.L.; Ishii, N.; Dahiya, R. The bcl2 -938CC genotype has poor prognosis and lower survival in renal cancer. J. Urol., 2009, 182(2), 721-727.
[http://dx.doi.org/10.1016/j.juro.2009.03.081] [PMID: 19539330]
[10]
Moon, J.H.; Sohn, S.K.; Lee, M.H.; Jang, J.H.; Kim, K.; Jung, C.W.; Kim, D.H. BCL2 gene polymorphism could predict the treatment outcomes in acute myeloid leukemia patients. Leuk. Res., 2010, 34(2), 166-172.
[http://dx.doi.org/10.1016/j.leukres.2009.05.009] [PMID: 19520430]
[11]
Zhou, Z.; Sturgis, E.M.; Liu, Z.; Wang, L.E.; Wei, Q.; Li, G. Genetic variants of NOXA and MCL1 modify the risk of HPV16-associated squamous cell carcinoma of the head and neck. BMC Cancer, 2012, 12, 159.
[http://dx.doi.org/10.1186/1471-2407-12-159] [PMID: 22548841]
[12]
Zhou, Z.; Sturgis, E.M.; Liu, Z.; Wang, L.E.; Wei, Q.; Li, G. Genetic variants of a BH3-only pro-apoptotic gene, PUMA, and risk of HPV16-associated squamous cell carcinoma of the head and neck. Mol. Carcinog., 2012, 51(Suppl. 1), E54-E64.
[http://dx.doi.org/10.1002/mc.21838] [PMID: 22086558]
[13]
Awan, F.T.; Kay, N.E.; Davis, M.E.; Wu, W.; Geyer, S.M.; Leung, N.; Jelinek, D.F.; Tschumper, R.C.; Secreto, C.R.; Lin, T.S.; Grever, M.R.; Shanafelt, T.D.; Zent, C.S.; Call, T.G.; Heerema, N.A.; Lozanski, G.; Byrd, J.C.; Lucas, D.M. Mcl-1 expression predicts progression-free survival in chronic lymphocytic leukemia patients treated with pentostatin, cyclophosphamide, and rituximab. Blood, 2009, 113(3), 535-537.
[http://dx.doi.org/10.1182/blood-2008-08-173450] [PMID: 19008456]
[14]
Chipuk, J.E.; Moldoveanu, T.; Llambi, F.; Parsons, M.J.; Green, D.R. The BCL-2 family reunion. Mol. Cell, 2010, 37(3), 299-310.
[http://dx.doi.org/10.1016/j.molcel.2010.01.025] [PMID: 20159550]
[15]
Zhang, H.; Guttikonda, S.; Roberts, L.; Uziel, T.; Semizarov, D.; Elmore, S.W.; Leverson, J.D.; Lam, L.T. Mcl-1 is critical for survival in a subgroup of non-small-cell lung cancer cell lines. Oncogene, 2011, 30(16), 1963-1968.
[http://dx.doi.org/10.1038/onc.2010.559] [PMID: 21132008]
[16]
Dorjgochoo, T.; Xiang, Y.B.; Long, J.; Shi, J.; Deming, S.; Xu, W.H.; Cai, H.; Cheng, J.; Cai, Q.; Zheng, W.; Shu, X.O. Association of genetic markers in the BCL-2 family of apoptosis-related genes with endometrial cancer risk in a Chinese population. PLoS One, 2013, 8(4)e60915
[http://dx.doi.org/10.1371/journal.pone.0060915] [PMID: 23637776]
[17]
Packham, G.; Stevenson, F.K. Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukaemia. Immunology, 2005, 114(4), 441-449.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02117.x] [PMID: 15804279]
[18]
Dewson, G.; Walter, E. Interplay of Bcl-2 Proteins Decides the Life or Death Fate. Open Cell Signal. J., 2011, 3, 3-8.
[http://dx.doi.org/10.2174/1876390101103010003]
[19]
Searle, C.J.; Brock, I.W.; Cross, S.S.; Balasubramanian, S.P.; Reed, M.W.; Cox, A.A. BCL2 promoter polymorphism rs2279115 is not associated with BCL2 protein expression or patient survival in breast cancer patients. Springerplus, 2012, 1, 38.
[http://dx.doi.org/10.1186/2193-1801-1-38] [PMID: 23961365]
[20]
Bachmann, H.S.; Otterbach, F.; Callies, R.; Nückel, H.; Bau, M.; Schmid, K.W.; Siffert, W.; Kimmig, R. The AA genotype of the regulatory BCL2 promoter polymorphism (938C>A) is associated with a favorable outcome in lymph node negative invasive breast cancer patients. Clin. Cancer Res., 2007, 13(19), 5790-5797.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2673] [PMID: 17908970]
[21]
Nückel, H.; Frey, U.H.; Bau, M.; Sellmann, L.; Stanelle, J.; Dürig, J.; Jöckel, K.H.; Dührsen, U.; Siffert, W. Association of a novel regulatory polymorphism (-938C>A) in the BCL2 gene promoter with disease progression and survival in chronic lymphocytic leukemia. Blood, 2007, 109(1), 290-297.
[http://dx.doi.org/10.1182/blood-2006-03-007567] [PMID: 16960146]
[22]
Jiang, Y.; Wang, W.; Wang, J.; Lu, Y.; Chen, Y.; Jin, L.; Lin, D.; He, F.; Wang, H. Functional regulatory variants of MCL1 contribute to enhanced promoter activity and reduced risk of lung cancer in nonsmokers: implications for context-dependent phenotype of an antiapoptotic and antiproliferative gene in solid tumor. Cancer, 2012, 118(8), 2085-2095.
[http://dx.doi.org/10.1002/cncr.26502] [PMID: 21887682]
[23]
Fingas, C.D.; Katsounas, A.; Kahraman, A.; Siffert, W.; Jochum, C.; Gerken, G.; Nückel, H.; Canbay, A. Prognostic assessment of three single-nucleotide polymorphisms (GNB3 825C>T, BCL2-938C>A, MCL1-386C>G) in extrahepatic cholangiocarcinoma. Cancer Invest., 2010, 28(5), 472-478.
[http://dx.doi.org/10.3109/07357900903095714] [PMID: 19968497]
[24]
Jung, S.H. Stratified Fisher’s exact test and its sample size calculation. Biom. J., 2014, 56(1), 129-140.
[http://dx.doi.org/10.1002/bimj.201300048] [PMID: 24395208]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy