Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Role of Vitamin D and Sunlight Incidence in Cancer

Author(s): Alice B. Camara* and Igor A. Brandao

Volume 19, Issue 11, 2019

Page: [1418 - 1436] Pages: 19

DOI: 10.2174/1389557519666190312123212

Price: $65

Abstract

Background: Vitamin D (VD) deficiency affects individuals of different ages in many countries. VD deficiency may be related to several diseases, including cancer.

Objective: This study aimed to review the relationship between VD deficiency and cancer.

Methods: We describe the proteins involved in cancer pathogenesis and how those proteins can be influenced by VD deficiency. We also investigated a relationship between cancer death rate and solar radiation.

Results: We found an increased bladder cancer, breast cancer, colon-rectum cancer, lung cancer, oesophagus cancer, oral cancer, ovary cancer, pancreas cancer, skin cancer and stomach cancer death rate in countries with low sunlight. It was also observed that amyloid precursor protein, ryanodine receptor, mammalian target of rapamycin complex 1, and receptor for advanced glycation end products are associated with a worse prognosis in cancer. While the Klotho protein and VD receptor are associated with a better prognosis in the disease. Nfr2 is associated with both worse and better prognosis in cancer.

Conclusion: The literature suggests that VD deficiency might be involved in cancer progression. According to sunlight data, we can conclude that countries with low average sunlight have high cancers death rate. New studies involving transcriptional and genomic data in combination with VD measurement in long-term experiments are required to establish new relationships between VD and cancer.

Keywords: Cancer, vitamin D, sunlight, protein, death rate, countries.

« Previous
Graphical Abstract
[1]
Haznadar, M.; Krausz, K.W.; Margono, E.; Diehl, C.M.; Bowman, E.D.; Manna, S.K.; Robles, A.I.; Ryan, B.M.; Gonzalez, F.J. Harris, C.C. Inverse association of vitamin D3 levels with lung cancer mediated by genetic variation. Cancer Med., 2018, 7(6), 2764-2775.
[2]
Jeon, S.M.; Shin, E.A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med., 2018, 50(4), 20.
[3]
Ordonez, J.M.; Brenner, H. Vitamin D and cancer: An overview on epidemiological studies. Adv. Exp. Med. Biol., 2014, 810, 17-32.
[4]
Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer, 2014, 14(5), 342.
[5]
Wang, P.; Qin, X.; Liu, M.; Wang, X. The burgeoning role of cytochrome P450-mediated vitamin D metabolites against colorectal cancer. Pharmacol. Res., 2018, 133, 9-20.
[6]
Tommie, J.L.; Pinney, S.M.; Nommsen-Rivers, L.A. Serum Vitamin D status and breast cancer risk by receptor status: A systematic review. Nutr. Cancer, 2018, 70(5), 804-820.
[7]
Mizrak Kaya, D.; Ozturk, B.; Kubilay, P.; Onur, H.; Utkan, G.; Cay Senler, F.; Alkan, A.; Yerlikaya, H.; Koksoy, E.B.; Karci, E.; Demirkazik, A.; Akbulut, H.; Icli, F. Diagnostic serum vitamin D level is not a reliable prognostic factor for resectable breast cancer. Future Oncol., 2018, 14(5), 1461-1467.
[8]
Zhang, L.; Wang, S.; Che, X.; Li, X. Vitamin D and lung cancer risk: a comprehensive review and meta-analysis. Cell. Physiol. Biochem., 2015, 36(1), 299-305.
[9]
Robbins, H.L.; Symington, M.; Mosterman, B.; Goodby, J.; Davies, L.; Dimitriadis, G.K.; Kaltsas, G.; Randeva, H.S.; Weickert, M.O. Supplementation of vitamin D deficiency in patients with neuroendocrine tumors using over-the-counter vitamin D3 preparations. Nutr. Cancer, 2018, 70(5), 748-754.
[10]
Mukai, Y.; Yamada, D.; Eguchi, H.; Iwagami, Y.; Asaoka, T.; Noda, T.; Kawamoto, K.; Gotoh, K.; Kobayashi, S.; Takeda, Y.; Tanemura, M.; Mori, M. Vitamin D supplementation is a promising therapy for pancreatic ductal adenocarcinoma in conjunction with current chemoradiation therapy. Ann. Surg. Oncol., 2018, 25(7), 1868-1879.
[11]
Capiod, T.; Delongchamps, N.B.; Pigat, N.; Souberbielle, J.C.; Goffin, V. Do dietary calcium and vitamin D matter in men with prostate cancer? Nat. Rev. Urol., 2018, 15, 453-461.
[12]
Lai, G.Y.; Wang, J.B.; Weinstein, S.J.; Parisi, D.; Horst, R.L.; McGlynn, K.A.; Männistö, S.; Albanes, D.; Freedman, N.D. Association of 25-hydroxyvitamin D with liver cancer incidence and chronic liver disease mortality in Finnish male smokers of the ATBC study. Cancer Epidemiol. Prevention Biomarkers, 2018, 29(7), 1075-1082.
[13]
Yan, L.; Gu, Y.; Luan, T.; Miao, M.; Jiang, L.; Liu, Y.; Li, P.; Zeng, X. Associations between serum vitamin D and the risk of female reproductive tumors: A meta-analysis with trial sequential analysis. Medicine, 2018, 97(15)e0360
[14]
Goulão, B.; Stewart, F.; Ford, J.A.; MacLennan, G.; Avenell, A. Cancer and vitamin D supplementation: a systematic review and meta-analysis. Am. J. Clin. Nutr., 2018, 107(4), 652-663.
[15]
Muller, D.C.; Hodge, A.M.; Fanidi, A.; Albanes, D.; Mai, X.M.; Shu, X.O.; Weinstein, S.J.; Larose, T.L.; Zhang, X.; Han, J.; Stampfer, M.J.; Smith-Warner, S.A.; Ma, J.; Gaziano, J.M.; Sesso, H.D.; Stevens, V.L.; McCullough, M.L.; Layne, T.M.; Prentice, R.; Pettinger, M.; Thomson, C.A.; Zheng, W.; Gao, Y.T.; Rothman, N.; Xiang, Y.B.; Cai, H.; Wang, R.; Yuan, J.M.; Koh, W.P.; Butler, L.M.; Cai, Q.; Blot, W.J.; Wu, J.; Ueland, P.M.; Midttun, Ø.; Langhammer, A.; Hveem, K.; Johansson, M.; Hultdin, J.; Grankvist, K.; Arslan, A.A.; Le Marchand, L.; Severi, G.; Johansson, M.; Brennan, P. No association between circulating concentrations of vitamin D and risk of lung cancer: An analysis in 20 prospective studies in the Lung Cancer Cohort Consortium (LC3). Ann. Oncol., 2018, 29(6), 1468-1475.
[16]
Castro, L.C. The vitamin D endocrine system. Arq. Bras. Endocrinol. Metabol, 2011, 55(8), 566-575.
[17]
Webb, A.R.; Aseem, S.; Kift, R.C.; Rhodes, L.E.; Farrar, M.D. Target the message: A qualitative study exploring knowledge and cultural attitudes to sunlight and vitamin D in Greater Manchester, UK. Br. J. Dermatol., 2016, 175(6), 1401-1403.
[18]
Krzywanski, J.; Mikulski, T.; Krysztofiak, H.; Mlynczak, M.; Gaczynska, E.; Ziemba, A. Seasonal vitamin D status in polish elite athletes in relation to sun exposure and oral supplementation. PLoS One, 2016, 11(10)e0164395
[19]
Wagner, C.L.; Taylor, S.N.; Hollis, B.W. Does vitamin D make the world go ‘round’? Breastfeed. Med., 2008, 3(4), 239-250.
[20]
Livingstone, K.M.; Celis‐Morales, C.; Hoeller, U.; Lambrinou, C.P.; Moschonis, G.; Macready, A.L. Weekday sunlight exposure, but not vitamin D intake, influences the association between vitamin D receptor genotype and circulating concentration 25‐hydroxyvitamin D in a pan‐European population: The Food4Me study. Mol. Nutr. Food Res., 2017, 61(2)1600476
[21]
Pepper, K.; Judd, S.; Nanes, M.; Tangpricha, V. Evaluation of vitamin D repletion regimens to correct vitamin D status in adults. Endocr. Pract., 2009, 15(2), 95-103.
[22]
Razzaque, M.S. Sunlight exposure: Do health benefits outweigh harm? J. Steroid Biochem. Mol. Biol., 2016, 175, 44-48.
[23]
Mackrill, J.J. Ryanodine receptor calcium channels and their partners as drug targets. Biochem. Pharmacol., 2010, 79(11), 1535-1543.
[24]
Cui, C.; Merritt, R.; Fu, L.; Pan, Z. Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B, 2017, 7(1), 3-17.
[25]
Parrington, J.; Lear, P.; Hachem, A. Calcium signals regulated by NAADP and two-pore channels-their role in development, differentiation and cancer. Int. J. Developm. Biol, 2015, 59(7-8-9), 341- 355.
[26]
Park, H.K.; Lee, J.E.; Lim, J.; Kang, B.H. Mitochondrial Hsp90s suppress calcium-mediated stress signals propagating from mitochondria to the ER in cancer cells. Mol. Cancer, 2014, 13(1), 148.
[27]
Raturi, A.; Ortiz-Sandoval, C.; Simmen, T. Redox dependence of endoplasmic reticulum (ER) Ca2+ signaling. Histol. Histopathol., 2014, 29(5), 543-552.
[28]
Davis, F.M.; Parsonage, M.T.; Cabot, P.J.; Parat, M.O.; Thompson, E.W.; Roberts-Thomson, S.J.; Monteith, G.R. Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line. Cancer Cell Int., 2013, 13(1), 76.
[29]
Zhang, L.; Liu, Y.; Song, F.; Zheng, H.; Hu, L.; Lu, H.; Liu, P.; Hao, X.; Zhang, W.; Chen, K. Functional SNP in the microRNA-367 binding site in the 3′ UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc. Natl. Acad. Sci., 2011, 108(33), 13653-13658.
[30]
Abdul, M.; Ramlal, S.; Hoosein, N. Ryanodine receptor expression correlates with tumor grade in breast cancer. Pathol. Oncol. Res., 2008, 14(2), 157-160.
[31]
Mariot, P.; Prevarskaya, N.; Roudbaraki, M.M.; Le Bourhis, X.; Van Coppenolle, F.; Vanoverberghe, K.; Skryma, R. Evidence of functional ryanodine receptor involved in apoptosis of prostate cancer (LNCaP) cells. Prostate, 2000, 43(3), 205-214.
[32]
Milkovic, L.; Siems, W.; Siems, R.; Zarkovic, N. Oxidative stress and antioxidants in carcinogenesis and integrative therapy of cancer. Curr. Pharm. Des., 2014, 20(42), 6529-6542.
[33]
Jain, S.K.; Micinski, D. Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem. Biophys. Res. Commun., 2013, 437(1), 7-11.
