Generic placeholder image

Current Cancer Drug Targets


ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Specific Targeting of HER2-Positive Head and Neck Squamous Cell Carcinoma Line HN5 by Idarubicin-ZHER2 Affibody Conjugate

Author(s): Marzieh Ghanemi, Aminollah Pourshohod, Mohammad Ali Ghaffari, Alireza kheirollah, Mansour Amin, Majid Zeinali* and Mostafa Jamalan*

Volume 19, Issue 1, 2019

Page: [65 - 73] Pages: 9

DOI: 10.2174/1568009617666170427105417

Price: $65


Background: Expression of human epidermal growth factor receptor type 2 (HER2) in head and neck squamous cell carcinoma (HNSCC) cell line HN5 can be employed with great opportunities of success for specific targeting of anti-cancer chemotherapeutic agents.

Objective: In the current study, HER2-specific affibody molecule, ZHER2:342 (an engineered protein with great affinity for HER2 receptors) was selected for conjugation to idarubicin (an anti-neoplastic antibiotic).

Method: ZHER2:342 affibody gene with one added cysteine code at the its 5′ end was synthesized de novo and then inserted into pET302 plasmid and transferred to E. Coli BL21 hosting system. After induction of protein expression, the recombinant ZHER2 affibody molecules were purified using Ni- NTA resin and purity was analyzed through SDS-PAGE. Affinity-purified affibody molecules were conjugated to idarubicin through a heterobifunctional crosslinker, sulfosuccinimidyl 4-(Nmaleimidomethyl) cyclohexane-1-carboxylate (Sulfo-SMCC). Specific toxicity of idarubicin-ZHER2 affibody conjugate against two HER2-positive cells, HN5 and MCF-7 was assessed through MTT assay after an exposure time of 48 hours with different concentrations of conjugate.

Results: Idarubicin in the non-conjugated form showed potent toxic effects against both cell lines, while HN5 cells were significantly more sensitive compared to MCF-7 cells. Dimeric ZHER2 affibody showed a mild decreasing effect on growth of both HN5 and MCF-7 cells at optimum concentration. Idarubicin-ZHER2 affibody conjugate at an optimum concentration reduced viability of HN5 cell line more efficiently compared to MCF-7 cell line.

Conclusion: In conclusion, idarubicin-ZHER2 affibody conjugate in optimum concentrations can be used for specific targeting and killing of HN5 cells.

Keywords: Head and neck cancer, HN5 cell, HER2 receptor, specific targeting, idarubicin-ZHER2 affibody conjugate.

Graphical Abstract
Li, H.; Wawrose, J.S.; Gooding, W.E.; Garraway, L.A.; Lui, V.W.Y.; Peyser, N.D.; Grandis, J.R. Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: a rational approach to preclinical model selection. Mol. Cancer Res., 2014, 12(4), 571-582.
Sanderson, R.J.; Ironside, J.A.; Wei, W.I. Squamous cell carcinomas of the head and neck. BMJ, 2002, 325(7368), 822-827.
Mydlarz, W.K.; Hennessey, P.T.; Califano, J.A. Advances and perspectives in the molecular diagnosis of head and neck cancer. Expert Opin. Med. Diagn., 2010, 4(1), 53-65.
Price, K.A.; Cohen, E.E. Current treatment options for metastatic head and neck cancer. Curr. Treat. Options Oncol., 2012, 13(1), 35-46.
Price, K.A.; Cohen, E.E. Current treatment options for metastatic head and neck cancer. Curr. Treat. Options Oncol., 2012, 13(1), 35-46.
Egloff, A.M.; Grandis, J.R. Targeting epidermal growth factor receptor and SRC pathways in head and neck cancer, Seminars in oncology; Elsevier, 2008, pp. 286-297.
Cavalot, A.; Martone, T.; Roggero, N.; Brondino, G.; Pagano, M.; Cortesina, G. Prognostic impact of HER2/neu expression on squamous head and neck carcinomas. Head Neck, 2007, 29(7), 655-664.
de Melo Gagliato, D.; Jardim, D.L.; Marchesi, M.S.; Hortobagyi, G.N. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget, 2016, 7(39), 64431-64446.
Hansson, M.; Ringdahl, J.; Robert, A.; Power, U.; Goetsch, L.; Nguyen, T.N.; Uhlén, M.; Ståhl, S.; Nygren, P-Å. An in vitro selected binding protein (affibody) shows conformation-dependent recognition of the respiratory syncytial virus (RSV) G protein. Immunotechnology, 1999, 4(3-4), 237-252.
(a) De Genst, E.; Muyldermans, S. Development of a high affinity Affibody-derived protein against amyloid β-peptide for future Alzheimer’s disease therapy. Biotechnol. J., 2015, 10(11), 1668-1669.
(b) Orlova, A.; Magnusson, M.; Eriksson, T.L.; Nilsson, M.; Larsson, B.; Höidén-Guthenberg, I.; Widström, C.; Carlsson, J.; Tolmachev, V.; Ståhl, S.; Nilsson, F.Y. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res., 2006, 66(8), 4339-4348.
Wikman, M.; Steffen, A-C.; Gunneriusson, E.; Tolmachev, V.; Adams, G.P.; Carlsson, J.; Ståhl, S. Selection and characterization of HER2/neu-binding affibody ligands. Protein Eng. Des. Sel., 2004, 17(5), 455-462.
A) Sörensen, J.; Sandberg, D.; Sandström, M.; Wennborg, A.; Feldwisch, J.; Tolmachev, V.; Åström, G.; Lubberink, M.; Garske-Román, U.; Carlsson, J.; Lindman, H. First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J. Nucl. Med., 2014, 55(5), 730-735.
B) Sörensen, J.; Velikyan, I.; Sandberg, D.; Wennborg, A.; Feldwisch, J.; Tolmachev, V.; Orlova, A.; Sandström, M.; Lubberink, M.; Olofsson, H.; Carlsson, J.; Lindman, H. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga] ABY-025 Affibody PET/CT. Theranostics, 2016, 6(2), 262-271.
(a) Easty, D.M.; Easty, G.C.; Carter, R.L.; Monaghan, P.; Butler, L.J. Ten human carcinoma cell lines derived from squamous carcinomas of the head and neck. Br. J. Cancer, 1981, 43(6), 772-785.
(b) Torres, M.A.; Raju, U.; Molkentine, D.; Riesterer, O.; Milas, L.; Ang, K.K. AC480, formerly BMS-599626, a pan Her inhibitor, enhances radiosensitivity and radioresponse of head and neck squamous cell carcinoma cells in vitro and in vivo. Invest. New Drugs, 2011, 29(4), 554-561.
Eigenbrot, C.; Ultsch, M.; Dubnovitsky, A.; Abrahmsén, L.; Härd, T. Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc. Natl. Acad. Sci. USA, 2010, 107(34), 15039-15044.
Inoue, H.; Nojima, H.; Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene, 1990, 96(1), 23-28.
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
a) Berens, M.E.; Saito, T.; Welander, C.E.; Modest, E.J. Antitumor activity of new anthracycline analogues in combination with interferon alfa. Cancer Chemother. Pharmacol.,1987, 19(4), 301-306. B) Gewirtz, D.A.; Randolph, J.K.; Chawla, J.; Orr, M.S.; Fornari, F.A. Induction of DNA damage, inhibition of DNA synthesis and suppression of c-myc expression by the anthracycline analog, idarubicin (4-demethoxy-daunorubicin) in the MCF-7 breast tumor cell line. Cancer Chemother. Pharmacol.,1998, 41(5), 361-369.c) Cilenti, G.; Tozzi, L.; Suriano, A.; Tartarone, A.; Lelli, G. Phase I-II study of oral idarubicin, tegafur and levo-folinate in patients with pretreated advanced breast cancer. J. Chemother., 2013.
Gallois, L.; Fiallo, M.; Garnier-Suillerot, A. Comparison of the interaction of doxorubicin, daunorubicin, idarubicin and idarubicinol with large unilamellar vesicles. Circular dichroism study. Biochim. Biophys. Acta, 1998, 1370(1), 31-40.
Ristic, B.; Bosnjak, M.; Arsikin, K.; Mircic, A.; Suzin-Zivkovic, V.; Bogdanovic, A.; Perovic, V.; Martinovic, T.; Kravic-Stevovic, T.; Bumbasirevic, V.; Trajkovic, V.; Harhaji-Trajkovic, L. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells. Exp. Cell Res., 2014, 326(1), 90-102.
a) Sandström, M.; Lindskog, K.; Velikyan, I.; Wennborg, A.; Feldwisch, J.; Sandberg, D.; Tolmachev, V.; Orlova, A.; Sörensen, J.; Carlsson, J.; Lindman, H.; Lubberink, M. Biodistribution and radiation dosimetry of the anti-HER2 Affibody molecule 68Ga-ABY-025 in breast cancer patients. J. Nucl. Med.,2016, 57(6), 867-871. B) Trousil, S.; Hoppmann, S.; Nguyen, Q-D.; Kaliszczak, M.; Tomasi, G.; Iveson, P.; Hiscock, D.; Aboagye, E.O. Positron emission tomography imaging with 18F-labeled ZHER2:2891 affibody for detection of HER2 expression and pharmacodynamic response to HER2-modulating therapies. Clin. Cancer Res., 2014, 20(6), 1632-1643.
Ekerljung, L.; Lindborg, M.; Gedda, L.; Frejd, F.Y.; Carlsson, J.; Lennartsson, J. Dimeric HER2-specific affibody molecules inhibit proliferation of the SKBR-3 breast cancer cell line. Biochem. Biophys. Res. Commun., 2008, 377(2), 489-494.
Smaglo, B.G.; Aldeghaither, D.; Weiner, L.M. The development of immunoconjugates for targeted cancer therapy. Nat. Rev. Clin. Oncol., 2014, 11(11), 637-648.
Löfblom, J.; Feldwisch, J.; Tolmachev, V.; Carlsson, J.; Ståhl, S.; Frejd, F.Y. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett., 2010, 584(12), 2670-2680.
aLeung, K. IRDye 800-albumin-binding domain-fused-ZHER2: 342 Af-fibody. 2013. bChopra, A. 111In/68Ga-Labeled anti-epidermal growth factor receptor, native chemical ligation cyclized Affibody ZHER2: 342min. 2013.cGoldstein, R.; Sosabowski, J.; Vigor, K.; Chester, K.; Meyer, T. Developments in single photon emission computed tomography and PET-based HER2 molecular imaging for breast cancer. Expert Rev. Anticancer Ther., 2013, 13(3), 359-373.
(a) Puri, A.; Kramer-Marek, G.; Campbell-Massa, R.; Yavlovich, A.; Tele, S.C.; Lee, S-B.; Clogston, J.D.; Patri, A.K.; Blumenthal, R.; Capala, J. HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J. Liposome Res., 2008, 18(4), 293-307.
(b) Alavizadeh, S.H.; Akhtari, J.; Badiee, A.; Golmohammadzadeh, S.; Jaafari, M.R. Improved therapeutic activity of HER2 Affibody-targeted cisplatin liposomes in HER2-expressing breast tumor models. Expert Opin. Drug Deliv., 2016, 13(3), 325-336.
(c) Liu, H.; Seijsing, J.; Frejd, F.Y.; Tolmachev, V.; Gräslund, T. Target-specific cytotoxic effects on HER2-expressing cells by the tripartite fusion toxin ZHER2:2891-ABD-PE38X8, including a targeting affibody molecule and a half-life extension domain. Int. J. Oncol., 2015, 47(2), 601-609.
(d) Zielinski, R.; Lyakhov, I.; Jacobs, A.; Chertov, O.; Kramer-Marek, G.; Francella, N.; Stephen, A.; Fisher, R.; Blumenthal, R.; Capala, J. Affitoxin–a novel recombinant, HER2-specific, anti-cancer agent for targeted therapy of HER2-positive tumors. Journal of immunotherapy (Hagerstown, Md.: 1997), 2009. 32(8), 817,
(e) Zielinski, R.; Lyakhov, I.; Hassan, M.; Kuban, M.; Shafer-Weaver, K.; Gandjbakhche, A.; Capala, J. HER2-affitoxin: a potent therapeutic agent for the treatment of HER2-overexpressing tumors. Clin. Cancer Res., 2011, 17(15), 5071-5081.
A) Siegel, R.; Ward, E.; Brawley, O.; Jemal, A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin., 2011, 61(4), 212-236.
B) Prince, M.E.; Ailles, L.E. Cancer stem cells in head and neck squamous cell cancer. J. Clin. Oncol., 2008, 26(17), 2871-2875.
a) Li, X.; Xu, S.; Tan, Y.; Chen, J. The effects of idarubicin versus other anthracyclines for induction therapy of patients with newly diagnosed leukaemia. Cochrane Database Syst. Rev.,2015, 6, CD010432. B) Borchmann, P.; Hübel, K.; Schnell, R.; Engert, A. Idarubicin: a brief overview on pharmacology and clinical use. Int. J. Clin. Pharmacol. Ther., 1997, 35(2), 80-83.
Kerpel-Fronius, S.; Heinisch, H. [Oral idarubicin in treatment of advanced breast carcinoma]. Zentralbl. Gynakol., 1996, 118(10), 587-589. Oral idarubicin in treatment of advanced breast carcinoma
aDavies, C.L.; Loizidou, M.; Cooper, A.J.; Taylor, I. Effect of γ-linolenic acid on cellular uptake of structurally related anthracyclines in human drug sensitive and multidrug resistant bladder and breast cancer cell lines. Eur. J. Cancer,1999, 35(10), 1534-1540. B) Gunduz, U.; Keskin, T.; Tansık, G.; Mutlu, P.; Yalcin, S.; Unsoy, G.; Yakar, A.; Khodadust, R.; Gunduz, G. Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Biomed. Pharmacother.,2014, 68(6), 729-736. C) Güç, E.; Gündüz, G.; Gündüz, U. Fatty acid based hyperbranched polymeric nanoparticles for hydrophobic drug delivery. Drug Dev. Ind. Pharm., 2010, 36(10), 1139-1148.
(a) Jimeno, A. In Molecular pathways in head and neck cancer: EGFR, PI3K, and more; American Society of Clinical Oncology, 2013.
(b) Stadler, M.E.; Patel, M.R.; Couch, M.E.; Hayes, D.N. Molecular biology of head and neck cancer: risks and pathways. Hematol. Oncol. Clin. North Am.,2008, 22(6), 1099-1124, vii. C) Sharma, H.; Sen, S.; Singh, N. Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer Biol. Ther., 2005, 4(9), 949-955.
A) Matta, A.; Ralhan, R. Overview of current and future biologically based targeted therapies in head and neck squamous cell carcinoma. Head Neck Oncol., 2009, 1(1), 6.
B) Papaspyrou, G.; Werner, J.A.; Dietz, A. Pharmacotherapy for squamous-cell carcinoma of the head and neck. Expert Opin. Pharmacother., 2011, 12(3), 397-409.
C) Pollock, N.I.; Grandis, J.R. HER2 as a therapeutic target in head and neck squamous cell carcinoma. Clin. Cancer Res., 2015, 21(3), 526-533.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy