[1]
Biava, P.M.; Canaider, S.; Facchin, F.; Bianconi, E.; Ljungberg, L.; Rotilio, D.; Burigana, F.; Ventura, C. Stem cell differentiation stage factors from zebrafish embryo: A novel strategy to modulate the fate of normal and pathological human (stem) cells. Curr. Pharm. Biotechnol., 2015, 16(9), 782-792.
[2]
Biava, P.M.; Bonsignorio, D.; Hoxa, M. Life-protecting factor (LPF): An anti-cancer low molecular weight fraction isolated from pregnant uterine mucosa during embryo organogenesis. J. Tumor Marker Oncol., 2000, 15, 223-233.
[3]
Livraghi, T.; Meloni, F.; Frosi, A.; Lazzaroni, S.; Bizzarri, T.M.; Frati, L.; Biava, P.M. Treatment with stem cell differentiation stage factors of intermediate-advanced hepatocellular carcinoma: an open randomized clinical trial. Oncol. Res., 2005, 15(7-8), 399-408.
[4]
Livraghi, T.; Ceriani, R.; Palmisano, A.; Pedicini, V.; Pich, M.G.; Tommasini, M.A.; Torzilli, G. Complete response in 5 out of 38 patients with advanced hepatocellular carcinoma treated with stem cell differentiation stage factors: case reports from a single centre. Curr. Pharm. Biotechnol., 2011, 12(2), 254-260.
[5]
Biava, P.M.; Bonsignorio, D. Cancer and cell differentiation: a model to explain malignancy. J. Tumor Marker Oncol., 2002, 17, 47-54.
[6]
Pierce, G.B. The cancer cell and its control by the embryo. Rous-Whipple Award lecture. Am. J. Pathol., 1983, 113(1), 117-124.
[7]
Biava, P.M.; Nicolini, A.; Ferrari, P.; Carpi, A.; Sell, S. A systemic approach to cancer treatment: Tumor cell reprogramming focused on endocrine-related cancers. Curr. Med. Chem., 2014, 21(9), 1072-1081.
[8]
Mosoyan, G.; Nagi, C.; Marukian, S.; Teixeira, A.; Simonian, A.; Resnick-Silverman, L.; DiFeo, A.; Johnston, D.; Reynolds, S.R.; Roses, D.F.; Mosoian, A. Multiple breast cancer cell-lines derived from a single tumor differ in their molecular characteristics and tumorigenic potential. PLoS One, 2013, 8(1), e55145.
[9]
Botchkina, I.L.; Rowehl, R.A.; Rivadeneira, D.E.; Karpeh, M.S., Jr; Crawford, H.; Dufour, A.; Ju, J.; Wang, Y.; Leyfman, Y.; Botchkina, G.I. Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis. Cancer Genomics Proteomics, 2009, 6(1), 19-29.
[10]
Pérez-Caro, M.; Cobaleda, C.; González-Herrero, I.; Vicente-Dueñas, C.; Bermejo-Rodríguez, C.; Sánchez-Beato, M.; Orfao, A.; Pintado, B.; Flores, T.; Sánchez-Martín, M.; Jiménez, R.; Piris, M.A.; Sánchez-García, I. Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO J., 2009, 28(1), 8-20.
[11]
Plaks, V.; Kong, N.; Werb, Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 2015, 16(3), 225-238.
[12]
Itzykson, C.; Zuber, J. Quantum field theory; McGraw-Hill: New York, 1980.
[13]
Umezawa, H. Advanced field theory: micro, macro and thermal concepts., 1993.
[14]
Umezawa, H.; Matsumoto, H.; Tachiki, M. Thermo field dynamics and condensed states., 1982.
[15]
Blasone, M.; Jizba, P.; Vitiello, G. Quantum field theory and its macroscopic manifestations., 2011.
[16]
Vitiello, G. My Double Unveiled; John Benjamins Publishing Company: Amsterdam, 2001.
[17]
Del Giudice, E.; Manka, R.; Milani, M.; Vitiello, G. Non-constant order parameter and vacuum evolution. Phys. Lett. B, 1988, 206, 661-664.
[18]
Preparata, G.; Vitiello, G.; Vitiello, G. Water as a free electric dipole laser. Phys. Rev. Lett., 1988, 61(9), 1085-1088.
[19]
Del Giudice, E.; Vitiello, G. The role of the electromagnetic field in the formation of domains in the process of symmetry breaking phase transitions. Phys. Rev. A, 2006, 74, 022105.
[20]
Alfinito, E.; Vitiello, G. Domain formation in non-instantaneous symmetry-breaking phase transitions. Phys. Rev. B, 2002, 65, 054105.
[21]
Vitiello, G. Coherent states, fractals and brain waves. New Mathematics and Natural Computation, 2009, 5, 245-264.
[22]
Vitiello, G. Fractals, coherent states and self-similarity induced noncommutative geometry. Phys. Lett. A, 2012, 376, 2527-2532.
[23]
Vitiello, G. On the isomorphism between dissipative systems, fractal self-similarity and electrodynamics. Toward an integrated vision of nature. Systems, 2014, 2, 203-216.
[24]
Goldstone, J. Field theories with superconductor solutions. Nuovo Cim., 1961, 19, 154-164.
[25]
Matsumoto, H.; Umezawa, H.; Vitiello, G.; Wyly, J.K. Spontaneous breakdown of a non-Abelian symmetry. Phys. Rev. D Part. Fields, 1974, 9, 2806-2813.
[26]
Shah, M.N.; Umezawa, H.; Vitiello, G. Relation among spin operators and magnons. Phys. Rev. B, 1974, 10, 4724-4736.
[27]
Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. Spontaneous symmetry breakdown and boson condensation in biology. Phys. Lett. A, 1983, 95, 508-510.
[28]
Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. A quantum field theoretical approach to the collective behavior of biological systems., Nucl. Phys. B.,. 1985. 251(FS 13),375-400
[29]
Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. Electromagnetic field and spontaneous symmetry breaking in biological matter., . Nucl. Phys. B. 1986. 275(FS 17), 185-199
[30]
Celeghini, E.; Rasetti, M.; Vitiello, G. Quantum Dissipation. Ann. Phys., 1992, 215, 156-170.
[31]
Peitgen, H.O.; Jürgens, H.; Saupe, D. Chaos and fractals.new frontiers of science; Springer-Verlag: Berlin, 1986.
[32]
Iliopoulos, D.; Hirsch, H.A.; Wang, G.; Struhl, K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci. USA, 2011, 108(4), 1397-1402.
[33]
Cheng, L.; Ramesh, A.V.; Flesken-Nikitin, A.; Choi, J.; Nikitin, A.Y. Mouse models for cancer stem cell research. Toxicol. Pathol., 2010, 38(1), 62-71.
[34]
Welte, Y.; Adjaye, J.; Lehrach, H.R.; Regenbrecht, C.R.A. Cancer stem cells in solid tumors: Elusive or illusive? Cell Commun. Signal., 2010, 8(1), 6.
[35]
Dontu, G.; Liu, S.; Wicha, M.S. Stem cells in mammary development and carcinogenesis: implications for prevention and treatment. Stem Cell Rev., 2005, 1(3), 207-213.
[36]
Cobaleda, C.; Sánchez-García, I. B-cell acute lymphoblastic leukaemia: Towards understanding its cellular origin. BioEssays, 2009, 31(6), 600-609.
[37]
Nagl, W.; Popp, F.A. A physical (electromagnetic) model of differentiation. 1. Basic considerations. Cytobios, 1983, 37(145), 45-62.
[38]
Szent-Györgyi, A. The living state and cancer. Physiol. Chem. Phys., 1980, 12(2), 99-110.
[39]
Preto, J.; Nardecchia, I.; Jaeger, S.; Ferrier, P.; Pettini, M. Investigating encounter dynamics of biomolecular reactions:Long-range resonant interactions versus Brownian
collisions. Fields of the Cell., 2015, 215-228.
[40]
Kurian, P.; Dunston, G.; Lindesay, J. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases. J. Theor. Biol., 2016, 391, 102-112.
[41]
Kurian, P.; Capolupo, A.; Craddock, T.J.A.; Vitiello, G. Water-mediated correlations in DNA-enzyme interactions. Phys. Lett. A, 2018, 382(1), 33-43.
[42]
Chernet, B.; Levin, M. Endogenous voltage potentials and the microenvironment: bioelectric signals that reveal, induce and normalize cancer. J. Clin. Exp. Oncol., 2013(Suppl. 1), S1-S002.
[43]
Chang, F.; Minc, N. Electrochemical control of cell and tissue polarity. Annu. Rev. Cell Dev. Biol., 2014, 30, 317-336.
[44]
Rossen, N.S.; Tarp, J.M.; Mathiesen, J.; Jensen, M.H.; Oddershede, L.B. Long-range ordered vorticity patterns in living tissue induced by cell division. Nat. Commun., 2014, 5, 5720.
[45]
Tanner, K.; Mori, H.; Mroue, R.; Bruni-Cardoso, A.; Bissell, M.J. Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc. Natl. Acad. Sci. USA, 2012, 109(6), 1973-1978.
[46]
Lineweaver, C.H.; Davies, P.C.W.; Vincent, M.D. Targeting cancer’s weaknesses (not its strengths): Therapeutic strategies suggested by the atavistic model. BioEssays, 2014, 36(9), 827-835.
[47]
Arani, R.; Bono, I.; Del Giudice, E.; Preparata, G. QED coherence and the thermodynamics of water. Int. J. Mod. Phys. B, 1995, 139, 1813-1841.
[48]
Landau, L.D. The theory of superfluidity of helium II. J. Phys. (USSR), 1941, 5, 71.
[49]
Germano, R.; Del Giudice, E.; De Ninno, A.; Elia, V.; Hison, C.; Napoli, E.; Tontodonato, V.; Tuccinardi, F.P.; Vitiello, G. Oxhydroelectric effect in bi-distilled water. Key Eng. Mater., 2013, 543, 455-459.
[50]
Germano, R.; Tontodonato, V.; Hison, C.; Cirillo, D.; Tuccinardi, F.P. Oxhydroelectric effect: electricity from water by twin electrodes. Key Eng. Mater., 2012, 495, 100-103.
[51]
Verzegnassi, C. Int. J. Mod. Phys, 2016, 1, 14.
[52]
Kurian, P.; Verzegnassi, C. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron. Phys. Lett. A, 2016, 380(3), 380-, 394-396.
[53]
Blokzijl, F.; de Ligt, J.; Jager, M.; Sasselli, V.; Roerink, S.; Sasaki, N.; Huch, M.; Boymans, S.; Kuijk, E.; Prins, P.; Nijman, I.J.; Martincorena, I.; Mokry, M.; Wiegerinck, C.L.; Middendorp, S.; Sato, T.; Schwank, G.; Nieuwenhuis, E.E.S.; Verstegen, M.M.; van der Laan, L.J.W.; de Jonge, J.; IJzermans, J.N.M.; Vries, R.G.; van de Wetering, M.; Stratton, M.R.; Clevers, H.; Cuppen, E.; van Boxtel, R. Tissue-specific mutation accumulation in human adult stem cells during life. Nature, 2016, 538(7624), 260-264.
[54]
Shackleton, M.; Quintana, E.; Fearon, E.R.; Morrison, S.J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell, 2009, 138(5), 822-829.
[55]
Visvader, J.E.; Lindeman, G.J. Cancer stem cells: current status and evolving complexities. Cell Stem Cell, 2012, 10(6), 717-728.
[56]
Biava, P.M.; Monguzzi, A.; Bonsignorio, D.; Frosi, A.; Sell, S.; Klavins, J.V. Xenopus laevis embryos share antigens with zebrafish embryos and with human malignant neoplasms J. Tumor Marker Oncol, 2001, 16, 203-206.
[57]
Chen, J.; Chen, Z.L. Technology update for the sorting and identification of breast cancer stem cells. Chin. J. Cancer, 2010, 29(3), 265-269.
[58]
Roesler, R.; Cornelio, D.B.; Abujamra, A.L.; Schwartsmann, G. HER2 as a cancer stem-cell target. Lancet Oncol., 2010, 11(3), 225-226.
[59]
Wu, W. Patents related to cancer stem cell research. Recent Pat. DNA Gene Seq., 2010, 4(1), 40-45.
[60]
Park, S.Y.; Lee, H.E.; Li, H.; Shipitsin, M.; Gelman, R.; Polyak, K. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin. Cancer Res., 2010, 16(3), 876-887.
[61]
Lawson, J.C.; Blatch, G.L.; Edkins, A.L. Cancer stem cells in breast cancer and metastasis. Breast Cancer Res. Treat., 2009, 118(2), 241-254.
[62]
Luo, J.; Yin, X.; Ma, T.; Lu, J. Stem cells in normal mammary gland and breast cancer. Am. J. Med. Sci., 2010, 339(4), 366-370.
[63]
Spiro, S.G.; Tanner, N.T.; Silvestri, G.A.; Janes, S.M.; Lim, E.; Vansteenkiste, J.F.; Pirker, R. Lung cancer: progress in diagnosis, staging and therapy. Respirology, 2010, 15(1), 44-50.
[64]
Gorelik, E.; Lokshin, A.; Levina, V. Lung cancer stem cells as a target for therapy. Anticancer. Agents Med. Chem., 2010, 10(2), 164-171.
[65]
Sullivan, J.P.; Minna, J.D.; Shay, J.W. Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Rev., 2010, 29(1), 61-72.
[66]
Westhoff, B.; Colaluca, I.N.; D’Ario, G.; Donzelli, M.; Tosoni, D.; Volorio, G.; Pelosi, G.; Spaggiari, L.; Mazzarol, G.; Viale, G.; Pece, S.; Di Fiore, P.P. Alteration of the notch pathway in lung cancer. Proc. Natl. Acad. Sci. USA, 2010, 87, 457-466.
[67]
Lawson, D.A.; Zong, Y.; Memarzadeh, S.; Xin, L.; Huang, J.; Witte, O.N. Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2610-2615.
[68]
Lang, S.H.; Anderson, E.; Fordham, R.; Collins, A.T. Modeling the prostate stem cell niche: an evaluation of stem cell survival and expansion in vitro. Stem Cells Dev., 2010, 19(4), 537-546.
[69]
Joung, J.Y.; Cho, K.S.; Kim, J.E.; Seo, H.K.; Chung, J.; Park, W.S.; Choi, M.K.; Lee, K.H. Prostate stem cell antigen mRNA in peripheral blood as a potential predictor of biochemical recurrence in high-risk prostate cancer. J. Surg. Oncol., 2010, 101(2), 145-148.
[70]
Liu, T.; Cheng, W.; Lai, D.; Huang, Y.; Guo, L. Characterization of primary ovarian cancer cells in different culture systems. Oncol. Rep., 2010, 23(5), 1277-1284.
[71]
Fong, M.Y.; Kakar, S.S. The role of cancer stem cells and the side population in epithelial ovarian cancer. Histol. Histopathol., 2010, 25(1), 113-120.
[72]
Murphy, S.K. Targeting ovarian cancer-initiating cells. Anticancer. Agents Med. Chem., 2010, 10(2), 157-163.
[73]
Peng, S.; Maihle, N.J.; Huang, Y. Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene, 2010, 29(14), 2153-2159.
[74]
Tomuleasa, C.; Soritau, O.; Rus-Ciuca, D.; Pop, T.; Todea, D.; Mosteanu, O.; Pintea, B.; Foris, V.; Susman, S.; Kacsó, G.; Irimie, A. Isolation and characterization of hepatic cancer cells with stem-like properties from hepatocellular carcinoma. J. Gastrointestin. Liver Dis., 2010, 19(1), 61-67.
[75]
Zou, G.M. Liver cancer stem cells as an important target in liver cancer therapies. Anticancer. Agents Med. Chem., 2010, 10(2), 172-175.
[76]
Lee, T.K.; Castilho, A.; Ma, S.; Ng, I.O. Liver cancer stem cells: Implications for a new therapeutic target. Liver Int., 2009, 29(7), 955-965.
[77]
Marquardt, J.U.; Thorgeirsson, S.S. Stem cells in hepatocarcinogenesis: Evidence from genomic data. Semin. Liver Dis., 2010, 30(1), 26-34.
[78]
Kung, J.W.; Currie, I.S.; Forbes, S.J.; Ross, J.A. Liver development, regeneration, and carcinogenesis. J. Biomed. Biotechnol., 2010, 2010, 984248.
[79]
Gai, H.; Nguyen, D.M.; Moon, Y.J.; Aguila, J.R.; Fink, L.M.; Ward, D.C.; Ma, Y. Generation of murine hepatic lineage cells from induced pluripotent stem cells. Differentiation, 2010, 79(3), 171-181.
[80]
Correia, M.; Machado, J.C.; Ristimäki, A. Basic aspects of gastric cancer. Helicobacter, 2009, 14(Suppl. 1), 36-40.
[81]
Takaishi, S.; Okumura, T.; Tu, S.; Wang, S.S.; Shibata, W.; Vigneshwaran, R.; Gordon, S.A.; Shimada, Y.; Wang, T.C. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells, 2009, 27(5), 1006-1020.
[82]
Nishii, T.; Yashiro, M.; Shinto, O.; Sawada, T.; Ohira, M.; Hirakawa, K. Cancer stem cell-like SP cells have a high adhesion ability to the peritoneum in gastric carcinoma. Cancer Sci., 2009, 100(8), 1397-1402.
[83]
Chen, Z.; Xu, W.R.; Qian, H.; Zhu, W.; Bu, X.F.; Wang, S.; Yan, Y.M.; Mao, F.; Gu, H.B.; Cao, H.L.; Xu, X.J. Oct4, a novel marker for human gastric cancer. J. Surg. Oncol., 2009, 99(7), 414-419.
[84]
Kang, D.H.; Han, M.E.; Song, M.H.; Lee, Y.S.; Kim, E.H.; Kim, H.J.; Kim, G.H.; Kim, D.H.; Yoon, S.; Baek, S.Y.; Kim, B.S.; Kim, J.B.; Oh, S.O. The role of hedgehog signaling during gastric regeneration. J. Gastroenterol., 2009, 44(5), 372-379.
[85]
Yeung, T.M.; Gandhi, S.C.; Wilding, J.L.; Muschel, R.; Bodmer, W.F. Cancer stem cells from colorectal cancer-derived cell lines. Proc. Natl. Acad. Sci. USA, 2010, 107(8), 3722-3727.
[86]
Gulino, A.; Ferretti, E.; De Smaele, E. Hedgehog signalling in colon cancer and stem cells. EMBO Mol. Med., 2009, 1(6-7), 300-302.
[87]
Thenappan, A.; Li, Y.; Shetty, K.; Johnson, L.; Reddy, E.P.; Mishra, L. New therapeutics targeting colon cancer stem cells. Curr. Colorectal Cancer Rep., 2009, 5(4), 209.
[88]
Rasheed, Z.A.; Yang, J.; Wang, Q.; Kowalski, J.; Freed, I.; Murter, C.; Hong, S.M.; Koorstra, J.B.; Rajeshkumar, N.V.; He, X.; Goggins, M.; Iacobuzio-Donahue, C.; Berman, D.M.; Laheru, D.; Jimeno, A.; Hidalgo, M.; Maitra, A.; Matsui, W. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J. Natl. Cancer Inst., 2010, 102(5), 340-351.
[89]
Puri, S.; Hebrok, M. Cellular plasticity within the pancreas--lessons learned from development. Dev. Cell, 2010, 18(3), 342-356.
[90]
Quante, M.; Wang, T.C. Stem cells in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol., 2009, 6(12), 724-737.
[91]
Sato, A.; Sakurada, K.; Kumabe, T.; Sasajima, T.; Beppu, T.; Asano, K.; Ohkuma, H.; Ogawa, A.; Mizoi, K.; Tominaga, T.; Kitanaka, C.; Kayama, T. Association of stem cell marker CD133 expression with dissemination of glioblastomas. Neurosurg. Rev., 2010, 33(2), 175-183.
[92]
Di Tomaso, T.; Mazzoleni, S.; Wang, E.; Sovena, G.; Clavenna, D.; Franzin, A.; Mortini, P.; Ferrone, S.; Doglioni, C.; Marincola, F.M.; Galli, R.; Parmiani, G.; Maccalli, C. Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin. Cancer Res., 2010, 16(3), 800-813.
[93]
Ji, J.; Black, K.L.; Yu, J.S. Glioma stem cell research for the development of immunotherapy. Neurosurg. Clin. N. Am., 2010, 21(1), 159-166.
[94]
Ailles, L.; Prince, M. Cancer stem cells in head and neck squamous cell carcinoma. Methods Mol. Biol., 2009, 568, 175-193.
[95]
Zhang, P.; Zhang, Y.; Mao, L.; Zhang, Z.; Chen, W. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Lett., 2009, 277(2), 227-234.
[96]
Brunner, M.; Thurnher, D.; Heiduschka, G.; Grasl, M.Ch.; Brostjan, C.; Erovic, B.M. Elevated levels of circulating endothelial progenitor cells in head and neck cancer patients. J. Surg. Oncol., 2008, 98(7), 545-550.