Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Systematic Review Article

The Impact of Akkermansia muciniphila on Mouse Models of Depression, Anxiety, and Stress: A Systematic Review and Meta-Analysis

Author(s): Leila Khalili, Gwoncheol Park, Ravinder Nagpal, Pradeep Bhide and Gloria Salazar*

Volume 23, Issue 11, 2025

Published on: 18 March, 2025

Page: [1423 - 1441] Pages: 19

DOI: 10.2174/011570159X360149250225041829

Price: $65

Abstract

Background: Akkermansia muciniphila (A. muciniphila), a bacterial species within the human gut microbiome, has shown beneficial effects on host health. Emerging research suggests that A. muciniphila also influences neurobehavioral domains through the microbiota-gut-brain axis. This meta-analysis evaluates A. muciniphila’s impact on depression, anxiety, and stress in mouse models.

Methods: We conducted a systematic search of PubMed, Science Direct, Embase, and Web of Science databases up to March 2024, identifying 15 eligible studies.

Results: Supplementation with A. muciniphila, its outer membrane protein (Amuc_1100), and extracellular vesicles (EVs) alleviated anxiety, depressive-like behaviors, and enhanced memory in mice. Compared to controls, intervention groups exhibited reduced anxiety-like behaviors, including increased travel distance in the open-field test (OFT) and more time spent in the lightbox during the light-dark box (LDB) test and open arms in the elevated plus maze (EPM). Depression-like symptoms were reduced, with lower immobility time in the tail suspension and forced swim tests. Memory function also improved, and learning time was reduced in the Y-maze and Barnes circular maze tests. Serotonin levels increased significantly in the serum and hippocampus, while corticosterone levels decreased, though not significantly. The intervention reduced hippocampal and serum inflammatory markers (TNFα, IL1β, IL6) and altered gut microbiome composition, increasing Akkermansia, Roseburia, Caldicoprobacter, and Lachnospiraceae.

Conclusion: This meta-analysis provides evidence supporting the health-promoting effects of A. muciniphila, one of the next-generation probiotics, in alleviating neuropsychiatric disorders. Given the high prevalence and clinical significance of depression, anxiety, and stress, further investigation into the therapeutic utility of A. muciniphila is warranted.

Keywords: Akkermansia muciniphila, mental health, mouse, depression, anxiety, stress, meta-analysis.

Graphical Abstract
[1]
Ling Z, Xiao H, Chen W. Gut microbiome: The cornerstone of life and health. Adv Gut Microbiome Res 2022; 2022: 1-3.
[http://dx.doi.org/10.1155/2022/9894812]
[2]
Lei W, Cheng Y, Gao J, et al. Akkermansia muciniphila in neuropsychiatric disorders: Friend or foe? Front Cell Infect Microbiol 2023; 13: 1224155.
[http://dx.doi.org/10.3389/fcimb.2023.1224155] [PMID: 37492530]
[3]
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30(6): 492-506.
[http://dx.doi.org/10.1038/s41422-020-0332-7] [PMID: 32433595]
[4]
Afzaal M, Saeed F, Shah YA, et al. Human gut microbiota in health and disease: Unveiling the relationship. Front Microbiol 2022; 13: 999001.
[http://dx.doi.org/10.3389/fmicb.2022.999001] [PMID: 36225386]
[5]
Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004; 54(5): 1469-76.
[http://dx.doi.org/10.1099/ijs.0.02873-0] [PMID: 15388697]
[6]
Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016; 65(3): 426-36.
[http://dx.doi.org/10.1136/gutjnl-2014-308778] [PMID: 26100928]
[7]
Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017; 5(1): 14.
[http://dx.doi.org/10.1186/s40168-016-0222-x] [PMID: 28143587]
[8]
Abot A, Brochot A, Pomié N, et al. Pasteurized Akkermansia muciniphila improves glucose metabolism is linked with increased hypothalamic nitric oxide release. Heliyon 2023; 9(7): e18196.
[http://dx.doi.org/10.1016/j.heliyon.2023.e18196] [PMID: 37501991]
[9]
Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017; 23(1): 107-13.
[http://dx.doi.org/10.1038/nm.4236] [PMID: 27892954]
[10]
Bian X, Wu W, Yang L, et al. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front Microbiol 2019; 10: 2259.
[http://dx.doi.org/10.3389/fmicb.2019.02259] [PMID: 31632373]
[11]
Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat Med 2019; 25(7): 1096-103.
[http://dx.doi.org/10.1038/s41591-019-0495-2] [PMID: 31263284]
[12]
Grajeda-Iglesias C, Durand S, Daillère R, et al. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. Aging (Albany NY) 2021; 13(5): 6375-405.
[http://dx.doi.org/10.18632/aging.202739] [PMID: 33653967]
[13]
Tagliamonte S, Laiola M, Ferracane R, et al. Mediterranean diet consumption affects the endocannabinoid system in overweight and obese subjects: possible links with gut microbiome, insulin resistance and inflammation. Eur J Nutr 2021; 60(7): 3703-16.
[http://dx.doi.org/10.1007/s00394-021-02538-8] [PMID: 33763720]
[14]
Zhai Q, Feng S, Arjan N, Chen W. A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr 2019; 59(19): 3227-36.
[http://dx.doi.org/10.1080/10408398.2018.1517725] [PMID: 30373382]
[15]
Khalili L, Park G, Nagpal R, Salazar G. The role of Akkermansia muciniphila on improving gut and metabolic health modulation: A meta-analysis of preclinical mouse model studies. Microorganisms 2024; 12(8): 1627.
[http://dx.doi.org/10.3390/microorganisms12081627] [PMID: 39203469]
[16]
Collaborators GMD. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet Psychiatry 2022; 9(2): 137-50.
[http://dx.doi.org/10.1016/S2215-0366(21)00395-3] [PMID: 35026139]
[17]
Xiong RG, Li J, Cheng J, et al. The role of gut microbiota in anxiety, depression, and other mental disorders as well as the protective effects of dietary components. Nutrients 2023; 15(14): 3258.
[http://dx.doi.org/10.3390/nu15143258] [PMID: 37513676]
[18]
Pan KY, Kok AAL, Eikelenboom M, et al. The mental health impact of the COVID-19 pandemic on people with and without depressive, anxiety, or obsessive-compulsive disorders: A longitudinal study of three Dutch case-control cohorts. Lancet Psychiatry 2021; 8(2): 121-9.
[http://dx.doi.org/10.1016/S2215-0366(20)30491-0] [PMID: 33306975]
[19]
Godos J, Currenti W, Angelino D, et al. Diet and mental health: Review of the recent updates on molecular mechanisms. Antioxidants 2020; 9(4): 346.
[http://dx.doi.org/10.3390/antiox9040346] [PMID: 32340112]
[20]
Kennedy PJ, Murphy AB, Cryan JF, Ross PR, Dinan TG, Stanton C. Microbiome in brain function and mental health. Trends Food Sci Technol 2016; 57: 289-301.
[http://dx.doi.org/10.1016/j.tifs.2016.05.001]
[21]
Bhatia NY, Jalgaonkar MP, Hargude AB, Sherje AP, Oza MJ, Doshi GM. Gut-brain axis and neurological disorders-how microbiomes affect our mental health. CNS Neurol Disord Drug Targets 2023; 22(7): 1008-30.
[http://dx.doi.org/10.2174/1871527321666220822172039]
[22]
Hao Z, Meng C, Li L, et al. Positive mood-related gut microbiota in a long-term closed environment: A multiomics study based on the “Lunar Palace 365” experiment. Microbiome 2023; 11(1): 88.
[http://dx.doi.org/10.1186/s40168-023-01506-0] [PMID: 37095530]
[23]
Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: From pathogenesis to treatment. EBioMedicine 2023; 90: 104527.
[http://dx.doi.org/10.1016/j.ebiom.2023.104527] [PMID: 36963238]
[24]
Asher GN, Gerkin J, Gaynes BN. Complementary therapies for mental health disorders. Med Clin North Am 2017; 101(5): 847-64.
[http://dx.doi.org/10.1016/j.mcna.2017.04.004] [PMID: 28802467]
[25]
Lakhan SE, Vieira KF. Nutritional therapies for mental disorders. Nutr J 2008; 7(1): 2.
[http://dx.doi.org/10.1186/1475-2891-7-2] [PMID: 18208598]
[26]
Meher AK, Acharya B, Sahu PK. Probiotics: Bridging the interplay of a healthy gut and psychoneurological well‐being. Food Bioeng 2024; 3(1): 126-47.
[http://dx.doi.org/10.1002/fbe2.12081]
[27]
Pferschy-Wenzig EM, Pausan MR, Ardjomand-Woelkart K, et al. Medicinal plants and their impact on the gut microbiome in mental health: A systematic review. Nutrients 2022; 14(10): 2111.
[http://dx.doi.org/10.3390/nu14102111] [PMID: 35631252]
[28]
Yılmaz C, Gökmen V. Neuroactive compounds in foods: Occurrence, mechanism and potential health effects. Food Res Int 2020; 128: 108744.
[http://dx.doi.org/10.1016/j.foodres.2019.108744] [PMID: 31955786]
[29]
Guo D, Park C, Li Y, et al. Akkermansia muciniphila ameliorates depressive disorders in a murine alcohol-LPS (mALPS) model. Food Funct 2022; 13(24): 12766-76.
[http://dx.doi.org/10.1039/D2FO01478E] [PMID: 36416490]
[30]
Wu F, Guo X, Zhang M, et al. An Akkermansia muciniphila subtype alleviates high-fat diet-induced metabolic disorders and inhibits the neurodegenerative process in mice. Anaerobe 2020; 61: 102138.
[http://dx.doi.org/10.1016/j.anaerobe.2019.102138] [PMID: 31830598]
[31]
Meynier M, Daugey V, Mallaret G, et al. Pasteurized Akkermansia muciniphila improves irritable bowel syndrome-like symptoms and related behavioral disorders in mice. Gut Microbes 2024; 16(1): 2298026.
[http://dx.doi.org/10.1080/19490976.2023.2298026] [PMID: 38170633]
[32]
Chen T, Wang R, Duan Z, et al. Akkermansia muciniphila protects against psychological disorder-induced gut microbiota-mediated colonic mucosal barrier damage and aggravation of colitis. Front Cell Infect Microbiol 2021; 11: 723856.
[http://dx.doi.org/10.3389/fcimb.2021.723856] [PMID: 34722332]
[33]
Ding Y, Bu F, Chen T, et al. A next-generation probiotic: Akkermansia muciniphila ameliorates chronic stress–induced depressive-like behavior in mice by regulating gut microbiota and metabolites. Appl Microbiol Biotechnol 2021; 105(21-22): 8411-26.
[http://dx.doi.org/10.1007/s00253-021-11622-2] [PMID: 34617139]
[34]
Sun Y, Zhu H, Cheng R, Tang Z, Zhang M. Outer membrane protein Amuc_1100 of Akkermansia muciniphila alleviates antibiotic-induced anxiety and depression-like behavior in mice. Physiol Behav 2023; 258: 114023.
[http://dx.doi.org/10.1016/j.physbeh.2022.114023] [PMID: 36336146]
[35]
Yaghoubfar R, Behrouzi A, Ashrafian F, et al. Modulation of serotonin signaling/metabolism by Akkermansia muciniphila and its extracellular vesicles through the gut-brain axis in mice. Sci Rep 2020; 10(1): 22119.
[http://dx.doi.org/10.1038/s41598-020-79171-8] [PMID: 33335202]
[36]
Cheng R, Zhu H, Sun Y, Hang T, Zhang M. The modified outer membrane protein Amuc_1100 of Akkermansia muciniphila improves chronic stress-induced anxiety and depression-like behavior in mice. Food Funct 2022; 13(20): 10748-58.
[http://dx.doi.org/10.1039/D2FO01198K] [PMID: 36178497]
[37]
Cheng R, Xu W, Wang J, Tang Z, Zhang M. The outer membrane protein Amuc_1100 of Akkermansia muciniphila alleviates the depression-like behavior of depressed mice induced by chronic stress. Biochem Biophys Res Commun 2021; 566: 170-6.
[http://dx.doi.org/10.1016/j.bbrc.2021.06.018] [PMID: 34129964]
[38]
Yang Y, Zhong Z, Wang B, et al. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila. Neuropsychopharmacology 2019; 44(12): 2054-64.
[http://dx.doi.org/10.1038/s41386-019-0437-1] [PMID: 31207607]
[39]
Chen Y, Chen J, Wei H, et al. Akkermansia muciniphila-Nlrp3 is involved in the neuroprotection of phosphoglycerate mutase 5 deficiency in traumatic brain injury mice. Front Immunol 2023; 14: 1172710.
[http://dx.doi.org/10.3389/fimmu.2023.1172710] [PMID: 37287985]
[40]
Li N, Tan S, Wang Y, et al. Akkermansia muciniphila supplementation prevents cognitive impairment in sleep-deprived mice by modulating microglial engulfment of synapses. Gut Microbes 2023; 15(2): 2252764.
[http://dx.doi.org/10.1080/19490976.2023.2252764] [PMID: 37671803]
[41]
Ou Z, Deng L, Lu Z, et al. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr Diabetes 2020; 10(1): 12.
[http://dx.doi.org/10.1038/s41387-020-0115-8] [PMID: 32321934]
[42]
Wang J, Xu W, Wang R, Cheng R, Tang Z, Zhang M. The outer membrane protein Amuc_1100 of Akkermansia muciniphila promotes intestinal 5-HT biosynthesis and extracellular availability through TLR2 signalling. Food Funct 2021; 12(8): 3597-610.
[http://dx.doi.org/10.1039/D1FO00115A] [PMID: 33900345]
[43]
Guo H, Liu X, Chen T, Wang X, Zhang X. Akkermansia muciniphila improves depressive-like symptoms by modulating the level of 5-HT neurotransmitters in the gut and brain of mice. Mol Neurobiol 2024; 61(2): 821-34.
[http://dx.doi.org/10.1007/s12035-023-03602-6] [PMID: 37668965]
[44]
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 2009; 151(4): W.
[http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00136] [PMID: 19622512]
[45]
Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with random effects. Stat Med 1996; 15(6): 619-29.
[http://dx.doi.org/10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A] [PMID: 8731004]
[46]
Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta‐analysis. Stat Med 2002; 21(11): 1539-58.
[http://dx.doi.org/10.1002/sim.1186] [PMID: 12111919]
[47]
Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56(2): 455-63.
[http://dx.doi.org/10.1111/j.0006-341X.2000.00455.x] [PMID: 10877304]
[48]
White IR. Multivariate random-effects meta-analysis. Stata J 2009; 9(1): 40-56.
[http://dx.doi.org/10.1177/1536867X0900900103]
[49]
Bamalan OA, Moore MJ, Al Khalili Y. Physiology, serotonin. StatPearls. Treasure Island, FL: StatPearls Publishing 2019.
[50]
Caracciolo L, Marosi M, Mazzitelli J, et al. CREB controls cortical circuit plasticity and functional recovery after stroke. Nat Commun 2018; 9(1): 2250.
[http://dx.doi.org/10.1038/s41467-018-04445-9] [PMID: 29884780]
[51]
Deltheil T, Guiard BP, Guilloux JP, et al. Consequences of changes in BDNF levels on serotonin neurotransmission, 5-HT transporter expression and function: Studies in adult mice hippocampus. Pharmacol Biochem Behav 2008; 90(2): 174-83.
[http://dx.doi.org/10.1016/j.pbb.2007.09.018] [PMID: 17980409]
[52]
Roth W, Zadeh K, Vekariya R, Ge Y, Mohamadzadeh M. Tryptophan metabolism and gut-brain homeostasis. Int J Mol Sci 2021; 22(6): 2973.
[http://dx.doi.org/10.3390/ijms22062973] [PMID: 33804088]
[53]
Mushtaq R, Tarfarosh SFA, Dar MM, et al. Is there a link between depressive disorders and tryptophan hydroxylase 1 (TPH1) gene polymorphism?-study from a distressed area, Kashmir (India). Cureus 2016; 8(7): e673.
[http://dx.doi.org/10.7759/cureus.673] [PMID: 27672527]
[54]
Banskota S, Ghia JE, Khan WI. Serotonin in the gut: Blessing or a curse. Biochimie 2019; 161: 56-64.
[http://dx.doi.org/10.1016/j.biochi.2018.06.008] [PMID: 29909048]
[55]
Tynan RJ, Naicker S, Hinwood M, et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun 2010; 24(7): 1058-68.
[http://dx.doi.org/10.1016/j.bbi.2010.02.001] [PMID: 20153418]
[56]
Yu H, Chen Z. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin 2011; 32(1): 3-11.
[http://dx.doi.org/10.1038/aps.2010.184] [PMID: 21131999]
[57]
Yohn CN, Gergues MM, Samuels BA. The role of 5-HT receptors in depression. Mol Brain 2017; 10(1): 28.
[http://dx.doi.org/10.1186/s13041-017-0306-y] [PMID: 28646910]
[58]
Böer U, Alejel T, Beimesche S, et al. CRE/CREB-driven up-regulation of gene expression by chronic social stress in CRE-luciferase transgenic mice: Reversal by antidepressant treatment. PLoS One 2007; 2(5): e431.
[http://dx.doi.org/10.1371/journal.pone.0000431] [PMID: 17487276]
[59]
Ohsawa K, Imai Y, Sasaki Y, Kohsaka S. Microglia/] macrophage‐specific protein Iba1 binds to fimbrin and enhances its actin‐bundling activity. J Neurochem 2004; 88(4): 844-56.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02213.x] [PMID: 14756805]
[60]
Dias B, Banerjee SB, Duman RS, Vaidya VA. Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology 2003; 45(4): 553-63.
[http://dx.doi.org/10.1016/S0028-3908(03)00198-9] [PMID: 12907316]
[61]
Gass P, Riva MA. CREB, neurogenesis and depression. BioEssays 2007; 29(10): 957-61.
[http://dx.doi.org/10.1002/bies.20658] [PMID: 17876779]
[62]
Yao H, Zhang D, Yu H, et al. Gut microbiota regulates chronic ethanol exposure-induced depressive-like behavior through hippocampal NLRP3-mediated neuroinflammation. Mol Psychiatry 2023; 28(2): 919-30.
[http://dx.doi.org/10.1038/s41380-022-01841-y] [PMID: 36280756]
[63]
Zhang J, Xue B, Jing B, et al. LPS activates neuroinflammatory pathways to induce depression in Parkinson’s disease-like condition. Front Pharmacol 2022; 13: 961817.
[http://dx.doi.org/10.3389/fphar.2022.961817] [PMID: 36278237]
[64]
Won E, Na KS, Kim YK. Associations between melatonin, neuroinflammation, and brain alterations in depression. Int J Mol Sci 2021; 23(1): 305.
[http://dx.doi.org/10.3390/ijms23010305] [PMID: 35008730]
[65]
Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 2015; 49: 206-15.
[http://dx.doi.org/10.1016/j.bbi.2015.06.001] [PMID: 26065825]
[66]
Su KP, Lai HC, Peng CY, Su WP, Chang JPC, Pariante CM. Interferon-alpha-induced depression: Comparisons between early- and late-onset subgroups and with patients with major depressive disorder. Brain Behav Immun 2019; 80: 512-8.
[http://dx.doi.org/10.1016/j.bbi.2019.04.032] [PMID: 31059806]
[67]
Stankiewicz AM, Goscik J, Majewska A, Swiergiel AH, Juszczak GR. The effect of acute and chronic social stress on the hippocampal transcriptome in mice. PLoS One 2015; 10(11): e0142195.
[http://dx.doi.org/10.1371/journal.pone.0142195] [PMID: 26556046]
[68]
Zhu X, Shen J, Feng S, et al. Akkermansia muciniphila, which is enriched in the gut microbiota by metformin, improves cognitive function in aged mice by reducing the proinflammatory cytokine interleukin-6. Microbiome 2023; 11(1): 120.
[http://dx.doi.org/10.1186/s40168-023-01567-1] [PMID: 37254162]
[69]
Wang L, Tang L, Feng Y, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8 + T cells in mice. Gut 2020; 69(11): 1988-97.
[http://dx.doi.org/10.1136/gutjnl-2019-320105] [PMID: 32169907]
[70]
Liu PS, Wang H, Li X, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 2017; 18(9): 985-94.
[http://dx.doi.org/10.1038/ni.3796] [PMID: 28714978]
[71]
Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: A potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol 2019; 16(9): 531-43.
[http://dx.doi.org/10.1038/s41575-019-0172-4] [PMID: 31312042]
[72]
Papakostas GI, Culpepper L. Understanding and managing cognition in the depressed patient. J Clin Psychiatry 2015; 76(4): 418-25.
[http://dx.doi.org/10.4088/JCP.13086ah1c] [PMID: 25919832]
[73]
Noworyta K, Cieslik A, Rygula R. Neuromolecular underpinnings of negative cognitive bias in depression. Cells 2021; 10(11): 3157.
[http://dx.doi.org/10.3390/cells10113157] [PMID: 34831380]
[74]
Ring A, Kim YM, Kahn M. Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Rev 2014; 10(4): 512-25.
[http://dx.doi.org/10.1007/s12015-014-9515-2] [PMID: 24825509]
[75]
Chelakkot C, Choi Y, Kim D-K, Park HT, Ghim J, Kwon Y. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med 2018; 50(2): e450.
[http://dx.doi.org/10.1038/emm.2017.282]
[76]
Kim S, Shin YC, Kim TY, et al. Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development. Gut Microbes 2021; 13(1): 1892441.
[http://dx.doi.org/10.1080/19490976.2021.1892441] [PMID: 33678130]
[77]
González-Morelo KJ, Vega-Sagardía M, Garrido D. Molecular insights into O-linked glycan utilization by gut microbes. Front Microbiol 2020; 11: 591568.
[http://dx.doi.org/10.3389/fmicb.2020.591568] [PMID: 33224127]
[78]
Liu MJ, Yang JY, Yan ZH, et al. Recent findings in Akkermansia muciniphila-regulated metabolism and its role in intestinal diseases. Clin Nutr 2022; 41(10): 2333-44.
[http://dx.doi.org/10.1016/j.clnu.2022.08.029] [PMID: 36113229]
[79]
Hino S, Mizushima T, Kaneko K, et al. Mucin-derived O-glycans act as endogenous fiber and sustain mucosal immune homeostasis via short-chain fatty acid production in rat cecum. J Nutr 2020; 150(10): 2656-65.
[http://dx.doi.org/10.1093/jn/nxaa097] [PMID: 32286621]
[80]
De Maesschalck C, Van Immerseel F, Eeckhaut V, De Baere S, Cnockaert M, Croubels S. Faecalicoccus acidiformans gen. nov., sp. nov., Isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae. Int Int J Syst Evol Microbiol 2014; 64(Pt_11): 3877-84.
[81]
Zhang H, Liu L, Cheng S, et al. Assessing the joint effects of brain aging and gut microbiota on the risks of psychiatric disorders. Brain Imaging Behav 2022; 16(4): 1504-15.
[http://dx.doi.org/10.1007/s11682-022-00630-z] [PMID: 35076893]
[82]
Liu W, Liu L, Deng Z, et al. Associations between impulsivity and fecal microbiota in individuals abstaining from methamphetamine. CNS Neurosci Ther 2024; 30(2): e14580.
[http://dx.doi.org/10.1111/cns.14580] [PMID: 38421126]
[83]
Alpino GCÁ, Pereira-Sol GA, Dias MM, Aguiar AS, Peluzio MCG. Beneficial effects of butyrate on brain functions: A view of epigenetic. Crit Rev Food Sci Nutr 2024; 64(12): 3961-70.
[http://dx.doi.org/10.1080/10408398.2022.2137776] [PMID: 36287024]
[84]
Anderson G. Physiological processes underpinning the ubiquitous benefits and interactions of melatonin, butyrate and green tea in neurodegenerative conditions. Melatonin Res 2024; 7(1): 20-46.
[http://dx.doi.org/10.32794/mr112500167]
[85]
Morris G, Anderson G, Maes M. Hypothalamic-pituitary-adrenal hypofunction in myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) as a consequence of activated immune-inflammatory and oxidative and nitrosative pathways. Mol Neurobiol 2017; 54(9): 6806-19.
[http://dx.doi.org/10.1007/s12035-016-0170-2] [PMID: 27766535]
[86]
Marinova Z, Leng Y, Leeds P, Chuang DM. Histone deacetylase inhibition alters histone methylation associated with heat shock protein 70 promoter modifications in astrocytes and neurons. Neuropharmacology 2011; 60(7-8): 1109-15.
[http://dx.doi.org/10.1016/j.neuropharm.2010.09.022] [PMID: 20888352]
[87]
Alam MA, Datta PK. Epigenetic regulation of excitatory amino acid transporter 2 in neurological disorders. Front Pharmacol 2019; 10: 1510.
[http://dx.doi.org/10.3389/fphar.2019.01510] [PMID: 31920679]
[88]
Miyagishi H, Tsuji M, Saito A, Miyagawa K, Takeda H. Inhibitory effect of yokukansan on the decrease in the hippocampal excitatory amino acid transporter EAAT2 in stress-maladaptive mice. J Tradit Complement Med 2017; 7(4): 371-4.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.005] [PMID: 29034181]
[89]
Anderson G, Maes M. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: Assessment, treatment and classification implications. Curr Top Med Chem 2020; 20(7): 524-39.
[http://dx.doi.org/10.2174/1568026620666200131094445] [PMID: 32003689]
[90]
Ameen AO, Nielsen SW, Kjær MW, Andersen JV, Westi EW, Freude KK. Metabolic preferences of astrocytes: Functional metabolic mapping reveals butyrate outcompetes acetate. J Cereb Blood Flow Metab 2025; 45(3): 528-41.
[91]
Anderson G. Depression pathophysiology: Astrocyte mitochondrial melatonergic pathway as crucial hub. Int J Mol Sci 2022; 24(1): 350.
[http://dx.doi.org/10.3390/ijms24010350] [PMID: 36613794]
[92]
Luo S, Zhao Y, Zhu S, et al. Flavonifractor plautii protects against elevated arterial stiffness. Circ Res 2023; 132(2): 167-81.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.321975] [PMID: 36575982]
[93]
Ogita T, Yamamoto Y, Mikami A, Shigemori S, Sato T, Shimosato T. Oral administration of Flavonifractor plautii strongly suppresses Th2 immune responses in mice. Front Immunol 2020; 11: 379.
[http://dx.doi.org/10.3389/fimmu.2020.00379] [PMID: 32184789]
[94]
Coello K, Hansen TH, Sørensen N, et al. Affective disorders impact prevalence of Flavonifractor and abundance of Christensenellaceae in gut microbiota. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110: 110300.
[http://dx.doi.org/10.1016/j.pnpbp.2021.110300] [PMID: 33713734]
[95]
Obi-Azuike C, Ebiai R, Gibson T, et al. A systematic review on gut–brain axis aberrations in bipolar disorder and methods of balancing the gut microbiota. Brain Behav 2023; 13(6): e3037.
[http://dx.doi.org/10.1002/brb3.3037] [PMID: 37127945]
[96]
Zhang Q, Yun Y, An H, et al. Gut microbiome and daytime function in Chinese patients with major depressive disorder. J Psychosom Res 2022; 157: 110787.
[http://dx.doi.org/10.1016/j.jpsychores.2022.110787] [PMID: 35344817]
[97]
Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 2016; 7(3): 216-34.
[http://dx.doi.org/10.1080/19490976.2016.1158395] [PMID: 26963713]
[98]
Pan L, Ye H, Pi X, et al. Effects of several flavonoids on human gut microbiota and its metabolism by in vitro simulated fermentation. Front Microbiol 2023; 14: 1092729.
[http://dx.doi.org/10.3389/fmicb.2023.1092729] [PMID: 36819019]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy