Generic placeholder image

Current Cancer Drug Targets


ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Gefitinib Represses JAK-STAT Signaling Activated by CRTC1-MAML2 Fusion in Mucoepidermoid Carcinoma Cells

Author(s): Yufeng Wu, Zhen He, Shaomei Li, Hong Tang, Lili Wang, Sen Yang, Bing Dong, Jianjun Qin, Yue Sun, Han Yu, Yu Zhang, Yi Zhang, Yongjun Guo and Qiming Wang*

Volume 19, Issue 10, 2019

Page: [796 - 806] Pages: 11

DOI: 10.2174/1568009619666190103122735

Price: $65


Background: Gefitinib is well-known as a tyrosine kinase inhibitor targeting non-smalllung- cancer (NSCLC) containing EGFR mutations. However, its effectiveness in treating mucoepidermoid carcinoma (MEC) without such EGFR mutations suggests additional targets.

Objective: The CRTC1-MAML2 (C1-M2) fusion typical for MEC has been proposed to be a gefitinib target.

Methods: To test this hypothesis, we developed a set of siRNAs to down-regulate C1-M2 expression. RNA-seq and Western blot techniques were applied to analyze the effects of gefitinib and siC1-M2 on the transcriptome of and the phosphorylation of tyrosine kinases in a MEC cell line H292.

Results: Deep-sequencing transcriptome analysis revealed that gefitinib extensively inhibited transcription of genes in JAK-STAT and MAPK/ERK pathways. Both siC1-M2 and gefitinib inhibited the phosphorylation of multiple signaling kinases in these signaling pathways, indicating that gefitinib inhibited JAK-STAT and MAPK/ERK pathways activated by C1-M2 fusion. Moreover, gefitinib inhibition of EGFR and MAPK/ERK was more effective than that of AKT, JAK2 and STATs, and their dependence on C1-M2 could be uncoupled. Taken together, our results suggest that gefitinib simultaneously represses phosphorylation of multiple key signaling proteins which are activated in MEC, in part by C1-M2 fusion. Gefitinib-repressed kinase phosphorylation explains the transcriptional repression of genes in JAK-STAT and MAPK/ERK pathways.

Conclusion: These findings provide new insights into the efficacy of gefitinib in treating mucoepidermoid carcinoma, and suggest that a combination of gefitinib and other inhibitors specifically against C1-M2 fusion could be more effective.

Keywords: Gefitinib, CRTC1-MAML2 fusion, EGFR, JAK-STAT, mucoepidermoid carcinoma cells, phosphorylation.

Graphical Abstract
Eck, M.J.; Hahn, W.C. EGFR in limbo. Cell, 2012, 149(4), 735-737.
Nyati, M.; Morgan, M.; Feng, F.; Lawrence, T. Integration of EGFR inhibitors with radiochemotherapy. Nat. Rev. Cancer, 2006, 6(11), 876-885.
Pao, W.; Miller, V.A. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J. Clin. Oncol., 2005, 23(11), 2556-2568.
Sequist, L.V.; Bell, D.W.; Lynch, T.J.; Haber, D.A. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J. Clin. Oncol., 2007, 25(5), 587-595.
Zhao, N.J.; Sun, Z.; Wang, Y.; Ning, X.; Jia, N.; Meng, C.; Wang, Y. Gefitinib-integrated regimen versus chemotherapy alone in heavily pretreated patients with epidermal growth factor receptor-mutated lung adenocarcinoma: A case-control study. Transl. Oncol., 2014, 7(4), 508-512.
Park, K.; Tan, E.H.; O’Byrne, K.; Zhang, L.; Boyer, M.; Mok, T.; Hirsh, V.; Yang, J.C.; Lee, K.H.; Lu, S.; Shi, Y.; Kim, S.W.; Laskin, J.; Kim, D.W.; Arvis, C.D.; Kolbeck, K.; Laurie, S.A.; Tsai, C.M.; Shahidi, M.; Kim, M.; Massey, D.; Zazulina, V.; Paz-Ares, L. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase 2B, open-label, randomised controlled trial. Lancet Oncol., 2016, 17(5), 577-589.
Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004, 350(350), 2129-21239.
Sordella, R.; Bell, D.W.; Haber, D.A.; Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 2004, 305(5687), 1163.
Paez, J.G.; Janne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500.
Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Jänne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2005, 352(8), 786.
Han, S.W.; Kim, H.P.; Jeon, Y.K.; Oh, D.Y.; Lee, S.H.; Kim, D.W.; Im, S.A.; Chung, D.H.; Heo, D.S.; Bang, Y.J.; Kim, T.Y. Mucoepidermoid carcinoma of lung: Potential target of EGFR-directed treatment. Lung Cancer, 2008, 61(1), 30-34.
Rossi, G.; Sartori, G.; Cavazza, A.; Tamberi, S. Mucoepidermoid carcinoma of the lung, response to EGFR inhibitors, EGFR and K-RAS mutations, and differential diagnosis. Lung Cancer, 2009, 63(1), 159-160.
Alsidawi, S.; Morris, J.C.; Wikenheiser-Brokamp, K.A.; Starnes, S.L.; Karim, N.A. Mucoepidermoid carcinoma of the lung: a case report and literature review. Case Rep. Oncol. Med., 2013, 2013625243
Macarenco, R.S.; Uphoff, T.S.; Gilmer, H.F.; Jenkins, R.B.; Thibodeau, S.N.; Lewis, J.E.; Molina, J.R.; Yang, P.; Aubry, M.C. Salivary gland-type lung carcinomas: an EGFR immunohistochemical, molecular genetic, and mutational analysis study. Mod. Pathol., 2008, 21, 1168.
Coxon, A.; Rozenblum, E.; Park, Y.S.; Joshi, N.; Tsurutani, J.; Dennis, P.A.; Kirsch, I.R.; Kaye, F.J. Mect1-Maml2 fusion oncogene linked to the aberrant activation of cyclic AMP/CREB regulated genes. Cancer Res., 2005, 65(16), 7137-7144.
O’Neill, I.D. Gefitinib as targeted therapy for mucoepidermoid carcinoma of the lung: possible significance of CRTC1–MAML2 oncogene. Lung Cancer, 2009, 64(1), 129-130.
Chen, Z.; Chen, J.; Gu, Y.; Hu, C.; Li, J.L.; Lin, S.; Shen, H.; Cao, C.; Gao, R.; Li, J.; Ha, P.K.; Kaye, F.J.; Griffin, J.D.; Wu, L. Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene, 2014, 33(29), 3869-3877.
Yonesaka, K.; Zejnullahu, K.; Lindeman, N.; Homes, A.J.; Jackman, D.M.; Zhao, F.; Rogers, A.M.; Johnson, B.E.; Janne, P.A. Autocrine production of amphiregulin predicts sensitivity to both gefitinib and cetuximab in EGFR wild-type cancers. Clin. Cancer Res., 2008, 14(21), 6963-6973.
Shan, Y.; Eastwood, M.P.; Zhang, X.; Kim, E.T.; Arkhipov, A.; Dror, R.O.; Jumper, J.; Kuriyan, J.; Shaw, D.E. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell, 2012, 149(4), 860-870.
Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer, 2007, 7(3), 169-1681.
Speight, P.; Barrett, A. Salivary gland tumours. Oral Dis., 2002, 8(5), 229-240.
Liu, X.; Adams, A.L. Mucoepidermoid carcinoma of the bronchus: a review. Arch. Pathol. Lab. Med., 2007, 131(9), 1400-1404.
Press, M.F.; Pike, M.C.; Hung, G.; Zhou, J.Y.; Ma, Y.; George, J.; Dietz-Band, J.; James, W.; Slamon, D.J.; Batsakis, J.G. Amplification and overexpression of HER-2/neu in carcinomas of the salivary gland: correlation with poor prognosis. Cancer Res., 1994, 54(21), 5675.
Yoo, J.; Robinson, R.A. H-ras gene mutations in salivary gland mucoepidermoid carcinomas. Cancer, 2000, 88(3), 518-523.
Handra-Luca, A.; Bilal, H.; Bertrand, J-C.; Fouret, P. Extra-Cellular signal-regulated ERK-1/ERK-2 pathway activation in human salivary gland mucoepidermoid carcinoma. Am. J. Pathol., 2003, 163(3), 957-967.
Lujan, B.; Hakim, S.; Moyano, S.; Nadal, A.; Caballero, M.; Diaz, A.; Valera, A.; Carrera, M.; Cardesa, A.; Alos, L. Activation of the EGFR/ERK pathway in high-grade mucoepidermoid carcinomas of the salivary glands. Br. J. Cancer, 2010, 103(4), 510-516.
Nordkvist, A.; Gustafsson, H.; Juberg-Ode, M.; Stenman, G. Recurrent rearrangements of 11q14–22 in mucoepidermoid carcinoma. Cancer Genet. Cytogenet., 1994, 74(2), 77-83.
Behboudi, A.; Enlund, F.; Winnes, M.; Andren, Y.; Nordkvist, A.; Leivo, I.; Flaberg, E.; Szekely, L.; Makitie, A.; Grenman, R.; Mark, J.; Stenman, G. Molecular classification of mucoepidermoid carcinomas-prognostic significance of the MECT1-MAML2 fusion oncogene. Genes Chromosomes Cancer, 2006, 45(5), 470-481.
O’Neill, I.D. t(11;19) translocation and CRTC1-MAML2 fusion oncogene in mucoepidermoid carcinoma. Oral Oncol., 2009, 45(1), 2-9.
Seethala, R.R.; Dacic, S.; Cieply, K.; Kelly, L.M.; Nikiforova, M.N. A reappraisal of the MECT1/MAML2 translocation in salivary mucoepidermoid carcinomas. Am. J. Surg. Pathol., 2010, 34(8), 1106.
Tonon, G.; Modi, S.; Wu, L.; Kubo, A.; Coxon, A.B.; Komiya, T.; O’Neil, K.; Stover, K.; El-Naggar, A.; Griffin, J.D.; Kirsch, I.R.; Kaye, F.J. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat. Genet., 2003, 33(2), 208-213.
Komiya, T.; Park, Y.; Modi, S.; Coxon, A.B.; Oh, H.; Kaye, F.J. Sustained expression of Mect1-Maml2 is essential for tumor cell growth in salivary gland cancers carrying the t(11;19) translocation. Oncogene, 2006, 25(45), 6128-6132.
Wu, L.; Liu, J.; Gao, P.; Nakamura, M.; Cao, Y.; Shen, H.; Griffin, J.D. Transforming activity of MECT1-MAML2 fusion oncoprotein is mediated by constitutive CREB activation. EMBO J., 2005, 24(13), 2391-2402.
Canettieri, G.; Coni, S.; Della Guardia, M.; Nocerino, V.; Antonucci, L.; Di Magno, L.; Screaton, R.; Screpanti, I.; Giannini, G.; Gulino, A. The coactivator CRTC1 promotes cell proliferation and transformation via AP-1. Proc. Natl. Acad. Sci. USA, 2009, 106(5), 1445-1450.
Amelio, A.L.; Fallahi, M.; Schaub, F.X.; Zhang, M.; Lawani, M.B.; Alperstein, A.S.; Southern, M.R.; Young, B.M.; Wu, L.; Zajackaye, M. CRTC1/MAML2 gain-of-function interactions with MYC create a gene signature predictive of cancers with CREB-MYC involvement. Proc. Natl. Acad. Sci. USA, 2014, 111(32)E3260
Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 2013, 14(4), R36.
Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1), 139-140.
Wittrup, A.; Lieberman, J. Knocking down disease: A progress report on siRNA therapeutics. Nat. Rev. Genet., 2015, 16(9), 543-552.
Boettcher, M.; McManus, M.T. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol. Cell, 2015, 58(4), 575-585.
Favoni, R.E.; Pattarozzi, A.; Lo Casto, M.; Barbieri, F.; Gatti, M.; Paleari, L.; Bajetto, A.; Porcile, C.; Gaudino, G.; Mutti, L.; Corte, G.; Florio, T. Gefitinib targets EGFR dimerization and ERK1/2 phosphorylation to inhibit pleural mesothelioma cell proliferation. Curr. Cancer Drug Targets, 2010, 10(2), 176-191.
Tolcher, A.W.; Peng, W.; Calvo, E. Rational approaches for combination therapy strategies targeting the MAP kinase pathway in solid tumors. Mol. Cancer Ther., 2018, 17(1), 3-16.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy