Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Hyperferritinaemia: An Iron Sword of Autoimmunity

Author(s): Joanna Giemza-Stokłosa, Md. Asiful Islam and Przemysław J. Kotyla*

Volume 25, Issue 27, 2019

Page: [2909 - 2918] Pages: 10

DOI: 10.2174/1381612825666190709202804

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Ferritin is a molecule that plays many roles being the storage for iron, signalling molecule, and modulator of the immune response.

Methods: Different electronic databases were searched in a non-systematic way to find out the literature of interest.

Results: The level of ferritin rises in many inflammatory conditions including autoimmune disorders. However, in four inflammatory diseases (i.e., adult-onset Still’s diseases, macrophage activation syndrome, catastrophic antiphospholipid syndrome, and sepsis), high levels of ferritin are observed suggesting it as a remarkable biomarker and pathological involvement in these diseases. Acting as an acute phase reactant, ferritin is also involved in the cytokine-associated modulator of the immune response as well as a regulator of cytokine synthesis and release which are responsible for the inflammatory storm.

Conclusion: This review article presents updated information on the role of ferritin in inflammatory and autoimmune diseases with an emphasis on hyperferritinaemic syndrome.

Keywords: Hyperferritinaemia, hyperferritinaemic syndrome, autoimmunity, autoimmune disease, catastrophic antiphospholipid syndrome, macrophage activation syndrome, sepsis, adult-onset Still's disease.

[1]
Ford GC, Harrison PM, Rice DW, et al. Ferritin: Design and formation of an iron-storage molecule. Philos Trans R Soc Lond B Biol Sci 1984; 304(1121): 551-65.
[http://dx.doi.org/10.1098/rstb.1984.0046] [PMID: 6142491]
[2]
Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation. IUBMB Life 2017; 69(6): 414-22.
[http://dx.doi.org/10.1002/iub.1621] [PMID: 28349628]
[3]
Harrison PM, Arosio P. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1996; 1275(3): 161-203.
[http://dx.doi.org/10.1016/0005-2728(96)00022-9] [PMID: 8695634]
[4]
Chiou B, Connor JR. Emerging and dynamic biomedical uses of ferritin. Pharmaceuticals (Basel) 2018; 11(4)E124
[http://dx.doi.org/10.3390/ph11040124] [PMID: 30428583]
[5]
Kuhn LC. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics 2015; 7(2): 232-43.
[http://dx.doi.org/10.1039/C4MT00164H]
[6]
Li L, Fang CJ, Ryan JC, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci USA 2010; 107(8): 3505-10.
[http://dx.doi.org/10.1073/pnas.0913192107] [PMID: 20133674]
[7]
Drakesmith H, Nemeth E, Ganz T. Ironing out Ferroportin. Cell Metab 2015; 22(5): 777-87.
[http://dx.doi.org/10.1016/j.cmet.2015.09.006] [PMID: 26437604]
[8]
Tomkins A. Assessing micronutrient status in the presence of inflammation. J Nutr 2003; 133(5)(Suppl. 2): 1649S-55S.
[http://dx.doi.org/10.1093/jn/133.5.1649S] [PMID: 12730480]
[9]
Feelders RA, Vreugdenhil G, Eggermont AM, Kuiper-Kramer PA, van Eijk HG, Swaak AJ. Regulation of iron metabolism in the acute-phase response: Interferon gamma and tumour necrosis factor alpha induce hypoferraemia, ferritin production and a decrease in circulating transferrin receptors in cancer patients. Eur J Clin Invest 1998; 28(7): 520-7.
[http://dx.doi.org/10.1046/j.1365-2362.1998.00323.x] [PMID: 9726030]
[10]
Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340(6): 448-54.
[http://dx.doi.org/10.1056/NEJM199902113400607] [PMID: 9971870]
[11]
Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood 2002; 99(10): 3505-16.
[http://dx.doi.org/10.1182/blood.V99.10.3505] [PMID: 11986201]
[12]
Sharif K, Vieira Borba V, Zandman-Goddard G, Shoenfeld Y. Eppur Si Muove: Ferritin is essential in modulating inflammation. Clin Exp Immunol 2018; 191(2): 149-50.
