Review Article

Advances in Understanding and Managing Alzheimer's Disease: From Pathophysiology to Innovative Therapeutic Strategies

Author(s): Sunny Rathee, Debasis Sen, Vishal Pandey and Sanjay K. Jain*

Volume 25, Issue 11, 2024

Published on: 19 July, 2024

Page: [752 - 774] Pages: 23

DOI: 10.2174/0113894501320096240627071400

Price: $65

Abstract

Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles, leading to cognitive and physical decline. Representing the majority of dementia cases, AD poses a significant burden on healthcare systems globally, with onset typically occurring after the age of 65. While most cases are sporadic, about 10% exhibit autosomal forms associated with specific gene mutations. Neurofibrillary tangles and Aβ plaques formed by misfolded tau proteins and Aβ peptides contribute to neuronal damage and cognitive impairment. Currently, approved drugs, such as acetylcholinesterase inhibitors and N-methyl D-aspartate receptor agonists, offer only partial symptomatic relief without altering disease progression. A promising development is using lecanemab, a humanized IgG1 monoclonal antibody, as an immune therapeutic approach. Lecanemab demonstrates selectivity for polymorphic Aβ variants and binds to large soluble Aβ aggregates, providing a potential avenue for targeted treatment. This shift in understanding the role of the adaptive immune response in AD pathogenesis opens new possibilities for therapeutic interventions aiming to address the disease's intricate mechanisms. This review aims to summarize recent advancements in understanding Alzheimer's disease pathophysiology and innovative therapeutic approaches, providing valuable insights for both researchers and clinicians.

Keywords: Alzheimer’s disease, amyloid β, lecanemab, central nervous system, cholinesterase inhibitors, neurodegenerative disorder.

« Previous
Graphical Abstract
[1]
Fish PV, Steadman D, Bayle ED, Whiting P. New approaches for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2019; 29(2): 125-33.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.034] [PMID: 30501965]
[2]
Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Primers 2021; 7(1): 33.
[http://dx.doi.org/10.1038/s41572-021-00269-y] [PMID: 33986301]
[3]
Long JM, Holtzman DM. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019; 179(2): 312-39.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[4]
Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 2020; 27(1): 18.
[http://dx.doi.org/10.1186/s12929-019-0609-7] [PMID: 31906949]
[5]
Imbimbo BP, Lombard J, Pomara N. Pathophysiology of Alzheimer’s disease. Neuroimaging Clin N Am 2005; 15(4): 727-753, ix.
[http://dx.doi.org/10.1016/j.nic.2005.09.009] [PMID: 16443487]
[6]
Vaghul K. The child care conundrum: The costs and consequences of unmet early child care needs among parents working at academic institutions across the United States. Massachusetts Institute of Technology 2019.
[7]
Ebi KL, Vanos J, Baldwin JW, et al. Extreme weather and climate change: population health and health system implications. Annu Rev Public Health 2021; 42(1): 293-315.
[http://dx.doi.org/10.1146/annurev-publhealth-012420-105026] [PMID: 33406378]
[8]
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet 2021; 397(10284): 1577-90.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[9]
Bloom GS. Amyloid-β and Tau. JAMA Neurol 2014; 71(4): 505-8.
[http://dx.doi.org/10.1001/jamaneurol.2013.5847] [PMID: 24493463]
[10]
Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: An emperor in need of clothes. Nat Neurosci 2012; 15(3): 349-57.
[http://dx.doi.org/10.1038/nn.3028] [PMID: 22286176]
[11]
Khan UA, Liu L, Provenzano FA, et al. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat Neurosci 2014; 17(2): 304-11.
[http://dx.doi.org/10.1038/nn.3606] [PMID: 24362760]
[12]
Song C, Shi J, Zhang P, et al. Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Transl Neurodegener 2022; 11(1): 18.
[http://dx.doi.org/10.1186/s40035-022-00292-3] [PMID: 35300725]
[13]
Swanson CJ, Zhang Y, Dhadda S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther 2021; 13(1): 80.
[http://dx.doi.org/10.1186/s13195-021-00813-8] [PMID: 33865446]
[14]
Tucker S, Möller C, Tegerstedt K, et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis 2014; 43(2): 575-88.
[http://dx.doi.org/10.3233/JAD-140741] [PMID: 25096615]
[15]
Reitz C, Rogaeva E, Beecham GW. Late-onset vs nonmendelian early-onset Alzheimer disease. Neurol Genet 2020; 6(5): e512.
[http://dx.doi.org/10.1212/NXG.0000000000000512] [PMID: 33225065]
[16]
Tcw J, Goate AM. Genetics of β-amyloid precursor protein in Alzheimer’s disease. Cold Spring Harb Perspect Med 2017; 7(6): a024539.
[http://dx.doi.org/10.1101/cshperspect.a024539] [PMID: 28003277]
[17]
Xiao X, Liu H, Liu X, Zhang W, Zhang S, Jiao B. APP, PSEN1, and PSEN2 variants in Alzheimer’s disease: Systematic Re-evaluation according to ACMG guidelines. Front Aging Neurosci 2021; 13: 695808.
[http://dx.doi.org/10.3389/fnagi.2021.695808] [PMID: 34220489]
[18]
Bellenguez C, Grenier-Boley B, Lambert JC. Genetics of Alzheimer’s disease: where we are, and where we are going. Curr Opin Neurobiol 2020; 61: 40-8.
[http://dx.doi.org/10.1016/j.conb.2019.11.024] [PMID: 31863938]
[19]
Phillips MC. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 2014; 66(9): 616-23.
[http://dx.doi.org/10.1002/iub.1314] [PMID: 25328986]
[20]
Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015; 77(1): 43-51.
[http://dx.doi.org/10.1016/j.biopsych.2014.05.006] [PMID: 24951455]
[21]
Martins MM, Branco PS, Ferreira LM. Enhancing the therapeutic effect in alzheimer’s disease drugs: The role of polypharmacology and cholinesterase inhibitors. ChemistrySelect 2023; 8(10): e202300461.
[http://dx.doi.org/10.1002/slct.202300461]
[22]
van Dyck CH. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiatry 2018; 83(4): 311-9.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.010] [PMID: 28967385]
[23]
Zhang Y, Thompson R, Zhang H, Xu H. APP processing in Alzheimer’s disease. Mol Brain 2011; 4(1): 3.
[http://dx.doi.org/10.1186/1756-6606-4-3] [PMID: 21214928]
[24]
Frozza RL, Lourenco MV, De Felice FG. Challenges for Alzheimer’s disease therapy: insights from novel mechanisms beyond memory defects. Front Neurosci 2018; 12: 37.
[http://dx.doi.org/10.3389/fnins.2018.00037] [PMID: 29467605]
[25]
Hampel H, Hardy J, Blennow K, et al. The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry 2021; 26(10): 5481-503.
[http://dx.doi.org/10.1038/s41380-021-01249-0] [PMID: 34456336]
[26]
Zhao J, Liu X, Xia W, Zhang Y, Wang C. Targeting amyloidogenic processing of APP in Alzheimer’s disease. Front Mol Neurosci 2020; 13: 137.
[http://dx.doi.org/10.3389/fnmol.2020.00137] [PMID: 32848600]
[27]
Ashe KH, Aguzzi A. Prions, prionoids and pathogenic proteins in Alzheimer disease. Prion 2013; 7(1): 55-9.
[http://dx.doi.org/10.4161/pri.23061] [PMID: 23208281]
[28]
Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976; 308(8000): 1403.
[http://dx.doi.org/10.1016/S0140-6736(76)91936-X] [PMID: 63862]
[29]
Zhang P, Xu S, Zhu Z, Xu J. Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur J Med Chem 2019; 176: 228-47.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.020] [PMID: 31103902]
[30]
Morrison AS, Lyketsos C. The pathophysiology of Alzheimer’s disease and directions in treatment. Adv Stud Nurs 2005; 3(8): 256-70.
[31]
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther 2019; 4(1): 29.
[http://dx.doi.org/10.1038/s41392-019-0063-8] [PMID: 31637009]
[32]
Giacobini E, Gold G. Alzheimer disease therapy—moving from amyloid-β to tau. Nat Rev Neurol 2013; 9(12): 677-86.
[http://dx.doi.org/10.1038/nrneurol.2013.223] [PMID: 24217510]
[33]
Reardon S. FDA approves Alzheimer’s drug lecanemab amid safety concerns. Nature Publishing Group 2023.
[34]
Gautam D, Naik UP, Naik MU, Yadav SK, Chaurasia RN, Dash D. Glutamate receptor dysregulation and platelet glutamate dynamics in alzheimer’s and parkinson’s diseases: insights into current medications. Biomolecules 2023; 13(11): 1609.
[http://dx.doi.org/10.3390/biom13111609] [PMID: 38002291]
[35]
Huang Y, Shen W, Su J, et al. Modulating the balance of synaptic and extrasynaptic NMDA receptors shows positive effects against amyloid-β-induced neurotoxicity. J Alzheimers Dis 2017; 57(3): 885-97.
[http://dx.doi.org/10.3233/JAD-161186] [PMID: 28269783]
[36]
Uddin MS, Lim LW. Glial cells in Alzheimer’s disease: From neuropathological changes to therapeutic implications. Ageing Res Rev 2022; 78: 101622.
[http://dx.doi.org/10.1016/j.arr.2022.101622] [PMID: 35427810]
[37]
Doty KR, Guillot-Sestier MV, Town T. The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive? Brain Res 2015; 1617: 155-73.
[http://dx.doi.org/10.1016/j.brainres.2014.09.008] [PMID: 25218556]
[38]
Jurga AM, Paleczna M, Kadluczka J, Kuter KZ. Beyond the GFAP-astrocyte protein markers in the brain. Biomolecules 2021; 11(9): 1361.
[http://dx.doi.org/10.3390/biom11091361] [PMID: 34572572]
[39]
Bellaver B, Povala G, Ferreira PCL, et al. Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer’s disease. Nat Med 2023; 29(7): 1775-81.
[http://dx.doi.org/10.1038/s41591-023-02380-x] [PMID: 37248300]
[40]
Haney MS, Pálovics R, Munson CN, et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia. Nature 2024; 628(8006): 154-61.
[http://dx.doi.org/10.1038/s41586-024-07185-7] [PMID: 38480892]
[41]
Sun N, Victor MB, Park YP, Xiong X, Scannail AN, Leary N. Human microglial state dynamics in Alzheimer’s disease progression. Cell 2023; 186(20): 4386-403.
[http://dx.doi.org/10.1016/j.cell.2023.08.037]
[42]
Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 2001; 358(9277): 201-5.
[http://dx.doi.org/10.1016/S0140-6736(01)05408-3] [PMID: 11476837]
[43]
Förstl H, Zerfaß R, Geiger-Kabisch C, Sattel H, Besthorn C, Hentschel F. Brain atrophy in normal ageing and Alzheimer’s disease. Volumetric discrimination and clinical correlations. Br J Psychiatry 1995; 167(6): 739-46.
[http://dx.doi.org/10.1192/bjp.167.6.739] [PMID: 8829740]
[44]
Pike CJ. Sex and the development of Alzheimer’s disease. J Neurosci Res 2017; 95(1-2): 671-80.
[http://dx.doi.org/10.1002/jnr.23827] [PMID: 27870425]
[45]
van de Rest O, Berendsen AAM, Haveman-Nies A, de Groot LCPGM. Dietary patterns, cognitive decline, and dementia: A systematic review. Adv Nutr 2015; 6(2): 154-68.
[http://dx.doi.org/10.3945/an.114.007617] [PMID: 25770254]
[46]
Pope SK, Shue VM, Beck C. Will a healthy lifestyle help prevent Alzheimer’s disease? Annu Rev Public Health 2003; 24(1): 111-32.
[http://dx.doi.org/10.1146/annurev.publhealth.24.100901.141015] [PMID: 12415146]
[47]
Baranowski BJ, Marko DM, Fenech RK, Yang AJT, MacPherson REK. Healthy brain, healthy life: A review of diet and exercise interventions to promote brain health and reduce Alzheimer’s disease risk. Appl Physiol Nutr Metab 2020; 45(10): 1055-65.
[http://dx.doi.org/10.1139/apnm-2019-0910] [PMID: 32717151]
[48]
John A, Ali K, Marsh H, Reddy PH. Can healthy lifestyle reduce disease progression of Alzheimer’s during a global pandemic of COVID-19? Ageing Res Rev 2021; 70: 101406.
[http://dx.doi.org/10.1016/j.arr.2021.101406] [PMID: 34242809]
[49]
Lucey BP, Bateman RJ. Amyloid-β diurnal pattern: Possible role of sleep in Alzheimer’s disease pathogenesis. Neurobiol Aging 2014; 35 (2): S29-34.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.03.035] [PMID: 24910393]
[50]
Borchardt V, Korhonen V, Helakari H, Nedergaard M, Myllylä T, Kiviniemi V. Inverse correlation of fluctuations of cerebral blood and water concentrations in humans. Eur Phys J Plus 2021; 136(5): 497.
[http://dx.doi.org/10.1140/epjp/s13360-021-01480-2]
[51]
Chatzi C, Zhang Y, Hendricks WD, et al. Exercise-induced enhancement of synaptic function triggered by the inverse BAR protein, Mtss1L. eLife 2019; 8: e45920.
[http://dx.doi.org/10.7554/eLife.45920] [PMID: 31232686]
[52]
Lin TW, Tsai SF, Kuo YM. Physical exercise enhances neuroplasticity and delays Alzheimer’s disease. Brain Plast 2018; 4(1): 95-110.
[http://dx.doi.org/10.3233/BPL-180073] [PMID: 30564549]
[53]
Smith DH, Chen X-H, Nonaka M, et al. Accumulation of amyloid β and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J Neuropathol Exp Neurol 1999; 58(9): 982-92.
[http://dx.doi.org/10.1097/00005072-199909000-00008] [PMID: 10499440]
[54]
Van Den Heuvel C, Finnie JW, Blumbergs PC, et al. Upregulation of neuronal amyloid precursor protein (APP) and APP mRNA following magnesium sulphate (MgSO4) therapy in traumatic brain injury. J Neurotrauma 2000; 17(11): 1041-53.
[http://dx.doi.org/10.1089/neu.2000.17.1041] [PMID: 11101207]
[55]
Edwards GA III, Gamez N, Escobedo G Jr, Calderon O, Moreno-Gonzalez I. Modifiable risk factors for Alzheimer’s disease. Front Aging Neurosci 2019; 11: 146.
[http://dx.doi.org/10.3389/fnagi.2019.00146] [PMID: 31293412]
[56]
Chatterjee S, Mudher A. Alzheimer’s disease and type 2 diabetes: A critical assessment of the shared pathological traits. Front Neurosci 2018; 12: 383.
[http://dx.doi.org/10.3389/fnins.2018.00383] [PMID: 29950970]
[57]
A Armstrong R. Risk factors for Alzheimer’s disease. Folia Neuropathol 2019; 57(2): 87-105.
[http://dx.doi.org/10.5114/fn.2019.85929] [PMID: 31556570]
[58]
Mendez MF. Early-onset Alzheimer disease. Neurol Clin 2017; 35(2): 263-81.
[http://dx.doi.org/10.1016/j.ncl.2017.01.005] [PMID: 28410659]
[59]
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer's disease. the Lancet 2011; 377(9770): 1019-31.
[60]
Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 2016; 18(5): 421-30.
[http://dx.doi.org/10.1038/gim.2015.117] [PMID: 26312828]
[61]
Qing H, Li N-M, Liu K-F, Qiu Y-J, Zhang H-H, Nakanishi H. Mutations of beta-amyloid precursor protein alter the consequence of Alzheimer’s disease pathogenesis. Neural Regen Res 2019; 14(4): 658-65.
[http://dx.doi.org/10.4103/1673-5374.247469] [PMID: 30632506]
[62]
Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MG. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci 2019; 26(1): 33.
[http://dx.doi.org/10.1186/s12929-019-0524-y]
[63]
Cahill L. Why sex matters for neuroscience. Nat Rev Neurosci 2006; 7(6): 477-84.
[http://dx.doi.org/10.1038/nrn1909] [PMID: 16688123]
[64]
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020; 25(24): 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[65]
Wolk DA, Dickerson BC. Clinical features and diagnosis of Alzheimer disease. 2016. Available from: https://medilib.ir/uptodate/show/5071
[66]
Viola KL, Klein WL. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 2015; 129(2): 183-206.
[http://dx.doi.org/10.1007/s00401-015-1386-3] [PMID: 25604547]
[67]
Palmqvist S, Mattsson N, Hansson O. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography. Brain 2016; 139(4): 1226-36.
[http://dx.doi.org/10.1093/brain/aww015] [PMID: 26936941]
[68]
Johnson KA, Fox NC, Sperling RA, Klunk WE. Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2(4): a006213.
[http://dx.doi.org/10.1101/cshperspect.a006213] [PMID: 22474610]
[69]
Cockrell JR, Folstein MF. Mini-mental state examination. Principles and Practice of Geriatric Psychiatry. Wiley Online Library 2002; pp. 140-1.
[http://dx.doi.org/10.1002/0470846410.ch27(ii)]
[70]
Richards D, Sabbagh MN. Florbetaben for PET imaging of beta-amyloid plaques in the brain. Neurol Ther 2014; 3(2): 79-88.
[http://dx.doi.org/10.1007/s40120-014-0022-9] [PMID: 26000224]
[71]
Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials. Lancet Neurol 2022; 21(8): 726-34.
[http://dx.doi.org/10.1016/S1474-4422(22)00168-5] [PMID: 35643092]
[72]
Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 2020; 324(8): 772-81.
[http://dx.doi.org/10.1001/jama.2020.12134] [PMID: 32722745]
[73]
Thijssen EH, La Joie R, Wolf A, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med 2020; 26(3): 387-97.
[http://dx.doi.org/10.1038/s41591-020-0762-2] [PMID: 32123386]
[74]
Visser PJ, Reus LM, Gobom J, et al. Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer’s disease. Mol Neurodegener 2022; 17(1): 27.
[http://dx.doi.org/10.1186/s13024-022-00521-3] [PMID: 35346299]
[75]
Rice L, Bisdas S. The diagnostic value of FDG and amyloid PET in Alzheimer’s disease : A systematic review. Eur J Radiol 2017; 94: 16-24.
[http://dx.doi.org/10.1016/j.ejrad.2017.07.014] [PMID: 28941755]
[76]
Pákáski M, Kálmán J. Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease. Neurochem Int 2008; 53(5): 103-11.
[http://dx.doi.org/10.1016/j.neuint.2008.06.005] [PMID: 18602955]
[77]
Mash DC, Flynn DD, Potter LT. Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science 1985; 228(4703): 1115-7.
[http://dx.doi.org/10.1126/science.3992249] [PMID: 3992249]
[78]
Teaktong T, Graham AJ, Court JA, et al. Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: differential neuronal and astroglial pathology. J Neurol Sci 2004; 225(1-2): 39-49.
[http://dx.doi.org/10.1016/j.jns.2004.06.015] [PMID: 15465084]
[79]
Andrieu S, Coley N, Lovestone S, Aisen PS, Vellas B. Prevention of sporadic Alzheimer’s disease: lessons learned from clinical trials and future directions. Lancet Neurol 2015; 14(9): 926-44.
[http://dx.doi.org/10.1016/S1474-4422(15)00153-2] [PMID: 26213339]
[80]
Danysz W, Parsons CG, MÖbius HJÖ, StÖffler A, Quack GÜ. Neuroprotective and symptomatological action of memantine relevant for alzheimer’s disease a unified glutamatergic hypothesis on the mechanism of action. Neurotox Res 2000; 2(2-3): 85-97.
[http://dx.doi.org/10.1007/BF03033787] [PMID: 16787834]
[81]
Hyde C, Peters J, Bond M, et al. Evolution of the evidence on the effectiveness and cost-effectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer’s disease: systematic review and economic model. Age Ageing 2013; 42(1): 14-20.
[http://dx.doi.org/10.1093/ageing/afs165] [PMID: 23179169]
[82]
Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci 2021; 276: 119129.
[http://dx.doi.org/10.1016/j.lfs.2021.119129] [PMID: 33515559]
[83]
Karran E, De Strooper B. The amyloid cascade hypothesis: Are we poised for success or failure? J Neurochem 2016; 139(S2) (Suppl. 2): 237-52.
[http://dx.doi.org/10.1111/jnc.13632] [PMID: 27255958]
[84]
Loera-Valencia R, Piras A, Ismail MAM, et al. Targeting Alzheimer’s disease with gene and cell therapies. J Intern Med 2018; 284(1): 2-36.
[http://dx.doi.org/10.1111/joim.12759] [PMID: 29582495]
[85]
Worker A, Dima D, Combes A, et al. Test–retest reliability and longitudinal analysis of automated hippocampal subregion volumes in healthy ageing and Alzheimer’s disease populations. Hum Brain Mapp 2018; 39(4): 1743-54.
[http://dx.doi.org/10.1002/hbm.23948] [PMID: 29341323]
[86]
Carrara SC, Ulitzka M, Grzeschik J, Kornmann H, Hock B, Kolmar H. From cell line development to the formulated drug product: The art of manufacturing therapeutic monoclonal antibodies. Int J Pharm 2021; 594: 120164.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120164] [PMID: 33309833]
[87]
Nelson PN, Reynolds GM, Waldron EE, Ward E, Giannopoulos K, Murray PG. Demystified Monoclonal antibodies. Mol Pathol 2000; 53(3): 111-7.
[http://dx.doi.org/10.1136/mp.53.3.111] [PMID: 10897328]
[88]
Liu JKH. The history of monoclonal antibody development : Progress, remaining challenges and future innovations. Ann Med Surg 2014; 3(4): 113-6.
[http://dx.doi.org/10.1016/j.amsu.2014.09.001] [PMID: 25568796]
[89]
Shepard HM, Phillips GL, Thanos CD, Feldmann M. Developments in therapy with monoclonal antibodies and related proteins. Clin Med 2017; 17(3): 220-32.
[http://dx.doi.org/10.7861/clinmedicine.17-3-220] [PMID: 28572223]
[90]
Buss NAPS, Henderson SJ, McFarlane M, Shenton JM, de Haan L. Monoclonal antibody therapeutics: History and future. Curr Opin Pharmacol 2012; 12(5): 615-22.
[http://dx.doi.org/10.1016/j.coph.2012.08.001] [PMID: 22920732]
[91]
García Merino A. Monoclonal antibodies. Basic features. Neurologia 2011; 26(5): 301-6.
[PMID: 21193249]
[92]
Bayer V. An Overview of Monoclonal Antibodies. Semin Oncol Nurs 2019; 35(5): 150927.
[93]
Kaplon H, Muralidharan M, Schneider Z, Reichert JM. Antibodies to watch in 2020. MAbs 2020; 12(1): 1703531.
[94]
Kaplon H, Reichert JM. Antibodies to watch in 2021. MAbs 2021; 13(1): 1860476.
[http://dx.doi.org/10.1080/19420862.2020.1860476]
[95]
Takeda M. Development of monoclonal antibody therapeutics for alzheimer’s disease. Taiwan J Psych 2022; 36(4): 148-56.
[http://dx.doi.org/10.4103/TPSY.TPSY_31_22]
[96]
Cao Y-P, Wang J-C, Zhu K, Zhang H-Y, Wang G-Q, Liu H-Y. Early active immunization with Aβ 3–10 -KLH vaccine reduces tau phosphorylation in the hippocampus and protects cognition of mice. Neural Regen Res 2020; 15(3): 519-27.
[http://dx.doi.org/10.4103/1673-5374.266061] [PMID: 31571664]
[97]
Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. nature 1999; 400(6740): 173-7.
[98]
Monsonego A, Weiner HL. Immunotherapeutic approaches to Alzheimer’s disease. Science 2003; 302(5646): 834-8.
[http://dx.doi.org/10.1126/science.1088469] [PMID: 14593170]
[99]
Citron M. Alzheimer’s disease: Strategies for disease modification. Nat Rev Drug Discov 2010; 9(5): 387-98.
[http://dx.doi.org/10.1038/nrd2896] [PMID: 20431570]
[100]
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618): 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[101]
Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 2014; 370(4): 311-21.
[http://dx.doi.org/10.1056/NEJMoa1312889] [PMID: 24450890]
[102]
Cummings JL, Cohen S, van Dyck CH, et al. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology 2018; 90(21): e1889-97.
[http://dx.doi.org/10.1212/WNL.0000000000005550] [PMID: 29695589]
[103]
Ostrowitzki S, Lasser RA, Dorflinger E, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther 2017; 9(1): 95.
[http://dx.doi.org/10.1186/s13195-017-0318-y] [PMID: 29221491]
[104]
Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement 2023; 9(2): e12385.
[http://dx.doi.org/10.1002/trc2.12385] [PMID: 37251912]
[105]
Buccellato FR, D’Anca M, Tartaglia GM, Del Fabbro M, Scarpini E, Galimberti D. Treatment of Alzheimer’s disease: Beyond symptomatic therapies. Int J Mol Sci 2023; 24(18): 13900.
[http://dx.doi.org/10.3390/ijms241813900] [PMID: 37762203]
[106]
McDade E, Cummings JL, Dhadda S, et al. Lecanemab in patients with early Alzheimer’s disease: detailed results on biomarker, cognitive, and clinical effects from the randomized and open-label extension of the phase 2 proof-of-concept study. Alzheimers Res Ther 2022; 14(1): 191.
[http://dx.doi.org/10.1186/s13195-022-01124-2] [PMID: 36544184]
[107]
van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med 2023; 388(1): 9-21.
[http://dx.doi.org/10.1056/NEJMoa2212948] [PMID: 36449413]
[108]
Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Focus Am Psychiatr Publ 2013; 11(1): 96-106.
[http://dx.doi.org/10.1176/appi.focus.11.1.96]
[109]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[110]
Dubois B, Hampel H, Feldman HH, et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement 2016; 12(3): 292-323.
[http://dx.doi.org/10.1016/j.jalz.2016.02.002] [PMID: 27012484]
[111]
Cummings J, Apostolova L, Rabinovici GD, et al. Lecanemab: Appropriate use recommendations. J Prev Alzheimers Dis 2023; 10(3): 362-77.
[PMID: 37357276]
[112]
Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000; 6(8): 916-9.
[http://dx.doi.org/10.1038/78682] [PMID: 10932230]
[113]
Black RS, Sperling RA, Safirstein B, et al. A single ascending dose study of bapineuzumab in patients with Alzheimer disease. Alzheimer Dis Assoc Disord 2010; 24(2): 198-203.
[http://dx.doi.org/10.1097/WAD.0b013e3181c53b00] [PMID: 20505438]
[114]
Barakos J, Purcell D, Suhy J, et al. Detection and management of amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with anti-amyloid beta therapy. J Prev Alzheimers Dis 2022; 9(2): 211-20.
[PMID: 35542992]
[115]
Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 2014; 370(4): 322-33.
[http://dx.doi.org/10.1056/NEJMoa1304839] [PMID: 24450891]
[116]
Rinne JO, Brooks DJ, Rossor MN, et al. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: A phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 2010; 9(4): 363-72.
[http://dx.doi.org/10.1016/S1474-4422(10)70043-0] [PMID: 20189881]
[117]
Shi M, Chu F, Zhu F, Zhu J. Impact of anti-amyloid-β monoclonal antibodies on the pathology and clinical profile of Alzheimer’s disease: A focus on aducanumab and lecanemab. Front Aging Neurosci 2022; 14: 870517.
[http://dx.doi.org/10.3389/fnagi.2022.870517] [PMID: 35493943]
[118]
Salloway S, Chalkias S, Barkhof F, et al. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol 2022; 79(1): 13-21.
[http://dx.doi.org/10.1001/jamaneurol.2021.4161] [PMID: 34807243]
[119]
Beshir SA, Aadithsoorya A, Parveen A, Goh SSL, Hussain N, Menon VB. Aducanumab therapy to treat Alzheimer’s disease: A narrative review. Int J Alzheimers Dis 2022; 2022: 9343514.
[http://dx.doi.org/10.1155/2022/9343514]
[120]
Herline K. Passive Immunization to Improve Cognition and Reduce Pathological Species in a Mouse Model of Alzheimer’s Disease. New York University 2018.
[121]
Novakovic D, Feligioni M, Scaccianoce S, et al. Profile of gantenerumab and its potential in the treatment of Alzheimer’s disease. Drug Des Devel Ther 2013; 7: 1359-64.
[PMID: 24255592]
[122]
Klein G, Delmar P, Voyle N, et al. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: A PET substudy interim analysis. Alzheimers Res Ther 2019; 11(1): 101.
[http://dx.doi.org/10.1186/s13195-019-0559-z] [PMID: 31831056]
[123]
Tian Hui Kwan A, Arfaie S, Therriault J, Rosa-Neto P, Gauthier S. Lessons learnt from the second generation of anti-amyloid monoclonal antibodies clinical trials. Dement Geriatr Cogn Disord 2020; 49(4): 334-48.
[http://dx.doi.org/10.1159/000511506] [PMID: 33321511]
[124]
Mukherjee A, Biswas S, Roy I. Immunotherapy: An emerging treatment option for neurodegenerative diseases. Drug Discov Today 2024; 29(5): 103974.
[http://dx.doi.org/10.1016/j.drudis.2024.103974] [PMID: 38555032]
[125]
Mably AJ, Liu W, Mc Donald JM, et al. Anti-Aβ antibodies incapable of reducing cerebral Aβ oligomers fail to attenuate spatial reference memory deficits in J20 mice. Neurobiol Dis 2015; 82: 372-84.
[http://dx.doi.org/10.1016/j.nbd.2015.07.008] [PMID: 26215784]
[126]
Morató X, Pytel V, Jofresa S, Ruiz A, Boada M. Symptomatic and disease-modifying therapy pipeline for Alzheimer’s disease: Towards a personalized polypharmacology patient-centered approach. Int J Mol Sci 2022; 23(16): 9305.
[http://dx.doi.org/10.3390/ijms23169305] [PMID: 36012569]
[127]
Panza F, Solfrizzi V, Imbimbo BP, et al. Efficacy and safety studies of gantenerumab in patients with Alzheimer’s disease. Expert Rev Neurother 2014; 14(9): 973-86.
[http://dx.doi.org/10.1586/14737175.2014.945522] [PMID: 25081412]
[128]
Landen JW, Zhao Q, Cohen S, et al. Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to- moderate Alzheimer disease: A phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clin Neuropharmacol 2013; 36(1): 14-23.
[http://dx.doi.org/10.1097/WNF.0b013e31827db49b] [PMID: 23334070]
[129]
Sheytanova LM. Development of a human cell model of amyloid β seeding and aggregation to investigate Alzheimer’s disease pathology: UCL. University College London 2018.
[130]
van Oostveen WM, de Lange ECM. Imaging techniques in Alzheimer’s disease: A review of applications in early diagnosis and longitudinal monitoring. Int J Mol Sci 2021; 22(4): 2110.
[http://dx.doi.org/10.3390/ijms22042110] [PMID: 33672696]
[131]
Mukhopadhyay S, Banerjee D. A primer on the evolution of aducanumab: the first antibody approved for treatment of Alzheimer’s disease. J Alzheimers Dis 2021; 83(4): 1537-52.
[http://dx.doi.org/10.3233/JAD-215065] [PMID: 34366359]
[132]
Muñoz-Jiménez M, Zaarkti A, García-Arnés JA, García-Casares N. Antidiabetic drugs in Alzheimer’s disease and mild cognitive impairment: A systematic review. Dement Geriatr Cogn Disord 2020; 49(5): 423-34.
[http://dx.doi.org/10.1159/000510677] [PMID: 33080602]
[133]
Domingues R, Pereira C, Cruz MT, Silva A. Therapies for Alzheimer’s disease: A metabolic perspective. Mol Genet Metab 2021; 132(3): 162-72.
[http://dx.doi.org/10.1016/j.ymgme.2021.01.011] [PMID: 33549409]
[134]
Kabir MT, Uddin MS, Mamun AA, et al. Combination drug therapy for the management of Alzheimer’s disease. Int J Mol Sci 2020; 21(9): 3272.
[http://dx.doi.org/10.3390/ijms21093272] [PMID: 32380758]
[135]
Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal toxicity links to Alzheimer’s disease and neuroinflammation. J Mol Biol 2019; 431(9): 1843-68.
[http://dx.doi.org/10.1016/j.jmb.2019.01.018] [PMID: 30664867]
[136]
Faux NG, Ritchie CW, Gunn A, et al. PBT2 rapidly improves cognition in Alzheimer’s Disease: Additional phase II analyses. J Alzheimers Dis 2010; 20(2): 509-16.
[http://dx.doi.org/10.3233/JAD-2010-1390] [PMID: 20164561]
[137]
Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB. Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment? Br J Clin Pharmacol 2011; 71(3): 365-76.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03830.x] [PMID: 21284695]
[138]
Zhong KL, Chen F, Hong H, et al. New views and possibilities of antidiabetic drugs in treating and/or preventing mild cognitive impairment and Alzheimer’s Disease. Metab Brain Dis 2018; 33(4): 1009-18.
[http://dx.doi.org/10.1007/s11011-018-0227-1] [PMID: 29626315]
[139]
Plastino M, Fava A, Pirritano D, et al. Effects of insulinic therapy on cognitive impairment in patients with Alzheimer disease and Diabetes Mellitus type-2. J Neurol Sci 2010; 288(1-2): 112-6.
[http://dx.doi.org/10.1016/j.jns.2009.09.022] [PMID: 19836029]
[140]
Hossain MS, Uddin MS, Kabir MT, Akhter S, Goswami S, Mamun AA. in vivo screening for analgesic and anti-inflammatory activities of Syngonium podophyllum L.: A remarkable herbal medicine. Ann Res Rev Biol 2017; 16(3): ARRB.35692.
[141]
Moore AH, Bigbee MJ, Boynton GE, et al. Non-steroidal anti-inflammatory drugs in Alzheimer’s disease and Parkinson’s disease: reconsidering the role of neuroinflammation. Pharmaceuticals 2010; 3(6): 1812-41.
[http://dx.doi.org/10.3390/ph3061812] [PMID: 27713331]
[142]
Gannon M, Wang Q. Complex noradrenergic dysfunction in Alzheimer’s disease: Low norepinephrine input is not always to blame. Brain Res 2019; 1702: 12-6.
[http://dx.doi.org/10.1016/j.brainres.2018.01.001] [PMID: 29307592]
[143]
Mohs RC, Shiovitz TM, Tariot PN, Porsteinsson AP, Baker KD, Feldman PD. Atomoxetine augmentation of cholinesterase inhibitor therapy in patients with Alzheimer disease: 6-month, randomized, double-blind, placebo-controlled, parallel-trial study. Am J Geriatr Psychiatry 2009; 17(9): 752-9.
[http://dx.doi.org/10.1097/JGP.0b013e3181aad585] [PMID: 19700948]
[144]
Álvarez A, Cacabelos R, Sanpedro C, García-Fantini M, Aleixandre M. Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol Aging 2007; 28(4): 533-6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.02.012] [PMID: 16569464]
[145]
Mufson E, Counts S, Fahnestock M, Ginsberg S. Cholinotrophic molecular substrates of mild cognitive impairment in the elderly. Curr Alzheimer Res 2007; 4(4): 340-50.
[http://dx.doi.org/10.2174/156720507781788855] [PMID: 17908035]
[146]
Martel J-C, Assié M-B, Bardin L, Depoortère R, Cussac D, Newman-Tancredi A. 5-HT 1A receptors are involved in the effects of xaliproden on G-protein activation, neurotransmitter release and nociception. Br J Pharmacol 2009; 158(1): 232-42.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00249.x] [PMID: 19508400]
[147]
Elmawla A, Abd Elhameed D, Ibrahim SME, Radwan EHM, Elzehiri DA, El Fadawy HAM. Effect of cognitive stimulation therapy versus reminiscence therapy on cognitive and psychological outcomes in older adults with mild cognitive impairment: A quasi-experimental study. NILES j Geria Geront 2024; 7(2): 456-76.
[http://dx.doi.org/10.21608/niles.2024.353919]
[148]
Scarmeas N, Anastasiou CA, Yannakoulia M. Nutrition and prevention of cognitive impairment. Lancet Neurol 2018; 17(11): 1006-15.
[http://dx.doi.org/10.1016/S1474-4422(18)30338-7] [PMID: 30244829]
[149]
Swartz K, Collins LG. Caregiver Care. Am Fam Physician 2019; 99(11): 699-706.
[PMID: 31150177]
[150]
Zhang Q, Liu C, Jing X, et al. Editorial: Neural mechanism and effect of acupuncture for central nervous system diseases. Front Neurosci 2024; 17: 1337612.
[http://dx.doi.org/10.3389/fnins.2023.1337612] [PMID: 38260027]
[151]
Xu J, Gou S, Huang X, et al. Uncovering the impact of aggrephagy in the development of alzheimer’s disease: Insights into diagnostic and therapeutic approaches from machine learning analysis. Curr Alzheimer Res 2023; 20(9): 618-35.
[http://dx.doi.org/10.2174/0115672050280894231214063023] [PMID: 38141185]
[152]
Zhao S, Ye B, Chi H, Cheng C, Liu J. Identification of peripheral blood immune infiltration signatures and construction of monocyte-associated signatures in ovarian cancer and Alzheimer’s disease using single-cell sequencing. Heliyon 2023; 9(7): e17454.
[http://dx.doi.org/10.1016/j.heliyon.2023.e17454] [PMID: 37449151]
[153]
Satlin A, Fukushima T. Composition and method for treating alzheimer’s disease. 2019.
[154]
Roberts MI, Staddon JM, De Silva HAR, Spidel J, Aoyagi H, Akasofu S. Anti-tau antibodies and uses thereof. W.O.Patent 2021205359A1, 2020.
[155]
Yoshida N. High concentration anti-abeta protofibril antibody formulations and methods of use thereof. E.P. Patent 4252777A2, 2023.
[156]
Demattos RB, Lu J, Tang Y. Anti-N3pGlu amyloid beta peptide antibodies and uses thereof. W.O.Patent 2022192636A1, 2020. Available from: https://patents.google.com/patent/WO2022192636A1/en?oq=WO2022192636A1Anti-amyloid+beta+antibodies+and+uses+thereof
[157]
Biomarkers for alzheimer's disease treatment. W.O.Patent 2023283650A1, 2022. Available from: https://patents.google.com/patent/WO2023283650A1/en?oq=WO2023283650A1Biomarkers+for+Alzheimer%E2%80%99s+disease+treatment
[158]
Methods of treating neurological diseases. W.O.Patent 2023284710A1, 2022. Available from: https://patents.google.com/patent/WO2023284710A1/en?oq=WO2023284710A1Methods+of+treating+neurological+diseases
[159]
Anti-amyloid beta antibodies and uses thereof. W.O.Patent 2022192636A1, 2022. Available from: https://patents.google.com/patent/WO2022192636A1/en?oq=WO2022192636A1Anti-amyloid+beta+antibodies+and+uses+thereof

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy