[1]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev., 2014, 66(1), 334-395.
[2]
Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement. (N. Y.), 2017, 3(4), 651-657.
[3]
DiMasi, J.A.; Feldman, L.; Seckler, A.; Wilson, A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin. Pharmacol. Therapeut., 2010, 87(3), 272-277.
[4]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[5]
Brown, A.S.; Patel, C.J. A review of validation strategies for computational drug repositioning. Brief. Bioinform., 2018, 19(1), 174-177.
[6]
Coelho, E.D.; Arrais, J.P.; Oliveira, J.L. Computational Discovery of Putative Leads for Drug Repositioning through Drug-Target Interaction Prediction. PLOS Comput. Biol., 2016, 12(11), e1005219.
[7]
Wishart, D.S. In Molecular Modeling of Proteins; Springer, 2008, pp. 333-351.
[8]
Rognan, D. The impact of in silico screening in the discovery of novel and safer drug candidates. Pharmacol. Ther., 2017, 175, 47-66.
[9]
Liu, R.; Li, X.; Lam, K.S. Combinatorial chemistry in drug discovery. Curr. Opin. Chem. Biol., 2017, 38, 117-126.
[10]
Campbell, I.B.; Macdonald, S.J.; Procopiou, P.A. Medicinal chemistry in drug discovery in big pharma: past, present and future. Drug Discov. Today, 2018, 23(2), 219-234.
[11]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huertacepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43, D447.