[http://dx.doi.org/10.1111/cei.13069] [PMID: 29023673]
[13]
Fautrel B. Ferritin levels in adult Still’s disease: Any sugar? Joint Bone Spine 2002; 69(4): 355-7.
[http://dx.doi.org/10.1016/S1297-319X(02)00409-8] [PMID: 12184429]
[14]
Bishara R, Braun-Moscovici Y, Dagan A, et al. Severe hyperferritinemia--a clue for severe hepatitis in a patient with adult-onset Still’s disease. Clin Rheumatol 2016; 35(3): 795-800.
[http://dx.doi.org/10.1007/s10067-014-2829-2] [PMID: 25413736]
[15]
Lorcerie B, Audia S, Samson M, et al. Diagnosis of hyperferritinemia in routine clinical practice. Presse Med 2017; 46(12 Pt 2): e329-38.
[http://dx.doi.org/10.1016/j.lpm.2017.09.028] [PMID: 29150231]
[16]
Knovich MA, Storey JA, Coffman LG, Torti SV, Torti FM. Ferritin for the clinician. Blood Rev 2009; 23(3): 95-104.
[http://dx.doi.org/10.1016/j.blre.2008.08.001] [PMID: 18835072]
[17]
Schaffner M, Rosenstein L, Ballas Z, Suneja M. Significance of hyperferritinemia in hospitalized adults. Am J Med Sci 2017; 354(2): 152-8.
[http://dx.doi.org/10.1016/j.amjms.2017.04.016] [PMID: 28864373]
[18]
Orbach H, Zandman-Goddard G, Amital H, et al. Novel biomarkers in autoimmune diseases: Prolactin, ferritin, vitamin D, and TPA levels in autoimmune diseases. Ann N Y Acad Sci 2007; 1109: 385-400.
[http://dx.doi.org/10.1196/annals.1398.044] [PMID: 17785327]
[19]
Zandman-Goddard G, Shoenfeld Y. Ferritin in autoimmune diseases. Autoimmun Rev 2007; 6(7): 457-63.
[http://dx.doi.org/10.1016/j.autrev.2007.01.016] [PMID: 17643933]
[20]
Zandman-Goddard G, Shoenfeld Y. Hyperferritinemia in autoimmunity. Isr Med Assoc J 2008; 10(1): 83-4.
[PMID: 18300583]
[21]
Agmon-Levin N, Rosário C, Katz BS, et al. Ferritin in the antiphospholipid syndrome and its catastrophic variant (cAPS). Lupus 2013; 22(13): 1327-35.
[http://dx.doi.org/10.1177/0961203313504633] [PMID: 24036580]
[22]
Bennett TD, Hayward KN, Farris RW, Ringold S, Wallace CA, Brogan TV. Very high serum ferritin levels are associated with increased mortality and critical care in pediatric patients. Pediatr Crit Care Med 2011; 12(6): e233-6.
[http://dx.doi.org/10.1097/PCC.0b013e31820abca8] [PMID: 21263363]
[23]
Schulert GS, Canna SW. Convergent pathways of the hyperferritinemic syndromes. Int Immunol 2018; 30(5): 195-203.
[http://dx.doi.org/10.1093/intimm/dxy012] [PMID: 29420734]
[24]
Streetz KL, Wüstefeld T, Klein C, Manns MP, Trautwein C. Mediators of inflammation and acute phase response in the liver. Cell Mol Biol 2001; 47(4): 661-73.
[PMID: 11502073]
[25]
Fautrel B, Le Moël G, Saint-Marcoux B, et al. Diagnostic value of ferritin and glycosylated ferritin in adult onset Still’s disease. J Rheumatol 2001; 28(2): 322-9.
[PMID: 11246670]
[26]
Tran TN, Eubanks SK, Schaffer KJ, Zhou CY, Linder MC. Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron. Blood 1997; 90(12): 4979-86.
[PMID: 9389717]
[27]
Fan Y, Yamada T, Shimizu T, et al. Ferritin expression in rat hepatocytes and Kupffer cells after lead nitrate treatment. Toxicol Pathol 2009; 37(2): 209-17.
[http://dx.doi.org/10.1177/0192623308328544] [PMID: 19332663]
[28]
Zager RA, Johnson AC, Hanson SY. Parenteral iron nephrotoxicity: Potential mechanisms and consequences. Kidney Int 2004; 66(1): 144-56.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00716.x] [PMID: 15200421]
[29]
Cohen LA, Gutierrez L, Weiss A, et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 2010; 116(9): 1574-84.
[http://dx.doi.org/10.1182/blood-2009-11-253815] [PMID: 20472835]
[30]
Korolnek T, Hamza I. Macrophages and iron trafficking at the birth and death of red cells. Blood 2015; 125(19): 2893-7.
[http://dx.doi.org/10.1182/blood-2014-12-567776] [PMID: 25778532]
[31]
Ben m'rad M, Leclerc-Mercier S, Blanche P, et al. Drug-induced hypersensitivity syndrome: Clinical and biologic disease patterns in 24 patients. Medicine (Baltimore) 2009; 88(3): 131-40.
[32]
Mitrovic S, Fautrel B. New markers for adult-onset Still’s disease. Joint Bone Spine 2018; 85(3): 285-93.
[http://dx.doi.org/10.1016/j.jbspin.2017.05.011] [PMID: 28529117]
[33]
Fautrel B. Adult-onset Still disease. Best Pract Res Clin Rheumatol 2008; 22(5): 773-92.
[http://dx.doi.org/10.1016/j.berh.2008.08.006] [PMID: 19028363]
[34]
Lambotte O, Cacoub P, Costedoat N, Le Moel G, Amoura Z, Piette JC. High ferritin and low glycosylated ferritin may also be a marker of excessive macrophage activation. J Rheumatol 2003; 30(5): 1027-8.
[PMID: 12734900]
[35]
Moldawer LL, Marano MA, Wei H, et al. Cachectin/tumor necrosis factor-alpha alters red blood cell kinetics and induces anemia in vivo. FASEB J 1989; 3(5): 1637-43.
[http://dx.doi.org/10.1096/fasebj.3.5.2784116] [PMID: 2784116]
[36]
Ferring-Appel D, Hentze MW, Galy B. Cell-autonomous and systemic context-dependent functions of iron regulatory protein 2 in mammalian iron metabolism. Blood 2009; 113(3): 679-87.
[http://dx.doi.org/10.1182/blood-2008-05-155093] [PMID: 18922858]
[37]
Letendre ED, Holbein BE. Mechanism of impaired iron release by the reticuloendothelial system during the hypoferremic phase of experimental Neisseria meningitidis infection in mice. Infect Immun 1984; 44(2): 320-5.
[PMID: 6425220]
[38]
Alvarez-Hernández X, Licéaga J, McKay IC, Brock JH. Induction of hypoferremia and modulation of macrophage iron metabolism by tumor necrosis factor. Lab Invest 1989; 61(3): 319-22.
[PMID: 2788773]
[39]
Chakravarti S, Sabatos CA, Xiao S, et al. Tim-2 regulates T helper type 2 responses and autoimmunity. J Exp Med 2005; 202(3): 437-44.
[http://dx.doi.org/10.1084/jem.20050308] [PMID: 16043519]
[40]
McIntire JJ, Umetsu DT, DeKruyff RH. TIM-1, a novel allergy and asthma susceptibility gene. Springer Semin Immunopathol 2004; 25(3-4): 335-48.
[http://dx.doi.org/10.1007/s00281-003-0141-3] [PMID: 15007635]
[41]
Monney L, Sabatos CA, Gaglia JL, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002; 415(6871): 536-41.
[http://dx.doi.org/10.1038/415536a] [PMID: 11823861]
[42]
Santiago C, Ballesteros A, Tami C, Martínez-Muñoz L, Kaplan GG, Casasnovas JM. Structures of T Cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family. Immunity 2007; 26(3): 299-310.
[http://dx.doi.org/10.1016/j.immuni.2007.01.014] [PMID: 17363299]
[43]
Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH. TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 2010; 235(1): 172-89.
[http://dx.doi.org/10.1111/j.0105-2896.2010.00903.x] [PMID: 20536563]
[44]
Li JY, Paragas N, Ned RM, et al. Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev Cell 2009; 16(1): 35-46.
[http://dx.doi.org/10.1016/j.devcel.2008.12.002] [PMID: 19154717]
[45]
Chen TT, Li L, Chung DH, et al. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med 2005; 202(7): 955-65.
[http://dx.doi.org/10.1084/jem.20042433] [PMID: 16203866]
[46]
Han J, Seaman WE, Di X, et al. Iron uptake mediated by binding of H-ferritin to the TIM-2 receptor in mouse cells. PLoS One 2011; 6(8)e23800
[http://dx.doi.org/10.1371/journal.pone.0023800] [PMID: 21886823]
[47]
Chiou B, Neal EH, Bowman AB, Lippmann ES, Simpson IA, Connor JR. Endothelial cells are critical regulators of iron transport in a model of the human blood-brain barrier. J Cereb Blood Flow Meta 2018. : 271678X18783372
[http://dx.doi.org/10.1177/0271678X18783372]
[48]
Li R, Luo C, Mines M, Zhang J, Fan GH. Chemokine CXCL12 induces binding of ferritin heavy chain to the chemokine receptor CXCR4, alters CXCR4 signaling, and induces phosphorylation and nuclear translocation of ferritin heavy chain. J Biol Chem 2006; 281(49): 37616-27.
[http://dx.doi.org/10.1074/jbc.M607266200] [PMID: 17056593]
[49]
Kernan KF, Carcillo JA. Hyperferritinemia and inflammation. Int Immunol 2017; 29(9): 401-9.
[http://dx.doi.org/10.1093/intimm/dxx031] [PMID: 28541437]
[50]
Broxmeyer HE, Williams DE, Geissler K, et al. Suppressive effects in vivo of purified recombinant human H-subunit (acidic) ferritin on murine myelopoiesis. Blood 1989; 73(1): 74-9.
[PMID: 2910370]
[51]
Fargion S, Fracanzani AL, Brando B, Arosio P, Levi S, Fiorelli G. Specific binding sites for H-ferritin on human lymphocytes: modulation during cellular proliferation and potential implication in cell growth control. Blood 1991; 78(4): 1056-61.
[PMID: 1831058]
[52]
Gray CP, Arosio P, Hersey P. Heavy chain ferritin activates regulatory T cells by induction of changes in dendritic cells. Blood 2002; 99(9): 3326-34.
[http://dx.doi.org/10.1182/blood.V99.9.3326] [PMID: 11964300]
[53]
Pham CG, Bubici C, Zazzeroni F, et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 2004; 119(4): 529-42.
[http://dx.doi.org/10.1016/j.cell.2004.10.017] [PMID: 15537542]
[54]
Miller LL, Miller SC, Torti SV, Tsuji Y, Torti FM. Iron-independent induction of ferritin H chain by tumor necrosis factor. Proc Natl Acad Sci USA 1991; 88(11): 4946-50.
[http://dx.doi.org/10.1073/pnas.88.11.4946] [PMID: 2052577]
[55]
Sottile R, Federico G, Garofalo C, et al. Iron and ferritin modulate MHC class I expression and NK cell recognition. Front Immunol 2019; 10: 224.
[http://dx.doi.org/10.3389/fimmu.2019.00224] [PMID: 30873154]
[56]
Recalcati S, Locati M, Marini A, et al. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 2010; 40(3): 824-35.
[http://dx.doi.org/10.1002/eji.200939889] [PMID: 20039303]
[57]
Silva-Gomes S, Bouton C, Silva T, et al. Mycobacterium avium infection induces H-ferritin expression in mouse primary macrophages by activating Toll-like receptor 2. PLoS One 2013; 8(12)e82874
[http://dx.doi.org/10.1371/journal.pone.0082874] [PMID: 24349383]
[58]
Styś A, Galy B, Starzyński RR, et al. Iron regulatory protein 1 outcompetes iron regulatory protein 2 in regulating cellular iron homeostasis in response to nitric oxide. J Biol Chem 2011; 286(26): 22846-54.
[http://dx.doi.org/10.1074/jbc.M111.231902] [PMID: 21566147]
[59]
Fan Y, Zhang J, Cai L, et al. The effect of anti-inflammatory properties of ferritin light chain on lipopolysaccharide-induced inflammatory response in murine macrophages. Biochim Biophys Acta 2014; 1843(11): 2775-83.
[http://dx.doi.org/10.1016/j.bbamcr.2014.06.015] [PMID: 24983770]
[60]
Rosário C, Zandman-Goddard G, Meyron-Holtz EG, D’Cruz DP, Shoenfeld Y. The hyperferritinemic syndrome: Macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome. BMC Med 2013; 11: 185.
[http://dx.doi.org/10.1186/1741-7015-11-185] [PMID: 23968282]
[61]
Fujii T, Nojima T, Yasuoka H, et al. Cytokine and immunogenetic profiles in Japanese patients with adult Still’s disease. Association with chronic articular disease. Rheumatology (Oxford) 2001; 40(12): 1398-404.
[http://dx.doi.org/10.1093/rheumatology/40.12.1398] [PMID: 11752512]
[62]
Chen DY, Lan JL, Lin FJ, Hsieh TY. Proinflammatory cytokine profiles in sera and pathological tissues of patients with active untreated adult onset Still’s disease. J Rheumatol 2004; 31(11): 2189-98.
[PMID: 15517632]
[63]
Choi JH, Suh CH, Lee YM, et al. Serum cytokine profiles in patients with adult onset Still’s disease. J Rheumatol 2003; 30(11): 2422-7.
[PMID: 14677188]
[64]
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25(12): 677-86.
[http://dx.doi.org/10.1016/j.it.2004.09.015] [PMID: 15530839]
[65]
Matsui K, Tsuchida T, Hiroishi K, et al. High serum level of macrophage-colony stimulating factor (M-CSF) in adult-onset Still’s disease. Rheumatology (Oxford) 1999; 38(5): 477-8.
[http://dx.doi.org/10.1093/rheumatology/38.5.477] [PMID: 10371293]
[66]
Mehta B, Efthimiou P. Ferritin in adult-onset still’s disease: Just a useful innocent bystander? Int J Inflamm 2012; 2012298405
[PMID: 22536541]
[67]
Chen DY, Lan JL, Lin FJ, Hsieh TY, Wen MC. Predominance of Th1 cytokine in peripheral blood and pathological tissues of patients with active untreated adult onset Still’s disease. Ann Rheum Dis 2004; 63(10): 1300-6.
[http://dx.doi.org/10.1136/ard.2003.013680] [PMID: 15361391]
[68]
Colafrancesco S, Priori R, Alessandri C, et al. sCD163 in AOSD: A biomarker for macrophage activation related to hyperferritinemia. Immunol Res 2014; 60(2-3): 177-83.
[http://dx.doi.org/10.1007/s12026-014-8563-7] [PMID: 25388964]
[69]
Ruscitti P, Cipriani P, Ciccia F, et al. H-ferritin and CD68(+)/H-ferritin(+) monocytes/macrophages are increased in the skin of adult-onset Still’s disease patients and correlate with the multi-visceral involvement of the disease. Clin Exp Immunol 2016; 186(1): 30-8.
[http://dx.doi.org/10.1111/cei.12826] [PMID: 27317930]
[70]
Waite JC, Skokos D. Th17 response and inflammatory autoimmune diseases. Int J Inflamm 2012; 2012819467
[http://dx.doi.org/10.1155/2012/819467] [PMID: 22229105]
[71]
Chen DY, Chen YM, Lan JL, Lin CC, Chen HH, Hsieh CW. Potential role of Th17 cells in the pathogenesis of adult-onset Still’s disease. Rheumatology (Oxford) 2010; 49(12): 2305-12.
[http://dx.doi.org/10.1093/rheumatology/keq284] [PMID: 20837500]
[72]
Ruscitti P, Cipriani P, Di Benedetto P, et al. Increased level of H-ferritin and its imbalance with L-ferritin, in bone marrow and liver of patients with adult onset Still’s disease, developing macrophage activation syndrome, correlate with the severity of the disease. Autoimmun Rev 2015; 14(5): 429-37.
[http://dx.doi.org/10.1016/j.autrev.2015.01.004] [PMID: 25599955]
[73]
Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev 2018; 281(1): 138-53.
[http://dx.doi.org/10.1111/imr.12616] [PMID: 29247988]
[74]
Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol 2013; 25(4): 305-12.
[http://dx.doi.org/10.1016/j.smim.2013.10.009] [PMID: 24211039]
[75]
Chen DY, Chen YM, Chen HH, Hsieh CW, Lin CC, Lan JL. The associations of circulating CD4+CD25high regulatory T cells and TGF-β with disease activity and clinical course in patients with adult-onset Still’s disease. Connect Tissue Res 2010; 51(5): 370-7.
[http://dx.doi.org/10.3109/03008200903461462] [PMID: 20388015]
[76]
Doligalska M, Brodaczewska K, Donskow-Łysoniewska K. The antiapoptotic activity of Heligmosomoides polygyrus antigen fractions. Parasite Immunol 2012; 34(12): 589-603.
[http://dx.doi.org/10.1111/pim.12006] [PMID: 23009264]
[77]
Chen DY, Hsieh TY, Hsieh CW, Lin FJ, Lan JL. Increased apoptosis of peripheral blood lymphocytes and its association with interleukin-18 in patients with active untreated adult-onset Still’s disease. Arthritis Rheum 2007; 57(8): 1530-8.
[http://dx.doi.org/10.1002/art.23088] [PMID: 18050226]
[78]
Islam MA, Khandker SS, Alam F, Kamal MA, Gan SH. Genetic risk factors in thrombotic primary antiphospholipid syndrome: A systematic review with bioinformatic analyses. Autoimmun Rev 2018; 17(3): 226-43.
[http://dx.doi.org/10.1016/j.autrev.2017.10.014] [PMID: 29355608]
[79]
Espinosa G, Rodríguez-Pintó I, Cervera R. Catastrophic antiphospholipid syndrome: An update. Panminerva Med 2017; 59(3): 254-68.
[PMID: 28488841]
[80]
Linnemann B. Antiphospholipid syndrome - an update. Vasa 2018; 47(6): 451-64.
[http://dx.doi.org/10.1024/0301-1526/a000723] [PMID: 30205764]
[81]
Islam MA, Alam F, Sasongko TH, Gan SH. Antiphospholipid antibody-mediated thrombotic mechanisms in antiphospholipid syndrome: Towards pathophysiology-based treatment. Curr Pharm Des 2016; 22(28): 4451-69.
[http://dx.doi.org/10.2174/1381612822666160527160029] [PMID: 27229722]
[82]
Zandman-Goddard G, Orbach H, Agmon-Levin N, et al. Hyperferritinemia is associated with serologic antiphospholipid syndrome in SLE patients. Clin Rev Allergy Immunol 2013; 44(1): 23-30.
[http://dx.doi.org/10.1007/s12016-011-8264-0] [PMID: 21394428]
[83]
Pacheco Y, Barahona-Correa J, Monsalve DM, et al. Cytokine and autoantibody clusters interaction in systemic lupus erythematosus. J Transl Med 2017; 15(1): 239.
[http://dx.doi.org/10.1186/s12967-017-1345-y] [PMID: 29178890]
[84]
Müller-Calleja N, Hollerbach A, Häuser F, Canisius A, Orning C, Lackner KJ. Antiphospholipid antibody-induced cellular responses depend on epitope specificity: Implications for treatment of antiphospholipid syndrome. J Thromb Haemost 2017; 15(12): 2367-76.
[http://dx.doi.org/10.1111/jth.13865] [PMID: 29024318]
[85]
Broxmeyer HE, Bognacki J, Dorner MH, de Sousa M. Identification of leukemia-associated inhibitory activity as acidic isoferritins. A regulatory role for acidic isoferritins in the production of granulocytes and macrophages. J Exp Med 1981; 153(6): 1426-44.
[http://dx.doi.org/10.1084/jem.153.6.1426] [PMID: 6972999]
[86]
Broxmeyer HE, Cooper S, Levi S, Arosio P. Mutated recombinant human heavy-chain ferritins and myelosuppression in vitro and in vivo: A link between ferritin ferroxidase activity and biological function. Proc Natl Acad Sci USA 1991; 88(3): 770-4.
[http://dx.doi.org/10.1073/pnas.88.3.770] [PMID: 1992468]
[87]
Vercellotti GM, Khan FB, Nguyen J, et al. H-ferritin ferroxidase induces cytoprotective pathways and inhibits microvascular stasis in transgenic sickle mice. Front Pharmacol 2014; 5: 79.
[http://dx.doi.org/10.3389/fphar.2014.00079] [PMID: 24860503]
[88]
Bracaglia C, Prencipe G, De Benedetti F. Macrophage activation syndrome: Different mechanisms leading to a one clinical syndrome. Pediatr Rheumatol Online J 2017; 15(1): 5.
[http://dx.doi.org/10.1186/s12969-016-0130-4] [PMID: 28095869]
[89]
Stéphan JL, Zeller J, Hubert P, Herbelin C, Dayer JM, Prieur AM. Macrophage activation syndrome and rheumatic disease in childhood: A report of four new cases. Clin Exp Rheumatol 1993; 11(4): 451-6.
[PMID: 8403593]
[90]
Filipovich AH. Hemophagocytic lymphohistiocytosis (HLH) and related disorders. Hematology Am Soc Hematol Educ Program 2009; 127-31.
[91]
Al-Samkari H, Berliner N. Hemophagocytic Lymphohistiocytosis. Annu Rev Pathol 2018; 13: 27-49.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043625] [PMID: 28934563]
[92]
Risma KA, Marsh RA. Hemophagocytic lymphohistiocytosis: Clinical presentations and diagnosis. J Allergy Clin Immunol Pract 2019; 7(3): 824-32.
[http://dx.doi.org/10.1016/j.jaip.2018.11.050] [PMID: 30557712]
[93]
Sakumura N, Shimizu M, Mizuta M, Inoue N, Nakagishi Y, Yachie A. Soluble CD163, a unique biomarker to evaluate the disease activity, exhibits macrophage activation in systemic juvenile idiopathic arthritis. Cytokine 2018; 110: 459-65.
[http://dx.doi.org/10.1016/j.cyto.2018.05.017] [PMID: 29801971]
[94]
Stepp SE, Dufourcq-Lagelouse R, Le Deist F, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 1999; 286(5446): 1957-9.
[http://dx.doi.org/10.1126/science.286.5446.1957] [PMID: 10583959]
[95]
Feldmann J, Callebaut I, Raposo G, et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 2003; 115(4): 461-73.
[http://dx.doi.org/10.1016/S0092-8674(03)00855-9] [PMID: 14622600]
[96]
zur Stadt U, Schmidt S, Kasper B, et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet 2005; 14(6): 827-34.
[http://dx.doi.org/10.1093/hmg/ddi076] [PMID: 15703195]
[97]
Arneson LN, Brickshawana A, Segovis CM, Schoon RA, Dick CJ, Leibson PJ. Cutting edge: Syntaxin 11 regulates lymphocytemediated secretion and cytotoxicity Journal of immunology (Baltimore, Md : 1950) 2007; 179(6): 3397-401.
[http://dx.doi.org/10.4049/jimmunol.179.6.3397]
[98]
Karakike E, Giamarellos-Bourboulis EJ. Macrophage activation-like syndrome: A distinct entity leading to early death in sepsis. Front Immunol 2019; 10: 55.
[http://dx.doi.org/10.3389/fimmu.2019.00055] [PMID: 30766533]
[99]
Zhang JR, Liang XL, Jin R, Lu G. [HLH-2004 protocol: Diagnostic and therapeutic guidelines for childhood hemophagocytic lymphohistiocytosis] Zhongguo dang dai er ke za zhi. 2013; 15(8): 686-8.
[100]
Ravelli A. Macrophage activation syndrome. Curr Opin Rheumatol 2002; 14(5): 548-52.
[http://dx.doi.org/10.1097/00002281-200209000-00012] [PMID: 12192253]
[101]
Tada Y, Inokuchi S, Maruyama A, et al. Are the 2016 EULAR/ACR/PRINTO classification criteria for macrophage activation syndrome applicable to patients with adult-onset Still’s disease? Rheumatol Int 2019; 39(1): 97-104.
[http://dx.doi.org/10.1007/s00296-018-4114-1] [PMID: 30051293]
[102]
Fall N, Barnes M, Thornton S, et al. Gene expression profiling of peripheral blood from patients with untreated new-onset systemic juvenile idiopathic arthritis reveals molecular heterogeneity that may predict macrophage activation syndrome. Arthritis Rheum 2007; 56(11): 3793-804.
[http://dx.doi.org/10.1002/art.22981] [PMID: 17968951]
[103]
Ruddell RG, Hoang-Le D, Barwood JM, et al. Ferritin functions as a proinflammatory cytokine via iron-independent protein kinase C zeta/nuclear factor kappaB-regulated signaling in rat hepatic stellate cells. Hepatology 2009; 49(3): 887-900.
[http://dx.doi.org/10.1002/hep.22716] [PMID: 19241483]
[104]
Ruscitti P, Cipriani P, Di Benedetto P, et al. H-ferritin and proinflammatory cytokines are increased in the bone marrow of patients affected by macrophage activation syndrome. Clin Exp Immunol 2018; 191(2): 220-8.
[http://dx.doi.org/10.1111/cei.13057] [PMID: 28960260]
[105]
Recalcati S, Invernizzi P, Arosio P, Cairo G. New functions for an iron storage protein: The role of ferritin in immunity and autoimmunity. J Autoimmun 2008; 30(1-2): 84-9.
[http://dx.doi.org/10.1016/j.jaut.2007.11.003] [PMID: 18191543]
[106]
Wei Y, Miller SC, Tsuji Y, Torti SV, Torti FM. Interleukin 1 induces ferritin heavy chain in human muscle cells. Biochem Biophys Res Commun 1990; 169(1): 289-96.
[http://dx.doi.org/10.1016/0006-291X(90)91466-6] [PMID: 2350350]
[107]
Piñero DJ, Hu J, Cook BM, Scaduto RC Jr, Connor JR. Interleukin-1beta increases binding of the iron regulatory protein and the synthesis of ferritin by increasing the labile iron pool. Biochim Biophys Acta 2000; 1497(3): 279-88.
[http://dx.doi.org/10.1016/S0167-4889(00)00066-5] [PMID: 10996652]
[108]
Rodriguez-Manzanet R, DeKruyff R, Kuchroo VK, Umetsu DT. The costimulatory role of TIM molecules. Immunol Rev 2009; 229(1): 259-70.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00772.x] [PMID: 19426227]
[109]
Chiou B, Lucassen E, Sather M, Kallianpur A, Connor J. Semaphorin4A and H-ferritin utilize Tim-1 on human oligodendrocytes: A novel neuro-immune axis. Glia 2018; 66(7): 1317-30.
[http://dx.doi.org/10.1002/glia.23313] [PMID: 29457657]
[110]
Budelmann G. [Hugo Schottmüller, 1867-1936 The problem of sepsis Internist (Berl). 1969; 10(3): 92-101.
[PMID: 4903434]
[111]
Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992; 101(6): 1644-55.
[http://dx.doi.org/10.1378/chest.101.6.1644] [PMID: 1303622]
[112]
Zarjou A, Black LM, McCullough KR, et al. Ferritin light chain confers protection against sepsis-induced inflammation and organ injury. Front Immunol 2019; 10: 131.
[http://dx.doi.org/10.3389/fimmu.2019.00131] [PMID: 30804939]
[113]
Ghosh S, Baranwal AK, Bhatia P, Nallasamy K. Suspecting hyperferritinemic sepsis in iron-deficient population: Do we need a lower plasma ferritin threshold? Pediatr Crit Care Med 2018; 19(7): e367-73.
[http://dx.doi.org/10.1097/PCC.0000000000001584] [PMID: 29782390]
[114]
Deng M, Tang Y, Li W, et al. The endotoxin delivery protein hmgb1 mediates caspase-11-dependent lethality in sepsis. Immunity 2018; 49(4): 740-53.e7.
[http://dx.doi.org/10.1016/j.immuni.2018.08.016] [PMID: 30314759]
[115]
Wang D, Yu S, Zhang Y, et al. Caspse-11-GSDMD pathway is required for serum ferritin secretion in sepsis. Clin Immunol 2019; 205: 148-52.
[http://dx.doi.org/10.1016/j.clim.2018.11.005] [PMID: 30731209]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy