Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Molecular Hybrids of N-Phthaloylglycyl Hydrazide and Hydrazinecarbothioamide with Anti-inflammatory and Anti-oxidant Activities

Author(s): Ankur Gera*, Chander Mohan, Jitender Madan and Sandeep Arora

Volume 16, Issue 7, 2019

Page: [1055 - 1066] Pages: 12

DOI: 10.2174/1570179416666190306141318

Price: $65

Abstract

Background: Oxidative stress due to high levels of reactive organic species is the cause of the progression of inflammation in various diseases. The molecules possessing both anti-inflammatory and antioxidant activity can be the promising key to treat inflammatory diseases. Phthalimide and hydrazinecarbothioamide are anti-inflammatory and anti-oxidant pharmacophores.

Objective: Molecular hybrids possessing above two pharmacophores were designed. A series of N-phenyl substituted 2-(2-(1,3-dioxoisoindolin-2-yl)acetyl)-N-phenylhydrazine-1-carbothioamide (CGS compounds) was synthesized and evaluated for biological activities.

Methods: N-phthaloylglycyl hydrazide was reacted with unsubstituted/substituted phenyl isothiocyanates to yield CGS compounds. Synthesized compounds were evaluated for in vivo anti-inflammatory activity in carrageenan rat paw edema model, and in vitro anti-oxidant activity by DPPH assay. Levels of TNF-α and oxidative stress at the site of inflammation were measured. The genetic algorithm-PLS regression based QSAR model correlating the effect of N-phenyl substituent on the anti-inflammatory activity was developed. Further, the interaction of the active compound in the TNF-α binding pocket was studied by in silico docking.

Results: Compound containing the 2-OCH3, 4-NO2 (CGS-5); 4-CF3 (CGS-9); 4-NO2 (CGS-3) showed significant anti-inflammatory activity (percentage inhibition of paw edema after 3 hour = 58.24, 50.38, 40.05, respectively) and potent anti-oxidant activity (IC50 =0.045, 0.998, 0.285 μg/ml, respectively). Reduced levels of TNF- α and increased levels of GSH were observed for the above three compounds. Descriptors for QSAR model identified by GA-PLS were WPSA1, Weta1unity, WDunity, SC3, VC5, MlogP, and WTPT3. The identified model was highly predictive, and value of root mean square error of prediction for internal (leave one out) and external validation was: 1.579, 1.325.

Conclusion: Molecular hybrids of phthalimide and hydrazinecarbothioamide were synthesized. Some of the compounds possessed promising anti-inflammatory and anti-oxidant activities.

Keywords: Phthalimide, phthaloylglycyl hydrazide, hydrazinecarbothioamide, anti-inflammatory, anti-oxidant, QSAR, molecular docking.

Graphical Abstract
[1]
Serhan, C.N.; Ward, P.A.; Gilroy, D.W. Fundamentals of inflammation; Cambridge University Press: Cambridge, New York, 2010, p. xiv.
[http://dx.doi.org/10.1017/CBO9781139195737]
[2]
Blaser, H.; Dostert, C.; Mak, T.W.; Brenner, D. TNF and ROS crosstalk in inflammation. Trends Cell Biol., 2016, 26(4), 249-261.
[http://dx.doi.org/10.1016/j.tcb.2015.12.002] [PMID: 26791157]
[3]
Kohen, R.; Nyska, A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol., 2002, 30(6), 620-650.
[http://dx.doi.org/10.1080/01926230290166724] [PMID: 12512863]
[4]
Kumar, N.; Sharma, U.; Singh, C.; Singh, B. Thalidomide: Chemistry, therapeutic potential and oxidative stress induced teratogenicity. Curr. Top. Med. Chem., 2012, 12(13), 1436-1455.
[http://dx.doi.org/10.2174/156802612801784407] [PMID: 22650376]
[5]
Vargesson, N. Thalidomide-induced teratogenesis: History and mechanisms. Birth Defects Res. C Embryo Today, 2015, 105(2), 140-156.
[http://dx.doi.org/10.1002/bdrc.21096] [PMID: 26043938]
[6]
Koch, H.P. Thalidomide and Congeners as Anti-inflammatory Agents., 1985, Vol.22, 165-242.
[http://dx.doi.org/10.1016/S0079-6468(08)70231-5]
[7]
Zerilli, T.; Ocheretyaner, E. Apremilast (otezla): A New oral treatment for adults with psoriasis and psoriatic arthritis. P&T, 2015, 40(8), 495-500.
[PMID: 26236137]
[8]
Godin, A.M.; Araújo, D.P.; Menezes, R.R.; Brito, A.M.; Melo, I.S.; Coura, G.M.; Soares, D.G.; Bastos, L.F.; Amaral, F.A.; Ribeiro, L.S.; Boff, D.; Santos, J.R.; Santos, D.A.; Teixeira, M.M.; de Fátima, Â.; Machado, R.R.; Coelho, M.M. Activities of 2-phthalimidethanol and 2-phthalimidethyl nitrate, phthalimide analogs devoid of the glutarimide moiety, in experimental models of inflammatory pain and edema. Pharmacol. Biochem. Behav., 2014, 122, 291-298.
[http://dx.doi.org/10.1016/j.pbb.2014.04.008] [PMID: 24780502]
[9]
Antunes, R.; Batista, H.; Srivastava, R.M.; Thomas, G.; Araujo, C.C. New phthalimide derivatives with potent analgesic activity: II. Bioorg. Med. Chem. Lett., 1998, 8(21), 3071-3076.
[http://dx.doi.org/10.1016/S0960-894X(98)00558-7] [PMID: 9873678]
[10]
Sharma, U.; Kumar, P.; Kumar, N.; Singh, B. Recent advances in the chemistry of phthalimide analogues and their therapeutic potential. Mini Rev. Med. Chem., 2010, 10(8), 678-704.
[http://dx.doi.org/10.2174/138955710791572442] [PMID: 20402635]
[11]
Alanazi, A.M.; El-Azab, A.S.; Al-Suwaidan, I.A.; ElTahir, K.E.; Asiri, Y.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: Anti-inflammatory and analgesic activities. Eur. J. Med. Chem., 2015, 92, 115-123.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.039] [PMID: 25549551]
[12]
Saeedi, M.; Golipoor, M.; Mahdavi, M.; Moradi, A.; Nadri, H.; Emami, S.; Foroumadi, A.; Shafiee, A. Phthalimide-derived N-benzylpyridinium halides targeting cholinesterases: Synthesis and bioactivity of new potential anti-alzheimer’s disease agents. Arch. Pharm. (Weinheim), 2016, 349(4), 293-301.
[http://dx.doi.org/10.1002/ardp.201500425] [PMID: 26898241]
[13]
Bach, D.H.; Liu, J.Y.; Kim, W.K.; Hong, J.Y.; Park, S.H.; Kim, D.; Qin, S.N.; Luu, T.T.; Park, H.J.; Xu, Y.N.; Lee, S.K. Synthesis and biological activity of new phthalimides as potential anti-inflammatory agents. Bioorg. Med. Chem., 2017, 25(13), 3396-3405.
[http://dx.doi.org/10.1016/j.bmc.2017.04.027] [PMID: 28478865]
[14]
Coêlho, L.C.D.; Cardoso, M.V.O.; Moreira, D.R.M.; Gomes, P.A.T.M.; Cavalcanti, S.M.T.; Oliveira, A.R.; Filho, G.B.O.; Siqueira, L.R.P.; Barbosa, M.O.; Borba, E.F.O.; Silva, T.G.; Kaskow, B.; Karimi, M.; Abraham, L.J.; Leite, A.C.L. Novel phthalimide derivatives with TNF-α and IL-1β expression inhibitory and apoptotic inducing properties. MedChemComm, 2014, 5(6), 758-765.
[http://dx.doi.org/10.1039/C4MD00070F]
[15]
Leite, A.C.L.; Barbosa, F.F.; Cardoso, M.V.O.; Moreira, D.R.M.; Coêlho, L.C.D.; da Silva, E.B.; Filho, G.B.O.; de Souza, V.M.O.; Pereira, V.R.A.; Reis, L.; Ferreira, P.M.P.; Pessoa, C.; Wanderley, A.G.; Mota, F.V.B.; da Silva, T.G. Phthaloyl amino acids as anti-inflammatory and immunomodulatory prototypes. Med. Chem. Res., 2013, 23(4), 1701-1708.
[http://dx.doi.org/10.1007/s00044-013-0730-1]
[16]
Muller, G.W.; Corral, L.G.; Shire, M.G.; Wang, H.; Moreira, A.; Kaplan, G.; Stirling, D.I. Structural modifications of thalidomide produce analogs with enhanced tumor necrosis factor inhibitory activity. J. Med. Chem., 1996, 39(17), 3238-3240.
[http://dx.doi.org/10.1021/jm9603328] [PMID: 8765505]
[17]
Su, M.; Cao, J.; Huang, J.; Liu, S. Im, D.S.; Yoo, J.W.; Jung, J.H. The in vitro and in vivo anti-inflammatory effects of a phthalimide PPAR-gamma agonist. Mar. Drugs, 2017, 15(1), 7.
[http://dx.doi.org/10.3390/md15010007] [PMID: 28054961]
[18]
Kajal, A.; Bala, S.; Kamboj, S.; Saini, V. Synthesis, characterization, and computational studies on phthalic anhydride-based benzylidene-hydrazide derivatives as novel, potential anti-inflammatory agents. Med. Chem. Res., 2013, 23(5), 2676-2689.
[http://dx.doi.org/10.1007/s00044-013-0848-1]
[19]
Kishore, V.; Kumar, S.; Parmar, S.S.; Senberg, V.I. Antiinflammatory and antiproteolytic properties of naphthlthiosemicarbazides and cyclized oxadiazoles. Res. Commun. Chem. Pathol. Pharmacol., 1975, 11(4), 581-594.
[PMID: 1179029]
[20]
Salgin-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, O.; Köysal, Y.; Kiliç, E.; Işik, S.; Aktay, G.; Ozalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg. Med. Chem., 2007, 15(17), 5738-5751.
[http://dx.doi.org/10.1016/j.bmc.2007.06.006] [PMID: 17587585]
[21]
Güzeldemirci, N.U.; Satana, D.; Küçükbasmacı, O. Synthesis, characterization, and antimicrobial evaluation of some new hydrazinecarbothioamide, 1,2,4-triazole and 1,3,4-thiadiazole derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 968-973.
[http://dx.doi.org/10.3109/14756366.2012.700926] [PMID: 22845330]
[22]
Parlapalli, A.; Manda, S. Synthesis, antiinflammatory and antioxidant activity of N(benzoxazol-2-Yl)-2-(2-oxoindolin-3-ylidine) hydrazine carbothioamides. J. Chem. Pharm. Res., 2017, 9(9), 57-62.
[23]
Bhat, M.A.; Khan, A.A.; Khan, S.; Al-Omar, M.A.; Parvez, M.K.; Al-Dosari, M.S.; Al-Dhfyan, A. Synthesis and anti-Candidal activity of N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazinecarbothioamide. Bioorg. Med. Chem. Lett., 2014, 24(5), 1299-1302.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.060] [PMID: 24513049]
[24]
Barbuceanu, S.F.; Ilies, D.C.; Saramet, G.; Uivarosi, V.; Draghici, C.; Radulescu, V. Synthesis and antioxidant activity evaluation of new compounds from hydrazinecarbothioamide and 1,2,4-triazole class containing diarylsulfone and 2,4-difluorophenyl moieties. Int. J. Mol. Sci., 2014, 15(6), 10908-10925.
[http://dx.doi.org/10.3390/ijms150610908] [PMID: 24941252]
[25]
Šarkanj, B.; Molnar, M.; Čačić, M.; Gille, L. 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem., 2013, 139(1-4), 488-495.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.027] [PMID: 23561135]
[26]
Kareem, H.S.; Nordin, N.; Heidelberg, T.; Abdul-Aziz, A.; Ariffin, A. Conjugated oligo-aromatic compounds bearing a 3,4,5-trimethoxy moiety: Investigation of their antioxidant activity correlated with a DFT study. Molecules, 2016, 21(2)E224
[http://dx.doi.org/10.3390/molecules21020224] [PMID: 26901175]
[27]
Kauthale, S.; Tekale, S.; Damale, M.; Sangshetti, J.; Pawar, R. Synthesis, antioxidant, antifungal, molecular docking and ADMET studies of some thiazolyl hydrazones. Bioorg. Med. Chem. Lett., 2017, 27(16), 3891-3896.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.043] [PMID: 28676272]
[28]
Bulut, N.; Kocyigit, U.M.; Gecibesler, I.H.; Dastan, T.; Karci, H.; Taslimi, P.; Durna Dastan, S.; Gulcin, I.; Cetin, A. Synthesis of some novel pyridine compounds containing bis-1,2,4-triazole/thiosemicarbazide moiety and investigation of their antioxidant properties, carbonic anhydrase, and acetylcholinesterase enzymes inhibition profiles. J. Biochem. Mol. Toxicol., 2018, 32(1)
[http://dx.doi.org/10.1002/jbt.22006] [PMID: 29131470]
[29]
Kumar, N. Medicinal chemistry of tumor necrosis factor-α inhibitors and related oxidative stress. Curr. Top. Med. Chem., 2012, 12(13), 1391-1391.
[http://dx.doi.org/10.2174/156802612801784452] [PMID: 22650372]
[30]
Li, J.; Zhang, H.; Huang, W.; Qian, H.; Li, Y. TNF-α inhibitors with anti-oxidative stress activity from natural products. Curr. Top. Med. Chem., 2012, 12(13), 1408-1421.
[http://dx.doi.org/10.2174/156802612801784434] [PMID: 22650374]
[31]
Bosquesi, P.L.; Melo, T.R.; Vizioli, E.O.; Santos, J.L.; Chung, M.C. Anti-inflammatory drug design using a molecular hybridization approach. Pharmaceuticals (Basel), 2011, 4(11), 1450-1474.
[http://dx.doi.org/10.3390/ph4111450] [PMID: 27721332]
[32]
Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[33]
Melagraki, G.; Afantitis, A.; Igglessi-Markopoulou, O.; Detsi, A.; Koufaki, M.; Kontogiorgis, C.; Hadjipavlou-Litina, D.J. Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. Eur. J. Med. Chem., 2009, 44(7), 3020-3026.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.027] [PMID: 19232783]
[34]
Sashidhara, K.V.; Kumar, M.; Modukuri, R.K.; Sonkar, R.; Bhatia, G.; Khanna, A.K.; Rai, S.; Shukla, R. Synthesis and anti-inflammatory activity of novel biscoumarin-chalcone hybrids. Bioorg. Med. Chem. Lett., 2011, 21(15), 4480-4484.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.002] [PMID: 21723119]
[35]
Akgün, H.; Karamelekoğlu, I.; Berk, B.; Kurnaz, I.; Sarıbıyık, G.; Oktem, S.; Kocagöz, T. Synthesis and antimycobacterial activity of some phthalimide derivatives. Bioorg. Med. Chem., 2012, 20(13), 4149-4154.
[http://dx.doi.org/10.1016/j.bmc.2012.04.060] [PMID: 22633120]
[36]
Rane, R.A.; Naphade, S.S.; Bangalore, P.K.; Palkar, M.B.; Shaikh, M.S.; Karpoormath, R. Synthesis of novel 4-nitropyrrole-based semicarbazide and thiosemicarbazide hybrids with antimicrobial and anti-tubercular activity. Bioorg. Med. Chem. Lett., 2014, 24(14), 3079-3083.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.018] [PMID: 24878195]
[37]
You, W.; Huang, Y.M.; Kizhake, S.; Natarajan, A.; Chang, C.E. Characterization of promiscuous binding of phosphor ligands to breast-cancer-gene 1 (BRCA1) C-terminal (BRCT): Molecular dynamics, free energy, entropy and inhibitor design. PLOS Comput. Biol., 2016, 12(8)e1005057
[http://dx.doi.org/10.1371/journal.pcbi.1005057] [PMID: 27560145]
[38]
Ankur, G.; Chander, M.; Sandeep, A. Synthesis of phthaloylglycyl hydrazide derivatives: Selective protection of phthalimide group from hydrazinolysis. Curr. Org. Synth., 2018, 15(6), 839-845.
[http://dx.doi.org/10.2174/1570179415666180601083256]
[39]
Morris, C.J. Carrageenan-Induced Paw Edema in the Rat and Mouse.In: Methods in Molecular Biology: Inflammation Protocols; Winyard, P.G.; Willoughby, D.A., Eds.; Humana Press: Totowa, New Jersey, 2003, p. 378.
[http://dx.doi.org/10.1385/1-59259-374-7:115]
[40]
Sadeghi, H.; Hajhashemi, V.; Minaiyan, M.; Movahedian, A.; Talebi, A. Further studies on anti-inflammatory activity of maprotiline in carrageenan-induced paw edema in rat. Int. Immunopharmacol., 2013, 15(3), 505-510.
[http://dx.doi.org/10.1016/j.intimp.2013.01.018] [PMID: 23415748]
[41]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[42]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[43]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[44]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[45]
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw., 2008, 28, 1-26.
[46]
Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A review of variable selection methods in partial least squares regression. Chemom. Intell. Lab. Syst., 2012, 118, 62-69.
[http://dx.doi.org/10.1016/j.chemolab.2012.07.010]
[47]
Chen, Z.; Bertin, R.; Froldi, G. EC50 estimation of antioxidant activity in DPPH· assay using several statistical programs. Food Chem., 2013, 138(1), 414-420.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.001] [PMID: 23265506]
[48]
Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 1968, 25(1), 192-205.
[http://dx.doi.org/10.1016/0003-2697(68)90092-4] [PMID: 4973948]
[49]
Halici, Z.; Dengiz, G.O.; Odabasoglu, F.; Suleyman, H.; Cadirci, E.; Halici, M. Amiodarone has anti-inflammatory and anti-oxidative properties: An experimental study in rats with carrageenan-induced paw edema. Eur. J. Pharmacol., 2007, 566(1-3), 215-221.
[http://dx.doi.org/10.1016/j.ejphar.2007.03.046] [PMID: 17475238]
[50]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug dis-covery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[51]
Mazzon, E.; Esposito, E.; Di Paola, R.; Muià, C.; Crisafulli, C.; Genovese, T.; Caminiti, R.; Meli, R.; Bramanti, P.; Cuzzocrea, S. Effect of tumour necrosis factor-alpha receptor 1 genetic deletion on carrageenan-induced acute inflammation: A comparison with etanercept. Clin. Exp. Immunol., 2008, 153(1), 136-149.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03669.x] [PMID: 18505433]
[52]
Rocha, A.C.; Fernandes, E.S.; Quintão, N.L.; Campos, M.M.; Calixto, J.B. Relevance of tumour necrosis factor-alpha for the inflammatory and nociceptive responses evoked by carrageenan in the mouse paw. Br. J. Pharmacol., 2006, 148(5), 688-695.
[http://dx.doi.org/10.1038/sj.bjp.0706775] [PMID: 16702985]
[53]
Horowitz, S.; Trievel, R.C. Carbon-oxygen hydrogen bonding in biological structure and function. J. Biol. Chem., 2012, 287(50), 41576-41582.
[http://dx.doi.org/10.1074/jbc.R112.418574] [PMID: 23048026]
[54]
Nazarbahjat, N.; Nordin, N.; Abdullah, Z.; Abdulla, M.A.; Yehye, W.A.; Halim, S.N.; Kee, C.H.; Ariffin, A. New thiosemicarbazides and 1,2,4-triazolethiones derived from 2-(ethylsulfanyl) benzohydrazide as potent antioxidants. Molecules, 2014, 19(8), 11520-11537.
[http://dx.doi.org/10.3390/molecules190811520] [PMID: 25093989]
[55]
Rimarčík, J.; Lukeš, V.; Klein, E.; Ilčin, M. Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. J. Mol. Struct. THEOCHEM, 2010, 952(1), 25-30.
[http://dx.doi.org/10.1016/j.theochem.2010.04.002]
[56]
Wang, L-F.; Zhang, H-Y. A theoretical investigation on DPPH radical-scavenging mechanism of edaravone. Bioorg. Med. Chem. Lett., 2003, 13(21), 3789-3792.
[http://dx.doi.org/10.1016/j.bmcl.2003.07.016] [PMID: 14552780]
[57]
Ochterski, J.W. Thermochemistry in Gaussian., http://gaussian.com/thermo/ (accessed 15 December, 2018).
[58]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D. Farkas; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision B.01. Wallingford CT 2009.
[59]
Valério, D.A.; Georgetti, S.R.; Magro, D.A.; Casagrande, R.; Cunha, T.M.; Vicentini, F.T.; Vieira, S.M.; Fonseca, M.J.; Ferreira, S.H.; Cunha, F.Q.; Verri, W.A. Jr Quercetin reduces inflammatory pain: inhibition of oxidative stress and cytokine production. J. Nat. Prod., 2009, 72(11), 1975-1979.
[http://dx.doi.org/10.1021/np900259y] [PMID: 19899776]
[60]
Wells, P.G.; McCallum, G.P.; Chen, C.S.; Henderson, J.T.; Lee, C.J.; Perstin, J.; Preston, T.J.; Wiley, M.J.; Wong, A.W. Oxidative stress in developmental origins of disease: Teratogenesis, neurodevelopmental deficits, and cancer. Toxicol. Sci., 2009, 108(1), 4-18.
[http://dx.doi.org/10.1093/toxsci/kfn263] [PMID: 19126598]
[61]
Parman, T.; Wiley, M.J.; Wells, P.G. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat. Med., 1999, 5(5), 582-585.
[http://dx.doi.org/10.1038/8466] [PMID: 10229238]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy