Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

多倍体巨细胞癌细胞(PGCCs):癌症的邪恶根源

卷 19, 期 5, 2019

页: [360 - 367] 页: 8

弟呕挨: 10.2174/1568009618666180703154233

价格: $65

conference banner
摘要

多倍体与细胞大小增加有关,并且通常存在于成人器官的子集和人胚胎的卵裂球阶段。 通过核内复制或细胞融合形成多倍体,以支持包括最早胚胎发生在内的特定发育需要。 最近的数据表明,多倍体巨细胞癌细胞(PGCCs)可能已经获得了一种活化的早期胚胎样程序,以响应致癌和治疗压力,从而产生用于药物抗性和转移的重编程癌细胞。 针对PGCC可能为癌症治疗开辟新的机会。

关键词: 多倍体巨细胞癌细胞,癌症干细胞,卵裂球样癌干细胞,核内复制,重编程,细胞融合。

图形摘要
[1]
Cronin, K.A.; Lake, A.J.; Scott, S.; Sherman, R.L.; Noone, A.M.; Howlader, N.; Henley, S.J.; Anderson, R.N.; Firth, A.U.; Ma, J.; Kohler, B.A.; Jemal, A. Annual report to the nation on the status of cancer, Part I: National Cancer Statistics. Cancer, 2018.
[2]
Weinberg, R.A. Coming full circle-from endless complexity to simplicity and back again. Cell, 2014, 157(1), 267-271.
[3]
Davoli, T.; de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol., 2011, 27, 585-610.
[4]
Fox, D.T.; Duronio, R.J. Endoreplication and polyploidy: Insights into development and disease. Development, 2013, 140(1), 3-12.
[5]
Orr-Weaver, T.L. When bigger is better: The role of polyploidy in organogenesis. Trends Genet., 2015, 31(6), 307-315.
[6]
Zielke, N.; Edgar, B.A.; DePamphilis, M.L. Endoreplication. Cold Spring Harb. Perspect. Biol., 2013, 5(1), a012948.
[7]
Lee, H.O.; Davidson, J.M.; Duronio, R.J. Endoreplication: Polyploidy with purpose. Genes Dev., 2009, 23(21), 2461-2477.
[8]
Ganem, N.J.; Pellman, D. Limiting the proliferation of polyploid cells. Cell, 2007, 131(3), 437-440.
[9]
Athayde Wirka, K.; Chen, A.A.; Conaghan, J.; Ivani, K.; Gvakharia, M.; Behr, B.; Suraj, V.; Tan, L.; Shen, S. Atypical embryo phenotypes identified by time-lapse microscopy: High prevalence and association with embryo development. Fertil. Steril., 2014, 101(6), 1637-1648.
[10]
Chavez, S.L.; Loewke, K.E.; Han, J.; Moussavi, F.; Colls, P.; Munne, S.; Behr, B.; Reijo, P.R.A. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat. Commun., 2012, 3, 1251.
[11]
Hardy, K.; Winston, R.M.; Handyside, A.H. Binucleate blastomeres in preimplantation human embryos in vitro: Failure of cytokinesis during early cleavage. J. Reprod. Fertil., 1993, 98(2), 549-558.
[12]
Iwata, K.; Yumoto, K.; Sugishima, M.; Mizoguchi, C.; Kai, Y.; Iba, Y.; Mio, Y. Analysis of compaction initiation in human embryos by using time-lapse cinematography. J. Assist. Reprod. Genet., 2014, 31(4), 421-426.
[13]
Kligman, I.; Benadiva, C.; Alikani, M.; Munne, S. The presence of multinucleated blastomeres in human embryos is correlated with chromosomal abnormalities. Hum. Reprod., 1996, 11(7), 1492-1498.
[14]
Van Royen, E.; Mangelschots, K.; Vercruyssen, M.; De Neubourg, D.; Valkenburg, M.; Ryckaert, G.; Gerris, J. Multinucleation in cleavage stage embryos. Hum. Reprod., 2003, 18(5), 1062-1069.
[15]
Voet, T.; Vanneste, E.; Van der Aa, N.; Melotte, C.; Jackmaert, S.; Vandendael, T.; Declercq, M.; Debrock, S.; Fryns, J.P.; Moreau, Y.; D’Hooghe, T.; Vermeesch, J.R. Breakage-fusion-bridge cycles leading to inv dup del occur in human cleavage stage embryos. Hum. Mutat., 2011, 32(7), 783-793.
[16]
Daughtry, B.L.; Chavez, S.L. Chromosomal instability in mammalian pre-implantation embryos: Potential causes, detection methods, and clinical consequences. Cell Tissue Res., 2016, 363(1), 201-225.
[17]
Eakin, G.S.; Hadjantonakis, A.K.; Papaioannou, V.E.; Behringer, R.R. Developmental potential and behavior of tetraploid cells in the mouse embryo. Dev. Biol., 2005, 288(1), 150-159.
[18]
Zhang, S.; Mercado-Uribe, I.; Xing, Z.; Sun, B.; Kuang, J.; Liu, J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene, 2014, 33(1), 116-128.
[19]
Lv, H.; Shi, Y.; Zhang, L.; Zhang, D.; Liu, G.; Yang, Z.; Li, Y.; Fei, F.; Zhang, S. Polyploid giant cancer cells with budding and the expression of cyclin E, S-phase kinase-associated protein 2, stathmin associated with the grading and metastasis in serous ovarian tumor. BMC Cancer, 2014, 14, 576.
[20]
Kondorosi, E.; Roudier, F.; Gendreau, E. Plant cell-size control: Growing by ploidy? Curr. Opin. Plant Biol., 2000, 3(6), 488-492.
[21]
Chen, S.; Stout, J.R.; Dharmaiah, S.; Yde, S.; Calvi, B.R.; Walczak, C.E. Transient endoreplication down-regulates the kinesin-14 HSET and contributes to genomic instability. Mol. Biol. Cell, 2016, 27(19), 2911-2923.
[22]
Erenpreisa, J.; Kalejs, M.; Cragg, M.S. Mitotic catastrophe and endomitosis in tumour cells: An evolutionary key to a molecular solution. Cell Biol. Int., 2005, 29(12), 1012-1018.
[23]
Niu, N.; Zhang, J.; Zhang, N.; Mercado-Uribe, I.; Tao, F.; Han, Z.; Pathak, S.; Multani, A.S.; Kuang, J.; Yao, J.; Bast, R.C.; Sood, A.K.; Hung, M.C.; Liu, J. Linking genomic reorganization to tumor initiation via the giant cell cycle. Oncogenesis, 2016, 5(12), e281.
[24]
Erenpreisa, J.A.; Cragg, M.S.; Fringes, B.; Sharakhov, I.; Illidge, T.M. Release of mitotic descendants by giant cells from irradiated Burkitt’s lymphoma cell line. Cell Biol. Int., 2000, 24(9), 635-648.
[25]
Sundaram, M.; Guernsey, D.L.; Rajaraman, M.M.; Rajaraman, R. Neosis: A novel type of cell division in cancer. Cancer Biol. Ther., 2004, 3(2), 207-218.
[26]
Walen, K.H. The origin of transformed cells. studies of spontaneous and induced cell transformation in cell cultures from marsupials, a snail, and human amniocytes. Cancer Genet. Cytogenet., 2002, 133(1), 45-54.
[27]
Rohnalter, V.; Roth, K.; Finkernagel, F.; Adhikary, T.; Obert, J.; Dorzweiler, K.; Bensberg, M.; Muller-Brusselbach, S.; Muller, R. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget, 2015, 6(37), 40005-40025.
[28]
Zack, T.I.; Schumacher, S.E.; Carter, S.L.; Cherniack, A.D.; Saksena, G.; Tabak, B.; Lawrence, M.S.; Zhsng, C.Z.; Wala, J.; Mermel, C.H.; Sougnez, C.; Gabriel, S.B.; Hernandez, B.; Shen, H.; Laird, P.W.; Getz, G.; Meyerson, M.; Beroukhim, R. Pan-cancer patterns of somatic copy number alteration. Nat. Genet., 2013, 45(10), 1134-1140.
[29]
Dikovskaya, D.; Cole, J.J.; Mason, S.M.; Nixon, C.; Karim, S.A.; McGarry, L.; Clark, W.; Hewitt, R.N.; Sammons, M.A.; Zhu, J.; Athineos, D.; Leach, J.D.; Marchesi, F.; van Tuyn, J.; Tait, S.W.; Brock, C.; Morton, J.P.; Wu, H.; Berger, S.L.; Blyth, K.; Adams, P.D. Mitotic stress is an integral part of the oncogene-induced senescence program that promotes multinucleation and cell cycle arrest. Cell Reports, 2015, 12(9), 1483-1496.
[30]
Mirzayans, R.; Andrais, B.; Scott, A.; Wang, Y.W.; Kumar, P.; Murray, D. Multinucleated giant cancer cells produced in response to ionizing radiation retain viability and replicate their genome. Int. J. Mol. Sci., 2017, 18(2), 360.
[31]
Sikora, E.; Mosieniak, G.; Sliwinska, M.A. Morphological and functional characteristic of senescent cancer cells. Curr. Drug Targets, 2016, 17(4), 377-387.
[32]
Ianzini, F.; Kosmacek, E.A.; Nelson, E.S.; Napoli, E.; Erenpreisa, J.; Kalejs, M.; Mackey, M.A. Activation of meiosis-specific genes is associated with depolyploidization of human tumor cells following radiation-induced mitotic catastrophe. Cancer Res., 2009, 69(6), 2296-2304.
[33]
Sharma, S.; Zeng, J.Y.; Zhuang, C.M.; Zhou, Y.Q.; Yao, H.P.; Hu, X.; Zhang, R.; Wang, M.H. Small-molecule inhibitor BMS-777607 induces breast cancer cell polyploidy with increased resistance to cytotoxic chemotherapy agents. Mol. Cancer Ther., 2013, 12(5), 725-736.
[34]
Lagadec, C.; Vlashi, E.; Della Donna, L.; Dekmezian, C.; Pajonk, F. Radiation-induced reprogramming of breast cancer cells. Stem Cells, 2012, 30(5), 833-844.
[35]
Jia, L.; Zhang, S.; Ye, Y.; Li, X.; Mercado-Uribe, I.; Bast, R.C., Jr; Liu, J. Paclitaxel inhibits ovarian tumor growth by inducing epithelial cancer cells to benign fibroblast-like cells. Cancer Lett., 2012, 326(2), 176-182.
[36]
Zhang, S.; Mercado-Uribe, I.; Liu, J. Tumor stroma and differentiated cancer cells can be originated directly from polyploid giant cancer cells induced by paclitaxel. Int. J. Cancer, 2014, 134(3), 508-518.
[37]
Ahn, H.J.; Kim, Y.S.; Kim, J.U.; Han, S.M.; Shin, J.W.; Yang, H.O. Mechanism of taxol-induced apoptosis in human SKOV3 ovarian carcinoma cells. J. Cell. Biochem., 2004, 91(5), 1043-1052.
[38]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[39]
Ganem, N.J.; Cornils, H.; Chiu, S.Y.; O’Rourke, K.P.; Arnaud, J.; Yimlamai, D.; Thery, M.; Camargo, F.D.; Pellman, D. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell, 2014, 158(4), 833-848.
[40]
Mosieniak, G.; Sikora, E. Polyploidy: The link between senescence and cancer. Curr. Pharm. Des., 2010, 16(6), 734-740.
[41]
Mosieniak, G.; Sliwinska, M.A.; Alster, O.; Strzeszewska, A.; Sunderland, P.; Piechota, M.; Was, H.; Sikora, E. Polyploidy formation in doxorubicin-treated cancer cells can favor escape from senescence. Neoplasia, 2015, 17(12), 882-893.
[42]
Puig, P.E.; Guilly, M.N.; Bouchot, A.; Droin, N.; Cathelin, D.; Bouyer, F.; Favier, L.; Ghiringhelli, F.; Kroemer, G.; Solary, E.; Martin, F.; Chauffert, B. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol. Int., 2008, 32(9), 1031-1043.
[43]
Niu, N.; Mercado-Uribe, I.; Liu, J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene, 2017, 36(34), 4887.
[44]
Lu, X.; Kang, Y. Cell fusion as a hidden force in tumor progression. Cancer Res., 2009, 69(22), 8536-8539.
[45]
Rengstl, B.; Newrzela, S.; Heinrich, T.; Weiser, C.; Thalheimer, F.B.; Schmid, F.; Warner, K.; Hartmann, S.; Schroeder, T.; Kuppers, R.; Rieger, M.A.; Hansmann, M.L. Incomplete cytokinesis and re-fusion of small mononucleated Hodgkin cells lead to giant multinucleated Reed-Sternberg cells. Proc. Natl. Acad. Sci. USA, 2013, 110(51), 20729-20734.
[46]
Braune, E.B.; Tsoi, Y.L.; Phoon, Y.P.; Landor, S.; Silva Cascales, H.; Ramskold, D.; Deng, Q.; Lindqvist, A.; Lian, X.; Sahlgren, C.; Jin, S.B.; Lendahl, U. Loss of CSL unlocks a hypoxic response and enhanced tumor growth potential in breast cancer cells. Stem Cell Reports, 2016, 6(5), 643-651.
[47]
Mittal, K.; Donthamsetty, S.; Kaur, R.; Yang, C.; Gupta, M.V.; Reid, M.D.; Choi, D.H.; Rida, P.C.G.; Aneja, R. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br. J. Cancer, 2017, 116(9), 1186-1194.
[48]
Walen, K.H. Mitosis is not the only distributor of mutated cells: non-mitotic endopolyploid cells produce reproductive genome-reduced cells. Cell Biol. Int., 2010, 34(8), 867-872.
[49]
Fujiwara, T.; Bandi, M.; Nitta, M.; Ivanova, E.V.; Bronson, R.T.; Pellman, D. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature, 2005, 437(7061), 1043-1047.
[50]
Davoli, T.; de Lange, T. Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell, 2012, 21(6), 765-776.
[51]
Leikam, C.; Hufnagel, A.L.; Otto, C.; Murphy, D.J.; Muhling, B.; Kneitz, S.; Nanda, I.; Schmid, M.; Wagner, T.U.; Haferkamp, S.; Brocker, E.B.; Schartl, M.; Meierjohann, S. In vitro evidence for senescent multinucleated melanocytes as a source for tumor-initiating cells. Cell Death Dis., 2015, 6, e1711.
[52]
Weihua, Z.; Lin, Q.; Ramoth, A.J.; Fan, D.; Fidler, I.J. Formation of solid tumors by a single multinucleated cancer cell. Cancer, 2011, 117(17), 4092-4099.
[53]
Kreso, A.; Dick, J.E. Evolution of the cancer stem cell model. Cell Stem Cell, 2014, 14(3), 275-291.
[54]
Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; Campbell, L.L.; Polyak, K.; Brisken, C.; Yang, J.; Weinberg, R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4), 704-715.
[55]
Jiang, Q.; Zhang, Q.; Wang, S.; Xie, S.; Fang, W.; Liu, Z.; Liu, J.; Yao, K. A fraction of CD133+ CNE2 cells is made of giant cancer cells with morphological evidence of asymmetric mitosis. J. Cancer, 2015, 6(12), 1236-1244.
[56]
Díaz-Carballo, D.; Saka, S.; Klein, J.; Rennkamp, T.; Acikelli, A.H.; Malak, S.; Jastrow, H.; Wennemuth, G.; Tempfer, C.; Schmitz, I.; Tannapfel, A.; Strumberg, D. A distinct oncogenerative multinucleated cancer cell serves as a source of stemness and tumor heterogeneity. Cancer Res., 2018, 78(9), 2318-2331.
[57]
Salmina, K.; Jankevics, E.; Huna, A.; Perminov, D.; Radovica, I.; Klymenko, T.; Ivanov, A.; Jascenko, E.; Scherthan, H.; Cragg, M.; Erenpreisa, J. Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells. Exp. Cell Res., 2010, 316(13), 2099-2112.
[58]
Chitikova, Z.V.; Gordeev, S.A.; Bykova, T.V.; Zubova, S.G.; Pospelov, V.A.; Pospelova, T.V. Sustained activation of DNA damage response in irradiated apoptosis-resistant cells induces reversible senescence associated with mTOR downregulation and expression of stem cell markers. Cell Cycle, 2014, 13(9), 1424-1439.
[59]
Ben-Porath, I.; Thomson, M.W.; Carey, V.J.; Ge, R.; Bell, G.W.; Regev, A.; Weinberg, R.A. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet., 2008, 40(5), 499-507.
[60]
Zhang, S.; Mercado-Uribe, I.; Liu, J. Generation of erythroid cells from fibroblasts and cancer cells in vitro and in vivo. Cancer Lett., 2013, 333(2), 205-212.
[61]
Zhang, S.; Mercado-Uribe, I.; Sood, A.; Bast, R.C.; Liu, J. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells. Genes Cancer, 2016, 7(3-4), 60-72.
[62]
Zhang, S.; Mercado-Uribe, I.; Hanash, S.; Liu, J. iTRAQ-based proteomic analysis of polyploid giant cancer cells and budding progeny cells reveals several distinct pathways for ovarian cancer development. PLoS One, 2013, 8(11), e80120.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy