Aims & Scope:
The recombinant protein process has become very popular for engineering a protein to have specific configurations and functions. Various recombinant proteins are commonly expressed using different expression and production systems such as yeast, bacteria, bacteriophages, animal and plants. Cost of expressed recombinant protein includes production, processing and purification costs. Plants are considered better industrial hosts. For many years, proponents of the idea of making pharmaceutical proteins in plants have claimed the low cost of this manufacturing process as the main argument. But manufacturing recombinant proteins through plant chloroplasts is an emerging trend. Recombinant proteins can be expressed in edible as well as non-edible plants; making end product cost-effective and environmentally friendly. This system lowers the cost of production, processing and purification of recombinant proteins up to 70%. It also provides encapsulation of expressed protein to protect against harsh stomach environment.

Keywords: Recombinant proteins, pharmaceutical proteins, chloroplasts, edible.

Subtopics:
The subtopics to be covered within this issue are listed below:

1. Recombinant proteins and types
2. Gene expression and regulation
3. Recombinant proteins expression systems
 a. Making recombinant proteins in microorganisms
 b. Making recombinant proteins in bacteriophages
 c. Making recombinant proteins in animals
 d. Making recombinant proteins in plants – master genome
 e. Making recombinant proteins in plants- organelles

Schedule:
- Manuscript submission deadline: December 2018
- Peer Review Due: April 2019
- Revision Due: May 2019
- Announcement of acceptance by the Guest Editors: May 2019
- Final manuscripts due: August 2019

Contacts:
Guest Editor: Muhammad Sarwar Khan
Affiliation: Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
Email: sarwarkhan_40@hotmail.com
Any queries should be addressed to ppl@benthamscience.net.