1. Title of your proposed Thematic Issue:

NANOCONTAINERS: FUNDAMENTALS AND APPLICATIONS

2. Aims and scope of your selected topic

Nanocontainer is a nanosized volume, contained the active substances. Thus nanocontainer prevents the direct contact between these active agents and the adjacent local environment.

Nanocontainer has been using mostly in pharmaceutics and material science. In pharmaceutical applications, nanocontainers has advantages over their micro counterparts, such as more efficient drug detoxification, higher intracellular uptake, better stability, less side effects and higher biocompatible with tissue and cells.

In materials science, such as coating technology, the nanocontainer can be well dispersed in a coating matrix, as the nanofillers, then they can release the embedded healing agents under critical conditions. Therefore, in presence of nanocontainers, the coating become smarter, stronger and more durable.

This thematic issue emphasizes the fundamental concepts and promising applications of nanocontainers in biomedicine, drug delivery, antibacterial, agri-food production, gas storage, smart coatings and anticorrosion.

3. Submission deadline: July 31, 2018
First round of review: September 28, 2018
Tentative publication date: December, 2018

4. Thematic Issue Editors (Guest Editors)

- Tuan Anh Nguyen, Institute for Tropical Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam; ntanh@itt.vast.vn

- Phuong Nguyen-Tri, Department of Chemistry, University of Montreal, Montreal, Canada; phuong.nguyen.tri@umontreal.ca
5. Table of Contents (with 9 tentative articles)

PART1: FUNDAMENTALS

ARTICLE 1: NANOCONTAINER: AN INTRODUCTION
Contributor names and affiliations:
- Dr. Tuan Anh Nguyen, Institute for Tropical Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam; ntanh@itt.vast.vn
- Dr. Phuong Nguyen-Tri, Department of Chemistry, University of Montreal, Montreal, Canada; phuong.nguyen.tri@umontreal.ca

1.1. Definition
1.2. Classification
1.3. Synthesis
1.4. Applications
1.5. Concluding remarks

ARTICLE 2: NANOCONTAINER: SYNTHESIS
Contributor names and affiliations:
- Prof. Dr. H. Fessi, Université de Lyon, F-69622, Lyon, France, Email: fessi@lagep.univ-lyon1.fr
- Prof. Dr. A. Elaissari, Université de Lyon, F-69622, Lyon, France, Email: elaissari@lagep.univ-lyon1.fr

2.1. Methods for the preparation of Polymer nanocontainers
• Supramolecular encapsulation,
• Hyperbranched and highly branched polymer based core-shell nanocontainers

2.2. Methods for the preparation of Inorganic nanoparticles- based nanocontainers

2.3. Clay based nanocontainers
• Halloysite clay nanotubes
• Anionic clays -Layered double hydroxides (LDH)

2.4. Methods for the preparation of Polyelectrolyte nanocontainers
2.5. Methods for the preparation of nanocapsules
• Nanoprecipitation method
• Emulsion–diffusion method
• Double emulsification method
• Emulsion-coacervation method
• Polymer-coating method
• Layer-by-layer method
2.6. Methods for the preparation of Hollow polymer nanocapsules
• The self-assembly approach
• The template approach
• The emulsion/suspension polymerization approach
• The dendrimer approach

ARTICLE 3: NANOCONTAINERS: MECHANISM OF LOADING AND RELEASE

Contributor names and affiliations:
- Prof. Dr. A. Stankiewicz, Department of Inorganic Chemistry, Wrocław University of Economics, Poland. email: alicja.stankiewicz@ue.wroc.pl

3.1. Introduction
3.2. Loading mechanism
• Direct loading
• Salinization loading

3.3. Release Mechanism
• Desorption controlled release
• pH-controlled release
• Ion-exchange control of release
• Release under mechanical rapture

3.4. Challenges

PART 2: APPLICATIONS

ARTICLE 4: NANOCONTAINERS IN SMART COATINGS

Contributor names and affiliations:
- Asst. Prof. Dr. T. P. D. Rajan, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum - 695 019, Kerala, India. Email: tpdrajan@niist.res.in, tpdrajan@gmail.com
- Dr. Ulaeto Sarah Bill, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum - 695 019, Kerala, India. Email: sarahbillmails@yahoo.com

4.1. Introduction
4.2. Self-healing coatings
4.3. Antifouling coatings
4.4. Self-cleaning coatings.
4.5. Antibacterial coatings
4.6. Cooling coatings
4.7. Flame-retardant coatings
4.8. Summary and perspectives
ARTICLE 5: INHIBITORS LOADED NANOCONTAINERS BASED COATINGS

Contributor names and affiliations:
- Prof. Dr. Susai Rajendran, RVS School of Engineering and Technology, Tamil Nadu, India; susairajendran@gmail.com

5.1. Introduction
5.2. Benzotriazole loaded nanocontainers
5.3. Mercaptobenzothiazole loaded nanocontainers
5.4. Mercaptobenzimidazole loaded nanocontainers
5.5. Hydroxyquinoline loaded nanocontainers
5.6. Dodecylamine loaded nanocontainers
5.7. Molybdate salts loaded nanocontainers
5.8. Lanthanide compounds loaded nanocontainers
5.9. Conductive polymers loaded nanocontainers
5.10. Challenges

ARTICLE 6: NANOCONTAINERS FOR DRUG DELIVERY

Contributor names and affiliations:
- Prof. Dr. Passirani, Université d’Angers, Angers, France, Email: catherine.passirani@univ-angers.fr
- Prof. Dr. Jianlin Shi, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China, Email: jlshi@mail.sic.ac.cn

6.1. Introduction
6.2. DNA-based nanocontainers
6.3. Magnetic nanocontainers based nanocontainers
6.4. Polymer nanocontainers
6.5. Layered double hydroxide based nanocontainers
6.6. Stimuli-responsive nanocarriers
6.7. Summary and perspectives

ARTICLE 7: NANOCONTAINERS IN MOLECULAR BIOLOGY

Contributor names and affiliations:
- Prof. Dr. Tatiana Trantidou, Institute of Chemical Biology, Imperial College London, United Kingdom. Email: t.trantidou@imperial.ac.uk
- Prof. Dr. B. Voit, Fachrichtung Chemie und Lebensmittelchemie, Technische Universität Dresden, Germany. Email: voit@ipfdd.de

7.1. Introduction
7.2. Compartmentalized biomimetic nanocontainers
7.3. Artificial cell-like systems
7.4. Synthetic biology
7.5. Synthetic vesicles
7.6. Enzymes based nanocontainers (nanoreactors)
7.7. Summary and perspectives
ARTICLE 8: NANOCONTAINERS FOR AGRI-FOOD PRODUCTION

Contributor names and affiliations:
- Dr. Bhupinder Singh Sekhon, Institute of Pharmaceutical Sciences, Ludhiana, India. Email: sekhon224@yahoo.com

8.1. Overview
8.2. Nanocontainers for applying pesticides and fertilizers (nanopesticide and nanofertilizers)
8.3. Nanocontainers for nanofeed additives (animal nanofeed applications)
8.4. Nanocontainers for aquaculture and fisheries
8.5. Summary and perspectives

ARTICLE 9: NANOCONTAINERS FOR GAS STORAGE

Contributor names and affiliations:
- Prof. Dr. Zhi-Feng Liu, Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, China Email: zfliu@cuhk.edu.hk
- Prof. Dr. Paul A. Webley, Department of Chemical Engineering, Monash University, Australia. Email: paul.webley@monash.edu

9.1. Introduction
9.2. Metal organic framework (MOF) based nanocontainers
9.3. Carbon nanocontainers
9.4. Zeolites based nanocontainers
9.5. Challenges