Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

淀粉样β诱导的阿尔茨海默氏病转基因小鼠模型的肠系膜炎症

卷 17, 期 1, 2020

页: [52 - 59] 页: 8

弟呕挨: 10.2174/1567205017666200212160343

价格: $65

摘要

背景:阿尔茨海默氏病(AD)是一种神经退行性疾病,其组织病理学特征是淀粉样β(Aβ)肽的积累和活化的小胶质细胞相关的炎症。这些特征在AD模型小鼠的中枢神经系统中得到了很好的研究。但是,尚未对这些小鼠的周围炎症进行深入研究。 目的:我们评估了AD模型小鼠外周淋巴组织的炎症反应,尤其是髓样树突状细胞(mDC),以确定它们与Aβ沉积的关系。 方法:我们收集了5只FAD转基因小鼠的肠系膜淋巴结(MLN)和Peyer斑(PPs)的淋巴细胞作为AD模型。使用流式细胞仪分析淋巴细胞以表征mDC和T细胞。离体用Aβ1-42处理收集的淋巴细胞以评估炎症反应。 结果:我们观察到在MLN和PP的mDC中,炎症细胞因子和趋化因子(包括白介素(IL)-12和巨噬细胞炎症蛋白-1α)的水平升高,并且编程性死亡配体1(一种免疫抑制共刺激分子)水平降低。 5×FAD小鼠的mDC表面。此外,我们发现在5xFAD小鼠中,MLNs中产生干扰素(IFN)-γ的CD4或CD8阳性T细胞增加。此外,用Aβ肽进行离体治疗可增加5xFAD小鼠淋巴细胞产生的IL-12和IFN-γ。 结论:本研究表明,在5×FAD小鼠的MLN和PP中诱导了促炎性mDC和T细胞。

关键词: 阿尔茨海默氏病,β淀粉样蛋白,肠系膜淋巴结,髓样树突状细胞,派尔贴片,T细胞。

[1]
Murphy MP, LeVine H III. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 19(1): 311-23. (2010).
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[2]
Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Prin Prac Intern J Kuwait Unive. Health Sci Cent 24(1): 1-10. (2015).
[3]
O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34: 185-204. (2011).
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[4]
Wilkins HM, Swerdlow RH. Amyloid precursor protein processing and bioenergetics. Brain Res Bull 133: 71-9. (2017).
[http://dx.doi.org/10.1016/j.brainresbull.2016.08.009] [PMID: 27545490]
[5]
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol 217(2): 459-72. (2018).
[http://dx.doi.org/10.1083/jcb.201709069] [PMID: 29196460]
[6]
Navarro V, Sanchez-Mejias E, Jimenez S, Munoz-Castro C, Sanchez-Varo R, Davila JC, et al. Microglia in Alzheimer’s disease: activated, dysfunctional or degenerative. Front Aging Neurosci 10: 140. (2018).
[http://dx.doi.org/10.3389/fnagi.2018.00140] [PMID: 29867449]
[7]
Sarlus H, Heneka MT. Microglia in Alzheimer’s disease. J Clin Invest 127(9): 3240-9. (2017).
[http://dx.doi.org/10.1172/JCI90606] [PMID: 28862638]
[8]
Mandrekar-Colucci S, Landreth GE. Microglia and inflammation in Alzheimer’s disease. CNS Neurol Disord Drug Targets 9(2): 156-67. (2010).
[http://dx.doi.org/10.2174/187152710791012071] [PMID: 20205644]
[9]
Varvel NH, Neher JJ, Bosch A, Wang W, Ransohoff RM, Miller RJ, et al. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc Natl Acad Sci USA 113(38): E5665-74. (2016).
[http://dx.doi.org/10.1073/pnas.1604263113] [PMID: 27601660]
[10]
De Luigi A, Pizzimenti S, Quadri P, Lucca U, Tettamanti M, Fragiacomo C, et al. Peripheral inflammatory response in Alzheimer’s disease and multiinfarct dementia. Neurobiol Dis 11(2): 308-14. (2002).
[http://dx.doi.org/10.1006/nbdi.2002.0556] [PMID: 12505423]
[11]
O’Banion MK. Does peripheral inflammation contribute to Alzheimer disease? Evidence from animal models. Neurology 83(6): 480-1. (2014).
[http://dx.doi.org/10.1212/WNL.0000000000000663] [PMID: 24991028]
[12]
Surendranathan A, Su L, Mak E, Passamonti L, Hong YT, Arnold R, et al. Early microglial activation and peripheral inflammation in dementia with Lewy bodies. Brain 141(12): 3415-27. (2018).
[http://dx.doi.org/10.1093/brain/awy265] [PMID: 30403785]
[13]
Puig KL, Lutz BM, Urquhart SA, Rebel AA, Zhou X, Manocha GD, et al. Overexpression of mutant amyloid-β protein precursor and presenilin 1 modulates enteric nervous system. J Alzheimers Dis 44(4): 1263-78. (2015).
[http://dx.doi.org/10.3233/JAD-142259] [PMID: 25408221]
[14]
Semar S, Klotz M, Letiembre M, Van Ginneken C, Braun A, Jost V, et al. Changes of the enteric nervous system in amyloid-β protein precursor transgenic mice correlate with disease progression. J Alzheimers Dis 36(1): 7-20. (2013).
[http://dx.doi.org/10.3233/JAD-120511] [PMID: 23531500]
[15]
Puig KL, Swigost AJ, Zhou X, Sens MA, Combs CK. Amyloid precursor protein expression modulates intestine immune phenotype. J Neuroimmune Pharmacol J Soc NeuroImmune Pharmacol 7(1): 215-30. (2012).
[http://dx.doi.org/10.1007/s11481-011-9327-y]
[16]
Dansokho C, Ait Ahmed D, Aid S, Toly-Ndour C, Chaigneau T, Calle V, et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139(Pt 4): 1237-51. (2016).
[http://dx.doi.org/10.1093/brain/awv408] [PMID: 26912648]
[17]
Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimers Dis 58(1): 1-15. (2017).
[http://dx.doi.org/10.3233/JAD-161141] [PMID: 28372330]
[18]
Liu L, Zhu G. Gut-brain axis and mood disorder. Front Psychiatry 9: 223. (2018).
[http://dx.doi.org/10.3389/fpsyt.2018.00223] [PMID: 29896129]
[19]
Oakley H, Cole SL, Logan S, Erika Maus, Pei Shao, Jeffery Craft, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40): 10129-40. (2006).
[http://dx.doi.org/10.1523/JNEUROSCI.1202-06.2006] [PMID: 17021169]
[20]
Ano Y, Ikado K, Shindo K, Koizumi H, Fujiwara D. Identification of 14-dehydroergosterol as a novel anti-inflammatory compound inducing tolerogenic dendritic cells. Sci Rep 7(1): 13903. (2017).
[http://dx.doi.org/10.1038/s41598-017-14446-1] [PMID: 29066789]
[21]
Jounai K, Ikado K, Sugimura T, Ano Y, Braun J, Fujiwara D. Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells. PLoS One 7(4) e32588 (2012).
[http://dx.doi.org/10.1371/journal.pone.0032588] [PMID: 22505996]
[22]
Ano Y, Ozawa M, Kutsukake T, Sugiyama S, Uchida KA, Yoshida A, et al. Preventive effects of a fermented dairy product against Alzheimer’s disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity. PLoS One 10(3) e0118512 (2015).
[http://dx.doi.org/10.1371/journal.pone.0118512] [PMID: 25760987]
[23]
Ano Y, Dohata A, Taniguchi Y, Hoshi A, Uchida K, Takashima A, et al. Iso-α-acids, bitter components of beer, prevent inflammation and cognitive decline induced in a mouse model of Alzheimer’s disease. J Biol Chem 292(9): 3720-8. (2017).
[http://dx.doi.org/10.1074/jbc.M116.763813] [PMID: 28087694]
[24]
Ciaramella A, Sanarico N, Bizzoni F, Moro ML, Salani F, Scapigliati G, et al. Amyloid beta peptide promotes differentiation of pro-inflammatory human myeloid dendritic cells. Neurobiol Aging 2009; 30(2): 210-21.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.06.007] [PMID: 17658667]
[25]
Bossù P, Spalletta G, Caltagirone C, Ciaramella A. Myeloid dendritic cells are potential players in human neurodegenerative Diseases. Front Immunol 6: 632. (2015).
[http://dx.doi.org/10.3389/fimmu.2015.00632] [PMID: 26734003]
[26]
Laurent C, Dorothée G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflam-mation and cognitive decline in a mouse model of tauopathy. Brain 140(1): 184-200. (2017).
[http://dx.doi.org/10.1093/brain/aww270] [PMID: 27818384]
[27]
Browne TC, McQuillan K, McManus RM, O'Reilly JA, Mills KH, Lynch MA. IFN-gamma Production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease. J Immunool (Baltimore, Md : 1950) 190(5): 2241-51. (2013).
[28]
Baek H, Ye M, Kang GH, Lee C, Lee G, Choi DA, et al. Neuroprotective effects of CD4+CD25+Foxp3+ regulatory T cells in a 3xTg-AD Alzheimer’s disease model. Oncotarget 7(43): 69347-57. (2016).
[http://dx.doi.org/10.18632/oncotarget.12469] [PMID: ]27713140]
[29]
Tanaka H, Demeure CE, Rubio M, Delespesse G, Sarfati M. Human monocyte-derived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio. J Exp Med 192(3): 405-12. (2000).
[http://dx.doi.org/10.1084/jem.192.3.405] [PMID: 10934228]
[30]
Vieira PL, de Jong EC, Wierenga EA, Kapsenberg ML, Kalinski P. Development of Th1-inducing capacity in myeloid dendritic cellsrequires environmental instruction. J Immunol (Baltimore, Md : 1950) 164(9): 4507-12. (2000).
[http://dx.doi.org/10.4049/jimmunol.164.9.4507]
[31]
Kushwah R, Hu J. Role of dendritic cells in the induction of regulatory T cells. Cell Biosci 1(1): 20. (2011).
[http://dx.doi.org/10.1186/2045-3701-1-20] [PMID: 21711933]
[32]
Lichtenegger FS, Mueller K, Otte B, Beck B, Hiddemann W, Schendel DJ, et al. CD86 and IL-12p70 are key players for T helper 1 polarization and natural killer cell activation by Toll-like receptor-induced dendritic cells. PLoS One 7(9) e44266 (2012).
[http://dx.doi.org/10.1371/journal.pone.0044266] [PMID: 22962607]
[33]
Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1(9): 793-801. (1994).
[http://dx.doi.org/10.1016/S1074-7613(94)80021-9] [PMID: 7534620]
[34]
Dai S, Jia R, Zhang X, Fang Q, Huang L. The PD-1/PD-Ls pathway and autoimmune diseases. Cell Immunol 290(1): 72-9. (2014).
[http://dx.doi.org/10.1016/j.cellimm.2014.05.006] [PMID: 24908630]
[35]
Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B, et al. The interaction properties of costimulatory molecules revisited. Immunity 17(2): 201-10. (2002).
[http://dx.doi.org/10.1016/S1074-7613(02)00362-X] [PMID: 12196291]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy