Review Article

子宫内膜异位症中异常DNA甲基化和靶向DNA甲基转移酶的表观遗传药物的综述

卷 21, 期 11, 2020

页: [1047 - 1055] 页: 9

弟呕挨: 10.2174/1389450121666200228112344

价格: $65

conference banner
摘要

背景:子宫内膜异位症(EMS)是一种妇科疾病,是指子宫内膜组织在子宫外其他组织或器官中的移位和生长。临床表现为痛经、月经不调,甚至不孕。EMS虽然是一种良性疾病,但它具有恶性肿瘤的特点和恶性转化的潜力。近年来的研究发现,EMS可能涉及表观遗传变化,各种表观遗传异常,特别是异常的DNA甲基化可能在EMS的发病机制中发挥重要作用。先前的研究已经阐明了EMS的表观遗传调控因子,并报道了与EMS异常的激素、免疫和炎症状态相关的基因表观遗传模式的变化。随着高通量测序和其他生物分子技术的发展,我们对EMS全基因组甲基化有了更好的理解。目的:本文将讨论靶向DNA甲基化治疗EMS的可能性。 结果:本文综述了DNA甲基化在EMS病理生理学中的作用,并通过靶向DNA甲基化修饰剂为EMS提供了一种新的治疗方法。我们还回顾了目前在EMS治疗中使用DNA甲基化抑制剂的进展,以及未来潜在的前景和挑战。 结论:异常的DNA甲基化在EMS的发病机制中起着至关重要的作用,靶向DNA甲基转移酶的表观遗传药物有望成为EMS新治疗的理论基础。

关键词: 子宫内膜异位症,异常DNA甲基化,基因,通路,DNMTs

图形摘要
[1]
Guo SW. Genesis, genes and epigenetics of endometriosis-associated infertility. Nat Rev Endocrinol 2019; 15(5): 259-60.
[http://dx.doi.org/10.1038/s41574-019-0191-9] [PMID: 30886366]
[2]
Benagiano G, Brosens I, Lippi D. The history of endometriosis. Gynecol Obstet Invest 2014; 78(1): 1-9.
[http://dx.doi.org/10.1159/000358919] [PMID: 24853333]
[3]
Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Viganò P. Endometriosis. Nat Rev Dis Primers 2018; 4(1): 9.
[http://dx.doi.org/10.1038/s41572-018-0008-5] [PMID: 30026507]
[4]
Giudice LC, Kao LC. Endometriosis. Lancet 2004; 364(9447): 1789-99.
[http://dx.doi.org/10.1016/S0140-6736(04)17403-5] [PMID: 15541453]
[5]
Taylor RN, Yu J, Torres PB, et al. Mechanistic and therapeutic implications of angiogenesis in endometriosis. Reprod Sci 2009; 16(2): 140-6.
[http://dx.doi.org/10.1177/1933719108324893] [PMID: 19001553]
[6]
Wells M. Recent advances in endometriosis with emphasis on pathogenesis, molecular pathology, and neoplastic transformation. Int J Gynecol Pathol 2004; 23(4): 316-20.
[http://dx.doi.org/10.1097/01.pgp.0000139636.94352.89] [PMID: 15381900]
[7]
Prowse AH, Manek S, Varma R, et al. Molecular genetic evidence that endometriosis is a precursor of ovarian cancer. Int J Cancer 2006; 119(3): 556-62.
[http://dx.doi.org/10.1002/ijc.21845] [PMID: 16506222]
[8]
Vigano P, Somigliana E, Chiodo I, Abbiati A, Vercellini P. Molecular mechanisms and biological plausibility underlying the malignant transformation of endometriosis: a critical analysis. Hum Reprod Update 2019; 12(1): 77-89.
[9]
Borghese B, Zondervan KT, Abrao MS, Chapron C, Vaiman D. Recent insights on the genetics and epigenetics of endometriosis. Clin Genet 2017; 91(2): 254-64.
[http://dx.doi.org/10.1111/cge.12897] [PMID: 27753067]
[10]
Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V, Martin DC. Pathogenesis of endometriosis: the genetic/epigenetic theory. Fertil Steril 2019; 111(2): 327-40.
[http://dx.doi.org/10.1016/j.fertnstert.2018.10.013] [PMID: 30527836]
[11]
Magzoub MM, Prunello M, Brennan K, Gevaert O. The impact of DNA methylation on the cancer proteome. PLOS Comput Biol 2019; 15(7): e1007245.
[http://dx.doi.org/10.1371/journal.pcbi.1007245] [PMID: 31356589]
[12]
Claus R, Lucas DM, Stilgenbauer S, et al. Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia. J Clin Oncol 2012; 30(20): 2483-91.
[http://dx.doi.org/10.1200/JCO.2011.39.3090] [PMID: 22564988]
[13]
Kaiser MF, Johnson DC, Wu P, et al. Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma. Blood 2013; 122(2): 219-26.
[http://dx.doi.org/10.1182/blood-2013-03-487884] [PMID: 23699600]
[14]
Koukoura O, Sifakis S, Spandidos DA. DNA methylation in endometriosis. (Review). Mol Med Rep 2016; 13(4): 2939-48.
[http://dx.doi.org/10.3892/mmr.2016.4925] [PMID: 26934855]
[15]
Kaei Nasu YK. Kentaro Kai, Yoko Aoyagi, Wakana Abe, Mamiko Okamoto, Hisashi Narahara. Aberrant histone modification in endometriosis. Front Biosci 2014; 1202-14.
[16]
Laudanski P, Mariusz Kuzmicki RC, Szamatowicz J, Charkiewicz A, Niklinski J. MicroRNAs expression profiling of eutopic proliferative endometrium in women with ovarian endometriosis. Reprod Biol Endocrinol 2013; 15(11): 78.
[17]
He J, Chang W, Feng C, Cui M, Xu T. Endometriosis Malignant Transformation: Epigenetics as a Probable Mechanism in Ovarian Tumorigenesis. Int J Genomics 2018.20181465348
[http://dx.doi.org/10.1155/2018/1465348] [PMID: 29780815]
[18]
James G, Herman MD, Stephen B. Baylin, M.D. Gene Silencing in Cancer in Association with Promoter Hypermethylation. N Engl J Med 2003; (349): 2042-54.
[19]
Lei H, Oh SP, Okano M, et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 1996; 122(10): 3195-205.
[PMID: 8898232]
[20]
Xiong Y, Dowdy SC, Xue A, et al. Opposite alterations of DNA methyltransferase gene expression in endometrioid and serous endometrial cancers. Gynecol Oncol 2005; 96(3): 601-9.
[http://dx.doi.org/10.1016/j.ygyno.2004.11.047] [PMID: 15721400]
[21]
Sun L, Huang L, Nguyen P, et al. DNA methyltransferase 1 and 3B activate BAG-1 expression via recruitment of CTCFL/BORIS and modulation of promoter histone methylation. Cancer Res 2008; 68(8): 2726-35.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6654] [PMID: 18413740]
[22]
Trowbridge JJ, Sinha AU, Zhu N, Li M, Armstrong SA, Orkin SH. Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev 2012; 26(4): 344-9.
[http://dx.doi.org/10.1101/gad.184341.111] [PMID: 22345515]
[23]
Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. Fertil Steril 2007; 87(1): 24-32.
[http://dx.doi.org/10.1016/j.fertnstert.2006.05.077] [PMID: 17081533]
[24]
van Kaam KJ, Delvoux B, Romano A, D’Hooghe T, Dunselman GA, Groothuis PG. Deoxyribonucleic acid methyltransferases and methyl-CpG-binding domain proteins in human endometrium and endometriosis. Fertil Steril 2011; 95(4): 1421-7.
[http://dx.doi.org/10.1016/j.fertnstert.2011.01.031] [PMID: 21316665]
[25]
Saare M, Modhukur V, Suhorutshenko M, et al. The influence of menstrual cycle and endometriosis on endometrial methylome. Clin Epigenetics 2016; 8: 2.
[http://dx.doi.org/10.1186/s13148-015-0168-z] [PMID: 26759613]
[26]
Xinsheng Nan H-HN, Colin A. Johnson. Transcriptional repressionby themethyl-CpG-binding proteinMeCP2 involvesa histonedeacetylasecomplex. nature 1998.
[27]
Peter L. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. nature genetics 1998; 19
[28]
Wang L, Zhao J, Li Y, Wang Z, Kang S. Genome-wide analysis of DNA methylation in endometriosis using Illumina Human Methylation 450 K BeadChips. Mol Reprod Dev 2019; 86(5): 491-501.
[http://dx.doi.org/10.1002/mrd.23127] [PMID: 30740831]
[29]
Xue Q, Lin Z, Cheng YH, et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol Reprod 2007; 77(4): 681-7.
[http://dx.doi.org/10.1095/biolreprod.107.061804] [PMID: 17625110]
[30]
Xue Q, Lin Z, Yin P, Milad MP, Cheng YH, Confino E, et al. Transcriptional activation of steroidogenic factor-1 by hypomethylation of the 5′ CpG island in endometriosis. J Clin Endocrinol Metab 2007; 92(8): 3261-7.
[http://dx.doi.org/10.1210/jc.2007-0494] [PMID: 17519303]
[31]
Wu Y, Halverson G, Basir Z, Strawn E, Yan P, Guo SW. Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am J Obstet Gynecol 2005; 193(2): 371-80.
[http://dx.doi.org/10.1016/j.ajog.2005.01.034] [PMID: 16098858]
[32]
Signorile PG, Severino A, Santoro M, Spyrou M, Viceconte R, Baldi A. Methylation analysis of HOXA10 regulatory elements in patients with endometriosis. BMC Res Notes 2018; 11(1): 722.
[http://dx.doi.org/10.1186/s13104-018-3836-1] [PMID: 30309386]
[33]
Izawa M, Taniguchi F, Uegaki T, et al. Demethylation of a nonpromoter cytosine-phosphate-guanine island in the aromatase gene may cause the aberrant up-regulation in endometriotic tissues. Fertil Steril 2011; 95(1): 33-9.
[http://dx.doi.org/10.1016/j.fertnstert.2010.06.024] [PMID: 20655525]
[34]
Zhao W, Kang S, Zhao J, Wang L, Cao S, Li Y. Aberrant methylation of the IL-12B promotor region contributes to the risk of developing ovarian endometriosis. Mol Reprod Dev 2019; 86(6): 632-8.
[http://dx.doi.org/10.1002/mrd.23139] [PMID: 30865360]
[35]
Bulun SE, Monsavais D, Pavone ME, et al. Role of estrogen receptor-β in endometriosis. Semin Reprod Med 2012; 30(1): 39-45.
[http://dx.doi.org/10.1055/s-0031-1299596] [PMID: 22271293]
[36]
Zhao J, Wang L, Li Y, Zhao W, Kang S. Hypomethylation of the GSTM1 promoter is associated with ovarian endometriosis. Hum Reprod 2019; 34(5): 804-12.
[http://dx.doi.org/10.1093/humrep/dez039] [PMID: 30989213]
[37]
Tamaresis JS, Irwin JC, Goldfien GA, et al. Molecular classification of endometriosis and disease stage using high-dimensional genomic data. Endocrinology 2014; 155(12): 4986-99.
[http://dx.doi.org/10.1210/en.2014-1490] [PMID: 25243856]
[38]
ZR T R Z, ZX L, SL D, K Y. Estrogen-Receptor Expression and Function in Female Reproductive Disease. Cells 2019; 8(10)
[39]
Fujimoto J, Hirose R, Sakaguchi H, Tamaya T. Expression of oestrogen receptor-α and -β in ovarian endometriomata. Mol Hum Reprod 1999; 5(8): 742-7.
[http://dx.doi.org/10.1093/molehr/5.8.742] [PMID: 10421802]
[40]
Cavallini A, Resta L, Caringella AM, Dinaro E, Lippolis C, Loverro G. Involvement of estrogen receptor-related receptors in human ovarian endometriosis. Fertil Steril 2011; 96(1): 102-6.
[http://dx.doi.org/10.1016/j.fertnstert.2011.04.032] [PMID: 21561608]
[41]
Fazleabas AT, Brudney A, Chai D, Langoi D, Bulun SE. Steroid receptor and aromatase expression in baboon endometriotic lesions. Fertil Steril 2003; 80(Suppl. 2): 820-7.
[http://dx.doi.org/10.1016/S0015-0282(03)00982-8] [PMID: 14505759]
[42]
Bulun SE, Cheng YH, Yin P, et al. Progesterone resistance in endometriosis: link to failure to metabolize estradiol. Mol Cell Endocrinol 2006; 248(1-2): 94-103.
[http://dx.doi.org/10.1016/j.mce.2005.11.041] [PMID: 16406281]
[43]
Jichan Nie, Xishi Liu, Guo SW. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in adenomyosis and its rectification by a histone deacetylase inhibitor and a demethylation agent. Reprod Sci 2010; 17(11): 995-1005.
[http://dx.doi.org/10.1177/1933719110377118] [PMID: 20697142]
[44]
Wu Y, Starzinski-Powitz A, Guo SW. Prolonged stimulation with tumor necrosis factor-alpha induced partial methylation at PR-B promoter in immortalized epithelial-like endometriotic cells. Fertil Steril 2008; 90(1): 234-7.
[http://dx.doi.org/10.1016/j.fertnstert.2007.06.008] [PMID: 17727850]
[45]
Wu Y, Shi X, Guo SW. The knockdown of progesterone receptor isoform B (PR-B) promotes proliferation in immortalized endometrial stromal cells. Fertil Steril 2008; 90(4): 1320-3.
[http://dx.doi.org/10.1016/j.fertnstert.2007.10.049] [PMID: 18249378]
[46]
Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest 1998; 101(7): 1379-84.
[http://dx.doi.org/10.1172/JCI1597] [PMID: 9525980]
[47]
Fambrini M, Sorbi F, Bussani C, Cioni R, Sisti G, Andersson KL. Hypermethylation of HOXA10 gene in mid-luteal endometrium from women with ovarian endometriomas. Acta Obstet Gynecol Scand 2013; 92(11): 1331-4.
[http://dx.doi.org/10.1111/aogs.12236] [PMID: 24032603]
[48]
Andersson KL, Bussani C, Fambrini M, et al. DNA methylation of HOXA10 in eutopic and ectopic endometrium. Hum Reprod 2014; 29(9): 1906-11.
[http://dx.doi.org/10.1093/humrep/deu161] [PMID: 24963168]
[49]
Lu H, Yang X, Zhang Y, Lu R, Wang X. Epigenetic disorder may cause downregulation of HOXA10 in the eutopic endometrium of fertile women with endometriosis. Reprod Sci 2013; 20(1): 78-84.
[http://dx.doi.org/10.1177/1933719112451146] [PMID: 22915150]
[50]
Rice DA, Mouw AR, Bogerd AM, Parker KL. A shared promoter element regulates the expression of three steroidogenic enzymes. Mol Endocrinol 1991; 5(10): 1552-61.
[http://dx.doi.org/10.1210/mend-5-10-1552] [PMID: 1775136]
[51]
Yamagata Y, Nishino K, Takaki E, et al. Genome-wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells. PLoS One 2014; 9(1) e83612.
[http://dx.doi.org/10.1371/journal.pone.0083612] [PMID: 24465385]
[52]
Q X YF Z, SN Z, SE B. Hypermethylation of the CpG island spanning from exon II to intron III is associated with steroidogenic factor 1 expression in stromal cells of endometriosis. Reproductive Sciences (thousand oaks, calif) 2011; 18(11): 1080-4.
[53]
Xue Q, Xu Y, Yang H, et al. Methylation of a novel CpG island of intron 1 is associated with steroidogenic factor 1 expression in endometriotic stromal cells. Reprod Sci 2014; 21(3): 395-400.
[http://dx.doi.org/10.1177/1933719113497283] [PMID: 23899549]
[54]
Min H, Yao J, Cai Li, Bachman KE. Frederic vdB, Victor V. Polyak K. Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genetics 2005; 37(8): 899-905.
[55]
Hatok J, Zubor P, Galo S, et al. Endometrial aromatase mRNA as a possible screening tool for advanced endometriosis and adenomyosis. Gynecol Endocrinol 2011; 27(5): 331-6.
[http://dx.doi.org/10.3109/09513590.2010.491925] [PMID: 20553220]
[56]
Izawa M, Harada T, Taniguchi F, Ohama Y, Takenaka Y, Terakawa N. An epigenetic disorder may cause aberrant expression of aromatase gene in endometriotic stromal cells. Fertil Steril 2008; 89(5)(Suppl.): 1390-6.
[http://dx.doi.org/10.1016/j.fertnstert.2007.03.078] [PMID: 17662285]
[57]
Szczepańska M, Wirstlein P, Luczak M, Jagodziński PP, Skrzypczak J. Reduced expression of HOXA10 in the midluteal endometrium from infertile women with minimal endometriosis. Biomed Pharmacother 2010; 64(10): 697-705.
[http://dx.doi.org/10.1016/j.biopha.2010.09.012] [PMID: 20971605]
[58]
Naqvi H, Ilagan Y, Krikun G, Taylor HS. Altered genome-wide methylation in endometriosis. Reprod Sci 2014; 21(10): 1237-43.
[http://dx.doi.org/10.1177/1933719114532841] [PMID: 24784717]
[59]
Makabe T, Arai E, Hirano T, et al. Genome-wide DNA methylation profile of early-onset endometrial cancer: its correlation with genetic aberrations and comparison with late-onset endometrial cancer. Carcinogenesis 2019; 40(5): 611-23.
[http://dx.doi.org/10.1093/carcin/bgz046] [PMID: 30850842]
[60]
Barjaste N, Shahhoseini M, Afsharian P. Sharifi- Zarchi A, Masoudi-Nejad A. Genome-wide DNA methylation profiling in ectopic and eutopic of endometrial tissues. J Assist Reprod Genet 2019.
[http://dx.doi.org/10.1007/s10815-019-01508-8]
[61]
Osaki M, Oshimura MA, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 2004; 9(6): 667-76.
[62]
Fukuda M. Roles of mucin-type O-glycans in cell adhesion. Biochim Biophys Acta 2002; 1573(3): 394-405.
[http://dx.doi.org/10.1016/S0304-4165(02)00409-9] [PMID: 12417424]
[63]
Jaroslaw Paluszczak WB-D. Epigenetic diagnostics of cancer – the application ofDNA methylation markers. J Appl Genet 2006; 365-75.
[http://dx.doi.org/10.1007/BF03194647]
[64]
Belinsky SA, Klinge DM, Dekker JD, et al. Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clin Cancer Res 2005; 11(18): 6505-11.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0625] [PMID: 16166426]
[65]
Guo SW. Epigenetics of endometriosis. Mol Hum Reprod 2009; 15(10): 587-607.
[http://dx.doi.org/10.1093/molehr/gap064] [PMID: 19651637]
[66]
Ferrero S, Evangelisti G, Barra F. Current and emerging treatment options for endometriosis. Expert Opin Pharmacother 2018; 19(10): 1109-25.
[http://dx.doi.org/10.1080/14656566.2018.1494154] [PMID: 29975553]
[67]
Ferrero S, Barra F, Leone Roberti Maggiore U. Current and Emerging Therapeutics for the Management of Endometriosis. Drugs 2018; 78(10): 995-1012.
[http://dx.doi.org/10.1007/s40265-018-0928-0] [PMID: 29946962]
[68]
Parazzini F, Bertulessi C, Pasini A, et al. Gruppo Italiano di Studio Endometriosi. Determinants of short term recurrence rate of endometriosis. Eur J Obstet Gynecol Reprod Biol 2005; 121(2): 216-9.
[http://dx.doi.org/10.1016/j.ejogrb.2004.11.033] [PMID: 16054965]
[69]
Eleftheria Hatzimichael KL. Van Ren Sim, Evangelos Briasoulis, Tim Crook. Epigenetics in diagnosis, prognostic assessment and treatment of cancer: An update. EXCLI J 2014; 954-76.
[70]
Nasu K, Kawano Y, Tsukamoto Y, et al. Aberrant DNA methylation status of endometriosis: epigenetics as the pathogenesis, biomarker and therapeutic target. J Obstet Gynaecol Res 2011; 37(7): 683-95.
[http://dx.doi.org/10.1111/j.1447-0756.2011.01663.x] [PMID: 21651673]
[71]
Colón-Caraballo M, Torres-Reverón A, Soto-Vargas JL, et al. Effects of histone methyltransferase inhibition in endometriosis. Biol Reprod 2018; 99(2): 293-307.
[http://dx.doi.org/10.1093/biolre/ioy030] [PMID: 29408993]
[72]
Cheishvili D, Boureau L, Szyf M. DNA demethylation and invasive cancer: implications for therapeutics. Br J Pharmacol 2015; 172(11): 2705-15.
[http://dx.doi.org/10.1111/bph.12885] [PMID: 25134627]
[73]
Huang D, Cui L, Ahmed S, et al. An overview of epigenetic agents and natural nutrition products targeting DNA methyltransferase, histone deacetylases and microRNAs. Food Chem Toxicol 2019; 123: 574-94.
[http://dx.doi.org/10.1016/j.fct.2018.10.052] [PMID: 30408543]
[74]
Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429(6990): 457-63.
[http://dx.doi.org/10.1038/nature02625] [PMID: 15164071]
[75]
Wang X, Wang H, Jiang N, Lu W, Zhang XF, Fang JY. Effect of inhibition of MEK pathway on 5-aza-deoxycytidine-suppressed pancreatic cancer cell proliferation. Genet Mol Res 2013; 12(4): 5560-73.
[http://dx.doi.org/10.4238/2013.November.18.6] [PMID: 24301926]
[76]
Katz TA, Vasilatos SN, Harrington E, Oesterreich S, Davidson NE, Huang Y. Inhibition of histone demethylase, LSD2 (KDM1B), attenuates DNA methylation and increases sensitivity to DNMT inhibitor-induced apoptosis in breast cancer cells. Breast Cancer Res Treat 2014; 146(1): 99-108.
[http://dx.doi.org/10.1007/s10549-014-3012-9] [PMID: 24924415]
[77]
Ateeq B, Unterberger A, Szyf M, Rabbani SA. Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia 2008; 10(3): 266-78.
[http://dx.doi.org/10.1593/neo.07947] [PMID: 18320071]
[78]
Wang L, Tan YJ, Wang M, Chen YF, Li XY. DNA Methylation Inhibitor 5-Aza-2′-Deoxycytidine Modulates Endometrial Receptivity Through Upregulating HOXA10 Expression. Reprod Sci 2019; 26(6): 839-46.
[http://dx.doi.org/10.1177/1933719118815575] [PMID: 30522400]
[79]
S. Taylor H. The role of HOXgenes in human implantation. European Society ofHuman Reproduction and Embryology 2000; 6: 75-9.
[80]
Hirakawa T, Nasu K, Aoyagi Y, Takebayashi K, Zhu R, Narahara H. ATM expression is attenuated by promoter hypermethylation in human ovarian endometriotic stromal cells. Mol Hum Reprod 2019; 25(6): 295-304.
[http://dx.doi.org/10.1093/molehr/gaz016] [PMID: 30869775]
[81]
Arosh JA, Lee J, Starzinski-Powitz A, Banu SK. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 modulates DNA methylation and histone modification machinery proteins in human endometriotic cells. Mol Cell Endocrinol 2015; 409: 51-8.
[http://dx.doi.org/10.1016/j.mce.2015.03.023] [PMID: 25843056]
[82]
Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol 2012; 30(21): 2670-7.
[http://dx.doi.org/10.1200/JCO.2011.38.9429] [PMID: 22689805]
[83]
Mikyšková R, Indrová M, Vlková V, et al. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment. J Leukoc Biol 2014; 95(5): 743-53.
[http://dx.doi.org/10.1189/jlb.0813435] [PMID: 24389335]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy