Deep learning for Big Surveillance Data

Big Data can be termed as the collection of huge and massive volumes of data from various sources differentiated as structured, semi structured and unstructured which are analyzed computationally to get a better insight of the data. These analyzed data can be used to help the analysts and business personals in making faster and better decisions. Big data has all the possibilities of changing the future with the huge amount of data it has in store. The main importance of big surveillance data is to take smart decision making with cost and time reduction.

Combining big surveillance data with analytical and intelligent analytical tools many unpredicted tasks can be accomplished like recalculation of the overall risk of the organization, determining the failures and risks in advance, detecting the customer habit and behavior in real time basis and many more. Surveillance of huge amount of data can be linked with the certain important factors like security and governance. Even though big data has the capability of analyzing and predicting the outcomes in advance; certain issues may arise in the surveillance of data with respect to data security and personal privacy. Adopting advanced security measures ensuring the safety of privacy can lead the big surveillance data to many extends.

Deep learning has the capability to provide remarkable results in big surveillance data. It can also be used to extracting various patterns from complex information and data considering the huge volumes of data. Architectures like deep neural and deep belief network can be utilized in big surveillance data especially in the fields of speech, vision and image recognition processing, language processing bioinformatics etc. it serves as an advantage in analyzing the data and providing us with the in-depth solutions. It even has the ability to extract the information from unlabelled or unsupervised data in large volumes. So, implementing such deep learning algorithms, models and concepts in big surveillance data can enable us to identify the positive and negative aspects of the analysis. Further researches in the deep learning on big surveillance data may also project us towards the study of multi dimensionality, scalability, abstraction, distribution and proper adoption of multiple source information.

This special issue on “Deep learning for Big Surveillance Data” provides a multiple level deep learning medium to share innovative insights on the various aspects of data collection, processing, analyzing and retrieving of huge volumes of surveillance data. Topics of interest include but are not restricted to:

- Deep learning of applications in big data analytics
- Promises and challenges of big data analytics and deep learning techniques
- Recognition of surveillance images from labeled and unlabelled data using deep learning
- Big Data based unsupervised learning for audio classification using deep belief networks
- Recent methods for monitoring big surveillance data
- Deep learning on surveillance data for detection and prevention of disease outbreaks in healthcare
- Deep learning on automated data collection and processing of surveillance data
- Deep learning on advanced decision making based on the big public health surveillance data
- An improved deep learning architecture for identity identification using big surveillance data
- Deep learning for detecting and preventing privacy concerns in surveillance of big personal data
- Implementation of Discriminative deep metric learning in big surveillance data
- Deep learning tools for real-time forecasting of big surveillance data
- Deep learning for processing surveillance on big climate data
- Impact on privacy and security in collecting big surveillance data

Important dates

Paper Submission Deadline: Oct 5, 2019
Author notification: Dec 25, 2019
Revised papers submission: Feb 27, 2020
Final Acceptance: April 30, 2020

Guest Editors:

Dr. Gunasekaran Manogaran
Big Data Scientist
University of California, Davis, USA
Email Id: gmanogaran@ucdavis.edu
Google Scholar: https://scholar.google.com/citations?user=hO2LWCIAAAAJ&hl=en
Academia: http://ucdavis.academia.edu/GunasekaranManogaran

Dr. Gunasekaran Manogaran is a honorary Editor of ICSES Interdisciplinary Transactions on Cloud Computing, IoT, and Big Data. He is currently working as a Big Data Scientist in University of California, Davis, USA. He is a visiting scientist in Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. He received his PhD from the Vellore Institute of Technology University, India. He received his Bachelor of Engineering and Master of Technology from Anna University and Vellore Institute of Technology University respectively. He has worked as a Research Assistant for a project on spatial data mining funded by Indian Council of Medical Research, Government of India. His current research interests include data mining, big data analytics and soft computing. He is the author/co-author of papers in conferences, book chapters and journals. He got an award for young investigator from India and Southeast Asia by Bill and Melinda Gates Foundation, USA. He is a member of International Society for Infectious Diseases and Machine Intelligence Research labs. He is on the reviewer board of several international journals and has been a member of the program committee for several international/national conferences and workshops. He currently serves on Technical Program Committee for 2018 IEEE International Conference on Consumer Electronics (ICCE) in Las Vegas, USA. He is the guest editor for various international journals including IEEE, Springer, Elsevier, Inderscience, IGI, Taylor & Francis and Emerald publishing. He is a Co-Investigator for the project entitled “Agent Based Modeling of HIV epidemic in state of Telangana, India” funded by Pitt Public Health, Pittsburgh University, USA.

Dr. Hassan Qudrat-Ullah
Professor of Decision Sciences,
Dr. Hassan Qudrat-Ullah earned his Ph. D. (Decision Sciences) in 2002 from NUS Business School, National University of Singapore. Hassan did post-doctoral fellowship at Carnegie Mellon University, USA, in 2002-2003 before joining York University in 2003. His research contributions from 2011 to 2014 include two books Better Decision Making in Complex, Dynamics Tasks (Springer, 2014), and an edited volume Energy Policy Modeling in 21st Century (Springer, 2013); he also contributed seven journal articles, two book chapters and he has also been invited to several conference proceedings and invited talks. His journal articles are published in such journals as Decision Support Systems, Energy (2 articles), Telecommunication Systems, and International Journal of Technology Management. Hassan’s research interests include dynamic decision making, system dynamics modeling, computer-simulated interactive learning environments, and energy planning models. Hassan’s work has been published in Energy, Energy Policy, Decision Support Systems, Computers & Education, and Simulation & Gaming. He is the Editor-in-Chief of International Journal of Complexity in Applied Science and Technology and Associate Editor of International Journal of Global Energy Issues. He has published more than 70 research items and has been cited around 900 times. He has Google scholar h-index of 16 i10-index of 20; his Research Gate score is 24.39. He has received Excellence in Teaching Award, Excellence in Research Award and 2016-17 Dean's Award for Distinction in Research at York University.

Dr. Bharat S. Rawal Kshatriya
Assistant Professor,
College of Information Sciences and Technology,
Pennsylvania State University, Abington, Pennsylvania
Email Id: bsr17@psu.edu
Research Gate: https://www.researchgate.net/profile/Bharat_Rawal
Google Scholar: https://scholar.google.com/citations?user=51QS34MAAAAJ&hl=en

Dr. Bharat S. Rawal Kshatriya has completed his Doctor of Science in Information Technology at Towson University, Maryland in 2012. He is currently working on multiple projects like developing robust data compression technique, securing cloud storage, QoS, and DDoS mitigation and defense techniques. He has published more than 35 research works and his publishing works are based on Cloud Computing, Security Of Data, Storage Management, Cryptography, Data Privacy, Mobile Computing, Outsourcing, Protocols, Android (Operating System), Big Data, Internet, Internet Of Things, Linux, Microsoft Windows (Operating Systems), Web Services, Biometrics (Access Control), Building Management Systems, Computer Network Security, Data Analysis, Data Compression, Data Integrity, Database Management Systems, Digital Storage, File Organization, File Servers etc. Member of International Society for Computers and Their Applications (ISCA), IEEE, ACM IARIA, SAP, American Marketing Association (AMA), Honor Society of Marketing Mu Kappa Gama and International Student