Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Synthesis, Characterization and Biochemical Analysis of Azo-metal complex of Embelin with Second Group Transition Metals

Author(s): Mohd Amin Mir* and Muhammad Waqar Ashraf

Volume 9, Issue 2, 2022

Published on: 01 December, 2021

Page: [155 - 162] Pages: 8

DOI: 10.2174/2213337208666211102104240

Price: $65

conference banner
Abstract

Aim: The objective of the work is to synthesize, characterize and biochemically analyze Azo-metal complex of Embelin with Second Group Transition Metals.

Background: The genus Embelia is a well-known herb and has considerable importance in the field of pharmaceutical chemistry. The plant species has been used considerably as a traditional medicine in Ayurveda, old Chinese medicine, and Siddha for a long time. The dried berries of this plant, called “vidanga” have boundless biochemical properties, like anthelmintic, carminative, antibacterial, antibiotic, and hypoglycemic.

Objective: Embelin, metal-embelin (EM) and azo-metal-embelin (EAM) complexes were synthesized, analysed for antioxidant and antimicrobial properties.

Methods: The metal-embelin (EM) complexes and metal-azo-embelin (EAM) complexes were synthesized by pure mixing of embelin, azo-embelin and metals viz, Tc, Ru, Rh, Pd, Ag and Cd. The embelin and EAN complexes were analysed by various spectroscopic techniques, viz, UV-visible, FTIR, NMR, TGA, MS and CHNS analysis.

Results: The results authenticate the reaction between metals, and bidentate embelin occurs via quinonic and enolic oxygen atoms as [M (Emb) 2 (H2O)] 2H2O and [M (Emb-Azo)2 (H2O)2]. The antioxidant results show that the complexation between metals and compounds decreases the antioxidant potential significantly. In contrast, the antimicrobial activity shows that cobalt and nickel embelin complexes showed more than 74% growth inhibition against the concerned microbes in comparison to embelin alone.

Conclusion: As the results are taken into consideration, the scavenging property of embelin shows the reduction in power upon complexation with metals and azo-metals. Also, embelin and its associates as metal-embelin and metal-azo-embelin can be used as antioxidant and antimicrobial agents significantly.

Keywords: Embelin, metal-azo-embelin complex, biochemical, spectroscopic analysis, transition metals.

Graphical Abstract
[1]
Anonymous, The wealth of India: a dictionary of Indian raw materials and industrial products – raw materials series. Publications and Information Directorate. CSIR, New Delhi, 2002, 3, 74-75.
[2]
Sivarajan, V.V.; Balachandran, I. Ayurvedic drugs and their plant sources; Oxford and IBH Publishing Co Pvt Ltd: India, 1994, pp. 267-269.
[3]
Souravi, K.; Rajasekharan, P.E. A review on the pharmacology of Embelia ribes burm.f.-a threatened medicinal plant. Int. J. Pharm. Bio. Sci., 2014, 5(2), 443-456.
[4]
Durg, S.; Veerapur, V.P.; Neelima, S.; Dhadde, S.B. Antidiabetic activity of Embelia ribes, embelin and its derivatives: A systematic review and meta-analysis. Biomed. Pharmacother., 2017, 86, 195-204.
[http://dx.doi.org/10.1016/j.biopha.2016.12.001] [PMID: 27984799]
[5]
Dhayalan, M.; Denison, M.I.J.; Jegadeeshwari, A.L.; Krishnan, K.; Gandhi, N.N. In vitro antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using Embelia ribes. Nat. Prod. Res., 2017, 31(4), 465-468.
[http://dx.doi.org/10.1080/14786419.2016.1166499] [PMID: 27104858]
[6]
Qin, Y.; Chen, J.P.; Li, C.Y.; Zhu, L.J.; Zhang, X.; Wang, J.H.; Yao, X.S. Flavonoid glycosides from the fruits of Embelia ribes and their anti-oxidant and α-glucosidase inhibitory activities. J. Asian Nat. Prod. Res., 2021, 23(8), 724-730.
[http://dx.doi.org/10.1080/10286020.2020.1776266] [PMID: 34253100]
[7]
Hao, K.; Ali, M.; Siddiqui, A.W. New compounds from the seeds of Embelia ribes Burm. Pharmazie, 2005, 60(1), 69-71.
[PMID: 15700782]
[8]
Manguro, L.O.A.; Ugi, I.; Lemmen, P. Flavonol glycosides from the leaves of Embelia keniensis. J. Chin. Chem. Soc. (Taipei), 2005, 52(1), 201-208.
[http://dx.doi.org/10.1002/jccs.200500029]
[9]
Lin, P.; Li, S.; Wang, S.; Yang, Y.; Shi, J. A nitrogen-containing 3-alkyl-1,4-benzoquinone and a gomphilactone derivative from Embelia ribes. J. Nat. Prod., 2006, 69(11), 1629-1632.
[http://dx.doi.org/10.1021/np060284m] [PMID: 17125236]
[10]
Dang, P.H.; Nguyen, H.X.; Nguyen, N.T.; Le, H.N.T.; Nguyen, M.T. α-Glucosidase inhibitors from the stems of Embelia ribes. Phytother. Res., 2014, 28(11), 1632-1636.
[http://dx.doi.org/10.1002/ptr.5175] [PMID: 24849650]
[11]
Bouzeko, I.L.T.; Ndontsa, B.L.; Mba Nguekeu, Y.M.; Awouafack, M.D.; Wong, C.P.; Simo Mpetga, J.D.; Mbouangouere, R.; Tane, P.; Morita, H. A new alkylbenzoquinone from Embelia rowlandii Gilg. (Myrsinaceae). Nat. Prod. Res., 2019, 33(13), 1909-1915.
[http://dx.doi.org/10.1080/14786419.2018.1479703] [PMID: 29798678]
[12]
Rini Vijayan, K.P.; Raghu, A.V. Polyphenolic profiling of two Embelia spp. endemic to South Western Ghats of India by liquid chromatography coupled with tandem mass spectrometry analysis. Nat. Prod. Res., 2019, 7, 1-5.
[http://dx.doi.org/10.1080/14786419.2019.1687475] [PMID: 31698951]
[13]
Rini Vijayan, K.P.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett., 2019, 52(10), 653-670.
[http://dx.doi.org/10.1080/00387010.2019.1682013]
[14]
Poojari, R. Embelin - a drug of antiquity: shifting the paradigm towards modern medicine. Expert Opin. Investig. Drugs, 2014, 23(3), 427-444.
[http://dx.doi.org/10.1517/13543784.2014.867016] [PMID: 24397264]
[15]
Xu, Y.; Liu, D.; Hu, J.; Ding, P.; Chen, M. Hyaluronic acid-coated pH sensitive poly (β-amino ester) nanoparticles for co-delivery of embelin and TRAIL plasmid for triple negative breast cancer treatment. Int. J. Pharm., 2020, 573, 118637.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118637] [PMID: 31550511]
[16]
Sheng, Z.; Ge, S.; Gao, M.; Jian, R.; Chen, X.; Xu, X.; Li, D.; Zhang, K.; Chen, W.H. Synthesis and biological activity of embelin and its derivatives: an overview. Mini Rev. Med. Chem., 2020, 20(5), 396-407.
[http://dx.doi.org/10.2174/1389557519666191015202723] [PMID: 31644404]
[17]
Shrimali, H.; Mandal, U.K.; Nivsarkar, M. Fabrication and evaluation of a medicated hydrogel film with embelin from Embelia ribes for wound healing activity. Futur. J. Pharm. Sci., 2019, 5(1), 12.
[http://dx.doi.org/10.1186/s43094-019-0011-z]
[18]
Rao, C.B.; Venkateswarlu, V. Analytical application of embelin. Tetrahedron, 1964, 20, 155.
[http://dx.doi.org/10.1016/S0040-4020(01)98407-8]
[19]
Gokhale, N.; Padhye, S.; Newton, C.; Pritchard, R. Hydroxynaphthoquinone metal complexes as antitumor agents x: synthesis, structure, spectroscopy and in vitro antitumor activity of 3-methyl-phenylazo lawsone derivatives and their metal complexes against human breast cancer cell line mcf-7. Met. Based Drugs, 2000, 7(3), 121-128.
[http://dx.doi.org/10.1155/MBD.2000.121] [PMID: 18475934]
[20]
Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B. Weil. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem., 2004, 84, 551.
[http://dx.doi.org/10.1016/S0308-8146(03)00278-4]
[21]
Brostow, W.; Hagg Lobland, H.E. Materials: Introduction and Applications; John Wiley & Sons, 2017.
[22]
Thaipong, K.; Boonprakob, U.; Crosby, K. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal., 2006, 19, 669.
[http://dx.doi.org/10.1016/j.jfca.2006.01.003]
[23]
Stern, J.L.; Hagerman, A.E.; Steinberg, P.D.; Mason, P.K. Phlorotannin-protein interactions. J. Chem. Ecol., 1996, 22(10), 1877-1899.
[http://dx.doi.org/10.1007/BF02028510] [PMID: 24227114]
[24]
Chitra, M.; Devi, C.S.; Sukumar, E. Antibacterial activity of embelin. Fitoterapia, 2003, 74(4), 401-403.
[http://dx.doi.org/10.1016/S0367-326X(03)00066-2] [PMID: 12781816]
[25]
Radhakrishnan, N.; Gnanamani, A.; Mandal, A.B. A potential antibacterial agent, Embelin - a natural benzoquinone extracted from Embelia ribes. Biol Med., 2011, 3(2), 1-7.
[26]
Vaara, M.; Nurminen, M. Outer membrane permeability barrier in Escherichia coli mutants that are defective in the late acyltransferases of lipid A biosynthesis. Antimicrob. Agents Chemother., 1999, 43(6), 1459-1462.
[http://dx.doi.org/10.1128/AAC.43.6.1459] [PMID: 10348770]
[27]
Chartrand, S.A.; Thompson, K.J.; Sanders, C.C. Taphylococcal pneumonia in infants and children. Semin. Pediatr. Infect. Dis., 1996, 7, 187.
[http://dx.doi.org/10.1016/S1045-1870(96)80007-0]
[28]
Hunoor, R.S.; Patil, B.R.; Badiger, D.S.; Vadavi, R.S.; Gudasi, K.B. Transition metal complexes of 3-aryl-2-substituted 1, 2-dihydroquinazolin-4(3H)-one derivatives: new class of analgesic and anti-inflammatory agents. Pharma Chem., 2010, 2, 116.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.072]
[29]
Dinkova-Kostova, A.T.; Talalay, P. Relation of structure of curcumin analogs to their potencies as inducers of Phase 2 detoxification enzymes. Carcinogenesis, 1999, 20(5), 911-914.
[http://dx.doi.org/10.1093/carcin/20.5.911] [PMID: 10334211]
[30]
Bogdanov, P.M.; Albesa, I.; Sperandeo, N.R.; Martanez, B.M. Synthesis, characterization and biological profile of metal and azo-metal complexes of embelin. Rev. Argent. Microbiol., 1993, 25, 119.
[PMID: 8140244]
[31]
Petra, D.; Tatjana, Z.; Boris, P.; Roman, J.; Uwe, K.; Andreja, P.; Iztok, T. Nuclease activity of 1, 10-phenanthroline-copper: kinetic mechanism. J. Inorg. Biochem., 2005, 99, 432.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy