Cancer Antibody Enhanced Real Time Imaging Cell Probes – a Novel Theranostic Tool using Polymer Linked Carbon Nanotubes and Quantum Dots

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)


Volume 16, 12 Issues, 2016


Download PDF Flyer




Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Michelle Prudhomme
Universite Blaise Pascal - C.N.R.S
Aubiere Cedex
France


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Cancer Antibody Enhanced Real Time Imaging Cell Probes – a Novel Theranostic Tool using Polymer Linked Carbon Nanotubes and Quantum Dots



Anti-Cancer Agents in Medicinal Chemistry, 13(5): 821-832.

Author(s): Gerda Brakmane, Seyed Yazdan Madani and Alexander Seifalian.

Affiliation: Professor of Nanotechnology & Regenerative Medicine, University College London.

Abstract

Background: Cancer is a potentially fatal diagnosis, but due to modern medicine there is a potential cure in many of these cases. The rate of treatment success depends on early disease detection and timely, effective delivery of tumour specific treatment. There are many ongoing researches aimed to improve diagnostics or treatment, but the option to use both modalities concomitantly is deficient. In this project we are using the advances in nanotechnology to develop new theranostic tool using single walled carbon nanotubes (SWCNT) and Quantum dots (QDs) for early cancer cell detection, and option to deliver targeted treatment.

Method: SWCNTs were refluxed in HNO3/H2SO4 (1:3) at 120ºC for 120 minutes. Functionalised SWCNT was then covalently attached to octa-ammonium polyhedral oligomeric silsesquioxane (POSS), QDs and conjugated with antibodies for targeted cell detection. Fourier transforms infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), UV/NIR analysis, Raman and UV-VIS spectroscopy were used in order to prove the successful conjugation. Toxicology study using alamar blue analysis and DNA assay was conducted in order to choose the best concentration of SWCNT, octa-ammonium-POSS and QDs before commencing the conjugation process. Human colorectal cancer cell line HT29, pancreas cancer cell line PANC-1 and mouse fibroblasts 3T3 were then treated with or without antibody conjugated SWCNT-POSS-QDs (CPQ) compound solution. The cell response was observed under the microscope after 24, 48 and 72 hours.

Results: FTIR and Raman spectroscopies confirmed covalent binding of the SWCNTs to Octa-Ammonium-POSS. This was supported by TEM images and photos obtained, which showed well dispersed SWCNTs following its treatment with Octa-Ammonium-POSS compared to pristine SWCNT samples. UV-VIS graphs determined the presence of antibody within the compound. UV/NIR demonstrated QD fluorescence even after attachment of SWCNT-POSS. The cellular behaviour revealed high CPQ-antibody complex affinity towards cancer cells when compared to healthy cell line which internalised the complex only on day three. The pancreas cancer cell line had appearance of lysed pulp after 72 hours of incubation. Colonic cancer cells seemed to regain ability to populate from day three signifying that higher treatment payload is necessary.

Conclusion: We have successfully manufactured novel compound consisting of Octa-Ammonium-POSS linked SWCNTs, QDs, and tumour specific antibodies. The complex has proven its potential as cell probing tool, and the attachment of antibodies has shown high affinity to cancer cells rendering this an attractive model for further theranostic developments.


Keywords:

Carbon nanotubes, quantum dots, octa-ammonium polyhedral oligomeric silsesquioxane, cancer antibodies, colon cancer, pancreas cancer, theranostics.



Purchase Online Order Reprints Order Eprints Rights and Permissions




Article Details

Volume: 13
Issue Number: 5
First Page: 821
Last Page: 832
Page Count: 12
DOI: 10.2174/1871520611313050016
Price: $58
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2016 Bentham Science