[34]
Lin, A.M.; Chen, K.B.; Chao, P.L. Antioxidative effect of vitamin D3 on zinc‐induced oxidative stress in CNS. Ann. N. Y. Acad. Sci., 2005, 1053(1), 319-329.
[35]
Bao, B.Y.; Ting, H.J.; Hsu, J.W.; Lee, Y.F. Protective role of 1α, 25‐dihydroxyvitamin D3 against oxidative stress in nonmalignant human prostate epithelial cells. Int. J. Cancer, 2008, 122(12), 2699-2706.
[36]
Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 2014, 94(2), 329-354.
[37]
Mokhtari, Z.; Hekmatdoost, A.; Nourian, M. Antioxidant efficacy of vitamin D. J. Parathyr. Dis., 2017, 5(1), 11-16.
[38]
Berridge, M.J. Vitamin D cell signalling in health and disease. Biochem. Biophys. Res. Commun., 2015, 460(1), 53-71.
[39]
Wang, X.; Chu, Y.; Wang, W.; Yuan, W. mTORC signaling in hematopoiesis. Int. J. Hematol., 2016, 103(5), 510-518.
[40]
Wang, X.; Proud, C.G. mTORC1 signaling: What we still don't know. J. Mol. Cell Biol, 2010, 3, 206-220.
[41]
Kawasaki, G.; Naruse, T.; Furukawa, K.; Umeda, M. mTORC1 and mTORC2 expression levels in oral squamous cell carcinoma: An immunohistochemical and clinicopathological study. Anticancer Res., 2018, 38(3), 1623-1628.
[42]
Du, X.; Zadoorian, A.; Lukmantara, I.E.; Qi, Y.; Brown, A.J.; Yang, H. Oxysterol-binding protein-related protein 5 (ORP5) promotes cell proliferation by activation of mTORC1 signaling. J. Biol. Chem., 2018, 293(10), 3806-3818.
[43]
Wang, Y.G.; Xu, L.; Jia, R.R.; Wu, Q.; Wang, T.; Wei, J.; Ma, J.L.; Shi, M.; Li, Z.S. DDR2 induces gastric cancer cell activities via activating mTORC2 signaling and is associated with clinicopathological characteristics of gastric cancer. Dig. Dis. Sci., 2016, 61(8), 2272-2283.
[44]
Zou, H.; Lai, Y.; Zhao, X.; Yan, G.; Ma, D.; Cardenes, N.; Shiva, S.; Liu, Y.; Bai, X.; Jiang, Y.; Jiang, Y. Regulation of mammalian target of rapamycin complex 1 by Bcl-2 and Bcl-XL. J. Biol. Chem., 2013, 288(40), 28824-28830.
[45]
Maurel, J.; Postigo, A. Prognostic and predictive biomarkers in colorectal cancer. From the preclinical setting to clinical practice. Curr. Cancer Drug Targets, 2015, 15(8), 703-715.
[46]
Chang, H.; Peng, X.; Bai, Q.; Zhou, Y.; Yu, X.; Zhang, Q.; Zhu, J.; Mi, M. Ampelopsin suppresses breast carcinogenesis by inhibiting the mTOR signalling pathway. Carcinogenesis, 2014, 35(8), 1847-1854.
[47]
Ciliberto, D.; Staropoli, N.; Caglioti, F.; Gualtieri, S.; Fiorillo, L.; Chiellino, S.; Angelis, A.M.; Mendicino, F.; Botta, S.; Caraglia, M.; Tassone, P.; Tagliaferri, P. A systematic review and meta-analysis of randomized trials on the role of targeted therapy in the management of advanced gastric cancer: Evidence does not translate? Cancer Biol. Ther., 2015, 16(8), 1148-1159.
[48]
Saran, U.; Foti, M.; Dufour, J.F. Cellular and molecular effects of the mTOR inhibitor everolimus. Clin. Sci., 2015, 129(10), 895-914.
[49]
Harter, P.N.; Jennewein, L.; Baumgarten, P.; Ilina, E.; Burger, M.C.; Thiepold, A-L.; Tichy, J.; Zörnig, M.; Senft, C.; Steinbach, J.P.; Mittelbronn, M.; Ronellenfitsch, M.W. Immunohistochemical assessment of phosphorylated mTORC1-pathway proteins in human brain tumors. PLoS One, 2015, 10(5)e0127123
[50]
Harter, P.N.; Jennewein, L.; Baumgarten, P.; Ilina, E.; Burger, M.C.; Thiepold, A.L.; Tichy, J.; Zörnig, M.; Senft, C.; Steinbach, J.P.; Mittelbronn, M.; Ronellenfitsch, M.W. Higher risk of infections with PI3K-AKT-mTOR pathway inhibitors in patients with advanced solid tumors on phase I clinical trials. Clin. Cancer Res., 2015, 10(5)e0127123
[51]
Fazolini, N.P.; Cruz, A.L.; Werneck, M.B.; Viola, J.P.; Maya-Monteiro, C.M.; Bozza, P.T. Leptin activation of mTOR pathway in intestinal epithelial cell triggers lipid droplet formation, cytokine production and increased cell proliferation. Cell Cycle, 2015, 14(16), 2667-2676.
[52]
Carr, T.D.; Feehan, R.P.; Hall, M.N.; Rüegg, M.A.; Shantz, L.M. Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors. Carcinogenesis, 2015, 36(4), 487-497.
[53]
Chang, C.H.; Chan, P.C.; Li, J.R.; Chen, C.J.; Shieh, J.J.; Fu, Y.C. Gab1 is essential for membrane translocation, activity and integrity of mTORCs after EGF stimulation in urothelial cell carcinoma. Oncotarget, 2015, 6(3), 1478.
[54]
Kim, E.K.; Yun, S.J.; Ha, J.M.; Kim, Y.W.; Jin, I.H.; Yun, J.; Shin, H.K.; Song, S.H.; Kim, J.H.; Lee, J.S.; Kim, C.D.; Bae, S.S. Selective activation of Akt1 by mammalian target of rapamycin complex 2 regulates cancer cell migration, invasion, and metastasis. Oncogene, 2011, 30(26), 2954.
[55]
Montero, J.C.; Chen, X.; Ocaña, A.; Pandiella, A. Predominance of mTORC1 over mTORC2 in the regulation of proliferation of ovarian cancer cells: Therapeutic implications. Mol. Cancer Ther., 2012, 11(6), 1342-1352.
[56]
Li, G.; Lin, L.; Wang, Y.L.; Yang, H. 1, 25 (OH) 2D3 protects trophoblasts against insulin resistance and inflammation via suppressing mTOR signaling. Reprod. Sci., 2019, 26(2), 223-232.
[57]
Santos, J.M.; Khan, Z.S.; Munir, M.T.; Tarafdar, K.; Rahman, S.M.; Hussain, F. Vitamin D3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells. J. Nutr. Biochem., 2018, 53, 111-120.
[58]
Abu el Maaty, M.; Wölfl, S. Vitamin D as a novel regulator of tumor metabolism: Insights on potential mechanisms and implications for anti-cancer therapy. Int. J. Mol. Sci., 2017, 18(10), 2184.
[59]
Zhao, M.; Duan, X.H.; Wu, Z.Z.; Gao, C.C.; Wang, N.; Zheng, Z.H. Severe vitamin D deficiency affects the expression of autophagy related genes in PBMCs and T-cell subsets in active systemic lupus erythematosus. Am. J. Clin. Exp. Immunol., 2017, 6(4), 43.
[60]
Chung, B.H.; Kim, B.M.; Doh, K.C.; Min, J.W.; Cho, M.L.; Kim, K.W.; Yang, C.W. Suppressive effect of 1α, 25-dihydroxyvitamin D3 on Th17-immune responses in kidney transplant recipients with tacrolimus-based immunosuppression. Transplantation, 2017, 101(7), 1711-1719.
[61]
Kim, H.Y.; Wang, X.; Kang, R.; Tang, D.; Boone, B.A.; Zeh, III, H.J.; Lotze, M.T.; Edwards, W.B. RAGE-specific single chain Fv for PET imaging of pancreatic cancer. PLoS One, 2018, 13(3)e0192821
[62]
Ahmad, S.; Akhter, F.; Shahab, U.; Rafi, Z.; Khan, M.S.; Nabi, R.; Khan, M.S.; Ahmad, K.; Ashraf, J.M. Moinuddin. Do all roads lead to the Rome? The glycation perspective! In: Seminars in cancer biology. Academic Press, 2018, 499-19
[63]
Choi, E.; Oh, J.; Lee, D.; Lee, J.; Tan, X.; Kim, M.; Kim, G.; Piao, C.; Lee, M. A ternary-complex of a suicide gene, a RAGE-binding peptide, and polyethylenimine as a gene delivery system with anti-tumor and anti-angiogenic dual effects in glioblastoma. J. Control. Release, 2018, 279, 40-52.
[64]
Kang, R.; Loux, T.; Tang, D.; Schapiro, N.E.; Vernon, P.; Livesey, K.M.; Krasinskas, A.; Lotze, M.T.; Zeh, III, H.J. The expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia. Proc. Natl. Acad. Sci. USA, 2012, 109(18), 7031-7036.
[65]
Menini, S.; Iacobini, C.; de Latouliere, L.; Manni, I.; Ionta, V.; Blasetti Fantauzzi, C.; Pesce, C.; Cappello, P.; Novelli, F.; Piaggio, G.; Pugliese, G. The advanced glycation end-product Nϵ -carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention. J. Pathol., 2018, 245(2), 197-208.
[66]
Azizan, N.; Suter, M.A.; Liu, Y.; Logsdon, C. DRAGE maintains high levels of NFκB and oncogenic Kras activity in pancreatic cancer. Biochem. Biophys. Res. Commun., 2017, 493(1), 592-597.
[67]
Shahab, U.; Ahmad, M.K.; Mahdi, A.A.; Waseem, M.; Arif, B.; Ahmad, S. The receptor for advanced glycation end products: A fuel to pancreatic cancer. In: Seminars in cancer biology. Academic Press, 2017, 49, 37-43.
[68]
Aboushousha, T.; Mamdouh, S.; Hamdy, H.; Helal, N.; Khorshed, F.; Safwat, G.; Seleem, M. Immunohistochemical and biochemical expression patterns of TTF-1, RAGE, GLUT-1 and SOX2 in HCV-associated hepatocellular carcinomas. Asian Pacific J. Cancer Prevent.: APJCP, 2018, 19(1), 219.
[69]
ElFar, A.H.A.M.; Munesue, S.; Harashima, A.; Sato, A.; Shindo, M.; Nakajima, S.; Inada, M.; Tanaka, M.; Takeuchi, A.; Tsuchiya, H.; Yamamoto, H.; Shaheen, H.M.E.; ElSayed, Y.S.; Kawano, S.; Tanuma, S.I.; Yamamoto, Y. In vitro anticancer effects of a RAGE inhibitor discovered using a structure-based drug design system. Oncol. Lett., 2018, 15(4), 4627-4634.
[70]
Deng, R.; Mo, F.; Bowen, Chang. Q.Z.; Ran, H.; Yang, S.; Zhu, Z.; Hu, L.; Su, Q. Glucose-derived AGEs enhance human gastric cancer metastasis through RAGE/ERK/Sp1/MMP2 cascade. Oncotarget, 2017, 8(61)104216
[71]
Ahmad, S.; Khan, M.Y.; Rafi, Z.; Khan, H.; Siddiqui, Z.; Rehman, S.; Shahab, U.; Khan, M.S.; Saeed, M.; Alouffi, S.; Khan, M.S. Oxidation, glycation and glycoxidation-the vicious cycle and lung cancer. Seminars Cancer Biol., Academic Press, 2017, 4929-36.
[72]
Matou-Nasri, S.; Sharaf, H.; Wang, Q.; Almobadel, N.; Rabhan, Z.; Al-Eidi, H. Biological impact of advanced glycation endproducts on estrogen receptor-positive MCF-7 breast cancer cells. Biochim. Biophys. Acta (BBA)-. Mol. Basis Dis., 2017, 1863(11), 2808-2820.
[73]
Tesarova, P.; Zima, T.; Kubena, A.A.; Kalousova, M. Polymorphisms of the receptor for advanced glycation end products and glyoxalase I and long-term outcome in patients with breast cancer. Tumour Biol., 2017, 39(7)1010428317702902
[74]
Yu, Y.X.; Pan, W.C.; Cheng, Y.F. Silencing of advanced glycosylation and glycosylation and product-specific receptor (RAGE) inhibits the metastasis and growth of non-small cell lung cancer. Am. J. Transl. Res., 2017, 9(6), 2760.
[75]
Ahmad, S.; Khan, H.; Siddiqui, Z.; Khan, M.Y.; Rehman, S.; Shahab, U.; Godovikova, T.; Silnikov, V. Moinuddin. AGEs, RAGEs and s-RAGE; friend or foe for cancer. Seminars Cancer Biol., Academic Press, 2017, 4944-55
[76]
Talmor, Y.; Bernheim, J.; Klein, O.; Green, J.; Rashid, G. Calcitriol blunts pro‐atherosclerotic parameters through NFκB and p38 in vitro. Eur. J. Clin. Invest., 2008, 38(8), 548-554.
[77]
Lee, T.W.; Kao, Y.H.; Lee, T.I.; Chang, C.J.; Lien, G.S.; Chen, Y.J. Calcitriol modulates receptor for advanced glycation end products (RAGE) in diabetic hearts. Int. J. Cardiol., 2014, 173(2), 236-241.
[78]
Zitman-Gal, T.; Golan, E.; Green, J.; Bernheim, J.; Benchetrit, S. Vitamin D receptor activation in a diabetic-like environment: potential role in the activity of the endothelial pro-inflammatory and thioredoxin pathways. J. Steroid Biochem. Mol. Biol., 2012, 132(1-2), 1-7.
[79]
Talmor-Barkan, Y.; Bernheim, J.; Green, J.; Benchetrit, S.; Rashid, G. Calcitriol counteracts endothelial cell pro-inflammatory processes in a chronic kidney disease-like environment. J. Steroid Biochem. Mol. Biol., 2011, 124(1-2), 19-24.
[80]
Pike, J.W.; Meyer, M.B. The vitamin D receptor: New paradigms for the regulation of gene expression by 1, 25-dihydroxyvitamin D3. Rheum. Dis. Clinics, 2012, 38(1), 13-27.
[81]
Bouillon, R.; Eelen, G.; Verlinden, L.; Mathieu, C.; Carmeliet, G.; Verstuyf, A. Vitamin D and cancer. J. Steroid Biochem. Mol. Biol., 2006, 102(1-5), 156-162.
[82]
Benetti, E.; Mastrocola, R.; Chiazza, F.; Nigro, D.; D’Antona, G.; Bordano, V.; Fantozzi, R.; Aragno, M.; Collino, M.; Minetto, M.A. Effects of vitamin D on insulin resistance and myosteatosis in diet-induced obese mice. PLoS One, 2018, 13(1)e0189707
[83]
Rüster, C.; Franke, S.; Reuter, S.; Mrowka, R.; Bondeva, T.; Wolf, G. Vitamin D3 partly antagonizes advanced-glycation endproducts-induced NFκB activation in mouse podocytes. Nephron, 2016, 134(2), 105-116.
[84]
Garg, D.; Grazi, R.; Lambert-Messerlian, G.M.; Merhi, Z. Correlation between follicular fluid levels of sRAGE and vitamin D in women with PCOS. J. Assist. Reprod. Genet., 2017, 34(11), 1507-1513.
[85]
Lim, S.; Yoo, B.K.; Kim, H.S.; Gilmore, H.L.; Lee, Y.; Lee, H.P.; Kim, S.J.; Letterio, J.; Lee, H.G. Amyloid-β precursor protein promotes cell proliferation and motility of advanced breast cancer. BMC Cancer, 2014, 14(1), 928.
[86]
Müller, U.C.; Zheng, H. Physiological functions of APP family proteins. Cold Spring Harb. Perspect. Med., 2012, 2(2)a006288
[87]
Miyazaki, T.; Ikeda, K.; Horie-Inoue, K.; Inoue, S. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells. Biochem. Biophys. Res. Commun., 2014, 452(3), 828-833.
[88]
Danish Rizvi. S.M.; Hussain, T.; Subaiea, G.M.; Shakil, S.; Ahmad, A. Therapeutic targeting of amyloid precursor protein and its processing enzymes for breast cancer treatment. Curr. Protein Pept. Sci., 2018, 19(9), 841-849.
[89]
Sobol, A.; Galluzzo, P.; Liang, S.; Rambo, B.; Skucha, S.; Weber, M.J.; Alani, S.; Bocchetta, M. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells. J. Cell. Physiol., 2015, 230(5), 1064-1074.
[90]
Gill, I.; Kaur, S.; Kaur, N.; Dhiman, M.; Mantha, A.K. Phytochemical ginkgolide B attenuates amyloid-β 1-42 induced oxidative damage and altered cellular responses in human neuroblastoma SH-SY5Y cells. J. Alzheimers Dis., 2017, 60(s1), S25-S40.
[91]
Jin, W.S.; Bu, X.L.; Liu, Y.H.; Shen, L.L.; Zhuang, Z.Q.; Jiao, S.S.; Zhu, C.; Wang, Q.H.; Zhou, H.D.; Zhang, T.; Wang, Y.J. Plasma amyloid-beta levels in patients with different types of cancer. Neurotox. Res., 2017, 31(2), 283-288.
[92]
Zhao, L.; He, D.; Jiao, M.; Kong, L.; Shao, C.; Chen, J.; Fang, Z.; Ma, X.; Chen, H.; Li, L.; Luo, S.; Zheng, N.; Chen, Y.; Wang, Q.; Fang, S. Overexpression of histone deacetylase and amyloid precursor protein in hepatocellular carcinoma. Technol. Cancer Res. Treat., 2017, 16(5), 586-594.
[93]
Pandey, P.; Sliker, B.; Peters, H.L.; Tuli, A.; Herskovitz, J.; Smits, K.; Purohit, A.; Singh, R.K.; Dong, J.; Batra, S.K.; Coulter, D.W.; Solheim, J.C. Amyloid precursor protein and amyloid precursor-like protein 2 in cancer. Oncotarget, 2016, 7(15), 19430.
[94]
Keeney, J.T.; Butterfield, D.A. Vitamin D deficiency and Alzheimer disease: Common links. Neurobiol. Dis., 2015, 84, 84-98.
[95]
Banerjee, A.; Khemka, V.K.; Ganguly, A.; Roy, D.; Ganguly, U.; Chakrabarti, S. Vitamin D and Alzheimer’s disease: Neurocognition to therapeutics. Int. J. Alzheimers Dis., 2015, 2015, 1-11.
[96]
Zella, L.A.; Kim, S.; Shevde, N.K.; Pike, J.W. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1, 25-dihydroxyvitamin D3. Mol. Endocrinol., 2006, 20(6), 1231-1247.
[97]
Campbell, M.J.; Trump, D.L. Vitamin D receptor signaling and cancer. Endocrinol. Metabol. Clinics, 2017, 46(4), 1009-1038.
[98]
Shahabi, A.; Alipour, M.; Safiri, H.; Tavakol, P.; Alizadeh, M.; Hashemi, S.M.; Shahabi, M.; Halimi, M. Vitamin D receptor gene polymorphism: Association with susceptibility to early-onset breast cancer in Iranian, BRCA1/2-mutation carrier and non-carrier patients. Pathol. Oncol. Res., 2018, 24(3), 601-607.
[99]
Lin, V.C.; Huang, S.P.; Ting, H.J.; Ma, W.L.; Yu, C.C.; Huang, C.Y.; Lee, C.H.; Chang, T.Y.; Lu, T.L.; Bao, B.Y. Vitamin D receptor-binding site variants affect prostate cancer progression. Oncotarget, 2017, 8(43), 74119.
[100]
Hao, M.; Hou, S.; Xue, L.; Yuan, H.; Zhu, L.; Wang, C.; Wang, B.; Tang, C.; Zhang, C. Further developments of the phenyl-pyrrolyl pentane series of nonsteroidal vitamin D receptor modulators as anticancer agents. J. Med. Chem., 2018, 61(7), 3059-3075.
[101]
Trump, D.L.; Jeanny, B.A.C. Vitamin D in prostate câncer. Asian J. Androl., 2018, 20(3), 244-252.
[102]
Chen, Y.; Liu, X.; Zhang, F.; Liao, S.; He, X.; Zhuo, D.; Huang, H.B.; Wu, Y.Y. Vitamin D receptor suppresses proliferation and metastasis in renal cell carcinoma cell lines via regulating the expression of the epithelial Ca2+ channel TRPV5. PLoS One, 2018, 13(4)e0195844
[103]
Šutalo, N.; Tomić, S.; Bevanda, M.; Dragišić, V.; Marijanović, I.; Petričević, J.; Mikulić, I. Immunohystochemical expression of vitamin D receptor in development stages of colorectal carcinoma. Psychiatr. Danub., 2017, 29(4), 855-858.
[104]
Kaukinen, A.; Siiskonen, H.; Pelkonen, J.; Harvima, I.T. Immunoreactivity to CYP24A1, but not vitamin D receptor, is increased in mast cells of keratinocyte skin cancers. Eur. J. Dermatol., 2017, 27(6), 590-598.
[105]
Deuster, E.; Jeschke, U.; Ye, Y.; Mahner, S.; Czogalla, B. Vitamin D and VDR in Gynecological Cancers-A systematic review. Int. J. Mol. Sci., 2017, 18(11), 2328.
[106]
Del Puerto, C.; Navarrete‐Dechent, C.; Molgó, M.; Camargo, Jr, C.A.; Borzutzky, A.; González, S. Immunohistochemical expression of vitamin D receptor in melanocytic naevi and cutaneous melanoma: A case-control study. Br. J. Dermatol., 2018, 179(1), 95-100.
[107]
Yilmaz, B.; Tokuc, G.A.; Koc, A.; Yesil, E. Investigation of vitamin D receptor gene polymorphism in pediatric patients with brain cancer. Indian J. Med. Paed. Oncol.: Off. J. Indian Soc. Med. Paed. Oncol., 2017, 38(2), 128.
[108]
Pan, Z.; Chen, M.; Hu, X.; Wang, H.; Yang, J.; Zhang, C.; Pan, F.; Sun, G. Associations between VDR gene polymorphisms and colorectal cancer susceptibility: An updated meta-analysis based on 39 case-control studies. Oncotarget, 2018, 9(16), 13068.
[109]
Chen, H.; Zhu, J. Vitamin D receptor rs2228570 polymorphism and susceptibility to ovarian cancer: An updated meta‐analysis. J. Obstet. Gynaecol. Res., 2018, 44(3), 556-565.
[110]
Burns, E.M.; Guroji, P.; Ahmad, I.; Nasr, H.M.; Wang, Y.; Tamimi, I.A.; Stiefel, E.; Abdelgawwad, M.S.; Shaheen, A.; Muzaffar, A.F.; Bush, L.N.; Hurst, C.B.; Griffin, R.L.; Elmets, C.A.; Yusuf, N. Association of vitamin D receptor polymorphisms with the risk of nonmelanoma skin cancer in adults. JAMA Dermatol., 2017, 153(10), 983-989.
[111]
Iqbal, M.U.N.; Maqbool, S.A.; Khan, T.A. Association of low penetrance vitamin D receptor Tru 9I (rs757343) gene polymorphism with risk of premenopausal breast cancer. J. Int. Med. Res., 2018, 46(5), 1801-1814.
[112]
Kang, S.; Zhao, Y.; Wang, L.; Liu, J.; Chen, X.; Liu, X.; Shi, Z.; Gao, W.; Cao, F. Vitamin D receptor Taq I polymorphism and the risk of prostate cancer: A meta-analysis. Oncotarget, 2018, 9(6), 7136.
[113]
Iqbal, M.U.N.; Khan, T.A. Association between vitamin D receptor (Cdx2, Fok1, Bsm1, Apa1, Bgl1, Taq1, and Poly (A)) gene polymorphism and breast cancer: A systematic review and meta-analysis. Tumour Biol., 2017, 39(10)1010428317731280
[114]
Xuan, N.T.; Van Hai, N. Changes in expression of klotho affect physiological processes, diseases, and cancer. Iran. J. Basic Med. Sci., 2018, 21(1), 3.
[115]
Câmara, A.B.; Souza, I.D.; Dalmolin, R.J.S. Sunlight incidence, vitamin D deficiency, and Alzheimer’s disease. J. Med. Food, 2018, 21(9), 841-848.
[116]
Ide, N.; Olauson, H.; Sato, T.; Densmore, M.J.; Wang, H.; Hanai, J.I.; Larsson, T.E.; Lanskem B. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int, 2016, 90, (2), 348-362.
[117]
Chen, C.D.; Zeldich, E.; Li, Y.; Yuste, A.; Abraham, C.R. Activation of the anti-aging and cognition-enhancing gene klotho by CRISPR-dCas9 transcriptional effector complex. J. Mol. Neurosci., 2018, 64(2), 175-184.
[118]
Li, P.; Zhao, M.; Qi, X.; Zhu, X.; Dai, J. Downregulation of klotho β is associated with invasive ductal carcinoma progression. Oncol. Lett., 2017, 14(6), 7443-7448.
[119]
Yan, Y.; Wang, Y.; Xiong, Y.; Lin, X.; Zhou, P.; Chen, Z. Reduced Klotho expression contributes to poor survival rates in human patients with ovarian cancer, and overexpression of Klotho inhibits the progression of ovarian cancer partly via the inhibition of systemic inflammation in nude mice. Mol. Med. Rep., 2017, 15(4), 1777-1785.
[120]
Mencke, R.; Olauson, H.; Hillebrands, J.L. Effects of klotho on fibrosis and cancer: A renal focus on mechanisms and therapeutic strategies. Adv. Drug Deliv. Rev., 2017, 121, 85-100.
[121]
Behera, R.; Kaur, A.; Webster, M.R.; Kim, S.; Ndoye, A.; Kugel, C.H.; Alicea, G.M.; Wang, J.; Ghosh, K.; Cheng, P.; Lisanti, S.; Marchbank, K.; Dang, A.; Levesque, M.; Dummer, R.; Xu, X.; Herlyn, M.; Aplin, A.E.; Roesch, A.; Caino, C.; Altieri, D.C.; Weeraratna, A.T. Inhibition of age-related therapy resistance in melanoma by rosiglitazone-mediated induction of Klotho. Clin. Cancer Res., 2017, 23(12), 3181-3190.
[122]
Lang, L.; Shull, A.Y.; Teng, Y. Interrupting the FGF19-FGFR4 axis to therapeutically disrupt cancer progression. Curr. Cancer Drug Targets, 2019, 19(1), 17-25.
[123]
Chen, B.; Liang, Y.; Chen, L.; Wei, Y.; Li, Y.; Zhao, W.; Wu, J. Overexpression of klotho inhibits HELF fibroblasts SASP-related protumoral effects on non-small cell lung cancer cells. J. Cancer, 2018, 9(7), 1248.
[124]
Ibi, T.; Usuda, J.; Inoue, T.; Sato, A.; Takegahara, K. Klotho expression is correlated to molecules associated with epithelialmesenchymal transition in lung squamous cell carcinoma. Oncol. Lett., 2017, 14(5), 5526-5532.
[125]
Chen, T.; Ren, H.; Thakur, A.; Yang, T.; Li, Y.; Zhang, S.; Wang, T.; Chen, M.W. Decreased level of klotho contributes to drug resistance in lung cancer cells: Involving in klotho-mediated cell autophagy. DNA Cell Biol., 2016, 35(12), 751-757.
[126]
Adhikari, B.R.; Uehara, O.; Matsuoka, H.; Takai, R.; Harada, F.; Utsunomiya, M.; Chujo, T.; Morikawa, T.; Shakya, M.; Yoshida, K.; Sato, J.; Arakawa, T.; Nishimura, M.; Nagayasu, H.; Chiba, I.; Abiko, Y. Immunohistochemical evaluation of Klotho and DNA methyltransferase 3a in oral squamous cell carcinomas. Med. Mol. Morphol., 2017, 50(3), 155-160.
[127]
Wegler, C.; Wikvall, K.; Norlin, M. Effects of osteoporosis‐inducing drugs on vitamin D‐related gene transcription and mineralization in MG‐63 and Saos‐2 cells. Basic Clin. Pharmacol. Toxicol., 2016, 119(5), 436-442.
[128]
Booth, D.R.; Ding, N.; Parnell, G.P.; Shahijanian, F.; Coulter, S.; Schibeci, S.D. Cistromic and genetic evidence that the vitamin D receptor mediates susceptibility to latitude-dependent autoimmune diseases. Genes Immun., 2016, 17(4), 213.
[129]
Littlejohns, T.J.; Henley, W.E.; Lang, I.A.; Annweiler, C.; Beauchet, O.; Chaves, P.H.; Fried, L.; Kestenbaum, B.R.; Kuller, L.H.; Langa, K.M.; Lopez, O.L.; Kos, K.; Soni, M.; Llewellyn, D. Vitamin D and the risk of dementia and Alzheimer disease. Neurology, 2014, 83(10), 920-928.
[130]
Lemire, P.; Brangier, A.; Beaudenon, M.; Duval, G.T.; Annweiler, C. Cognitive changes under memantine according to vitamin D status in Alzheimer patients: An exposed/unexposed cohort pilot study. J. Steroid Biochem. Mol. Biol., 2018, 175, 151-156.
[131]
Sakurai, T.; Ogama, N.; Toba, K. Lower vitamin D is associated with white matter hyperintensity in elderly women with Alzheimer’s disease and amnestic mild cognitive impairment. J. Am. Geriatr. Soc., 2014, 62(10), 1993-1994.
[132]
Stein, M.S.; Scherer, S.C.; Ladd, K.S.; Harrison, L.C. A randomized controlled trial of high-dose vitamin D2 followed by intranasal insulin in Alzheimer’s disease. J. Alzheimers Dis., 2011, 26(3), 477-484.
[133]
Catanzaro, E.; Calcabrini, C.; Turrini, E.; Sestili, P.; Fimognari, C. Nrf2: A potential therapeutic target for naturally occurring anticancer drugs? Expert Opin. Ther. Targets, 2017, 21(8), 781-793.
[134]
Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol., 2013, 1(1), 45-49.
[135]
Milkovic, L.; Zarkovic, N.; Saso, L. Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox Biol., 2017, 12, 727-732.
[136]
Chartoumpekis, D.V.; Wakabayashi, N.; Kensler, T.W. Keap1/Nrf2 pathway in the frontiers of cancer and non-cancer cell metabolism. Biochem. Soc. Trans., 2015, 43(4), 639-644.
[137]
Orrù, C.; Szydlowska, M.; Taguchi, K.; Zavattari, P.; Perra, A.; Yamamoto, M.; Columbano, A. Genetic inactivation of Nrf2 prevents clonal expansion of initiated cells in a nutritional model of rat hepatocarcinogenesis. J. Hepatol., 2018, 69(3), 635-643.
[138]
Nukui, A.; Narimatsu, T.; Kambara, T.; Abe, H.; Sakamoto, S.; Yoshida, K.I.; Kamai, T. Clinically significant association of elevated expression of nuclear factor E2-related factor 2 expression with higher glucose uptake and progression of upper urinary tract cancer. BMC Cancer, 2018, 18(1), 493.
[139]
Sandhu, I.S.; Maksim, N.J.; Amouzougan, E.A.; Gallion, B.W.; Raviele, A.L.; Ooi, A. Sustained NRF2 activation in hereditary leiomyomatosis and renal cell cancer (HLRCC) and in hereditary tyrosinemia type 1 (HT1). Biochem. Soc. Trans., 2015, 43(4), 650-656.
[140]
Kim, J.; Keum, Y.S. NRF2, a key regulator of antioxidants with two faces towards cancer. Oxid. Med. Cell. Longev., 2016, 2016, 1-7.
[141]
Lisek, K.; Campaner, E.; Ciani, Y.; Walerych, D.; Del Sal, G. Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget, 2018, 9(29), 20508.
[142]
de la Vega, M.R.; Chapman, E.; Zhang, D.D. NRF2 and the Hallmarks of Cancer. Cancer Cell, 2018, 34(1), 21-43.
[143]
Menegon, S.; Columbano, A.; Giordano, S. The dual roles of NRF2 in cancer. Trends Mol. Med., 2016, 22(7), 578-593.
[144]
Moe, S.M. Klotho: A master regulator of cardiovascular disease? Circulation, 2012, 125, 2181-2183.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy