Generic placeholder image

Current Physics

Editor-in-Chief

ISSN (Print): 2772-3348
ISSN (Online): 2772-3356

Research Article

Measurement of Viscoelastic Properties by Free Loading-Mass Method

Author(s): Kulik V.M.*

Volume 1, 2024

Published on: 21 June, 2024

Article ID: e210624231206 Pages: 13

DOI: 10.2174/0127723348291026240604055257

Open Access Journals Promotions 2
Abstract

Background: A procedure for determining the elastic and viscous properties of the sample material on the basis of the forced vibrations of a sample of mass m loaded with a certain mass M is developed. One of advantages of using the top mass instead of a rigid fixation is the appearance of an additional deformation resonance, the frequency of which is π √ M / m times smaller than the resonance frequency of the fixed sample.

Method: The experimental setup implementing the free mass method is described. Notably, the proposed scheme does not require any adjustment and is assembled from standard devices. By changing the design of the sample only, both shear and compression-tension strains can be measured. The combination of these methods allows measuring the complex Poisson’s ratio, in addition to modulus of elasticity and loss factor.

Results: One-dimensional (1D) and two-dimensional (2D) models of specimen deformation are considered. For the 1D deformation model, approximate formulas for calculating the modulus of elasticity and the loss factor are substantiated and the limits of validity these formulas are outlined. Improving the accuracy of measurements is also considered. To do this, it is necessary to fully describe the boundary conditions on the deformable sample. The developed 2D model of sample deformation made it possible to calculate the elastic modulus form factors for various samples with axial symmetry.

Conclusion: The method may become a Standard for measuring viscoelastic properties of materials (complex elastic and shear modulus, as well as complex Poisson's ratio).

Keywords: Measurement method, viscoelastic properties, one-dimensional model, two-dimensional model, poison’s ratio, resonance.

[1]
Ferry, J.D.; Myers, H.S. Viscoelastic Properties of Polymers. J. Electrochem. Soc., 1961, 108, 142C.
[http://dx.doi.org/10.1149/1.2428174]
[2]
Kulik, V.M.; Boiko, A.V. Physical principles of methods for measuring viscoelastic properties. J. Appl. Mech. Tech. Phys., 2018, 59(5), 874-885.
[http://dx.doi.org/10.1134/S0021894418050152]
[3]
Caracciolo, R.; Gasparetto, A.; Giovagnoni, M. An experimental technique for complete dynamic characterization of a viscoelastic material. J. Sound Vibrat., 2004, 272(3-5), 1013-1032.
[http://dx.doi.org/10.1016/j.jsv.2003.03.008]
[4]
Lakes, R.S. Viscoelastic measurement techniques. Rev. Sci. Instrum., 2004, 75(4), 797-810.
[http://dx.doi.org/10.1063/1.1651639]
[5]
Fitzgerald, E.R.; Ferry, J.D. Method for determining the dynamic mechanical behavior of gels and solids at audio-frequencies; comparison of mechanical and electrical properties. J. Colloid Sci., 1953, 8(1), 1-34.
[http://dx.doi.org/10.1016/0095-8522(53)90002-6]
[6]
Park, J.; Lee, J.; Park, J. Measurement of viscoelastic properties from the vibration of a compliantly supported beam. J. Acoust. Soc. Am., 2011, 130(6), 3729-3735.
[http://dx.doi.org/10.1121/1.3651867] [PMID: 22225029]
[7]
Willis, R.L.; Stone, T.S.; Berthelot, Y.H.; Madigosky, W.M. An experimental-numerical technique for evaluating the bulk and shear dynamic moduli of viscoelastic materials. J. Acoust. Soc. Am., 1997, 102(6), 3549-3555.
[http://dx.doi.org/10.1121/1.420288]
[8]
Nielsen, L.F.; Wismer, N.J.; Gade, S. Improved method for complex modulus estimation. Sound Vibrat., 2000, 34, 20-24.
[9]
Menard, K. Dynamic mechanical analysis – a practical introduction; CRC Press LLC: Florida, 2008.
[http://dx.doi.org/10.1201/9781420053135]
[10]
Sahraoui, S.; Mariez, E.; Etchessahar, M. Mechanical testing of polymeric foams at low frequency. Polym. Test., 2000, 20(1), 93-96.
[http://dx.doi.org/10.1016/S0142-9418(00)00006-4]
[11]
Wei, Z.; Hou, H.; Gao, N.; Huang, Y.; Yang, J. Complex Young’s modulus measurement by incident wave extracting in a thin resonant bar. J. Acoust. Soc. Am., 2017, 142(6), 3436-3442.
[http://dx.doi.org/10.1121/1.5011736] [PMID: 29289112]
[12]
Garrett, S.L. Resonant acoustic determination of elastic moduli. J. Acoust. Soc. Am., 1990, 88(1), 210-221.
[http://dx.doi.org/10.1121/1.400334]
[13]
Perepechko, I.I. Acoustic methods of investigating polymers; Mir, Moscow, 1975.
[14]
Levy, M.; Bass, H.; Stern, R. Modern acoustical techniques for the measurement of mechanical properties; Academic Press, 2001.
[15]
Shaw, M.T.; MacKnight, W.J. Introduction to polymer viscoelasticity; Wilei: New York, 2005.
[http://dx.doi.org/10.1002/0471741833]
[16]
Hilton, H.H. Elastic and viscoelastic Poisson’s ratios: The theoretical mechanics perspective. Mater. Sci. Appl., 2017, 8(4), 291-332.
[http://dx.doi.org/10.4236/msa.2017.84021]
[17]
Guillot, F.M.; Trivett, D.H. Complete elastic characterization of viscoelastic materials by dynamic measurements of the complex bulk and Young’s moduli as a function of temperature and hydrostatic pressure. J. Sound Vibrat., 2011, 330(14), 3334-3351.
[http://dx.doi.org/10.1016/j.jsv.2011.02.003]
[18]
Chen, C.P.; Lakes, R.S. Viscoelastic behaviour of composite materials with conventional- or negative-Poisson’s-ratio foam as one phase. J. Mater. Sci., 1993, 28(16), 4288-4298.
[http://dx.doi.org/10.1007/BF01154934]
[19]
Smith, G.M.; Bierman, R.L.; Zitek, S.J. Determination of dynamic properties of elastomers over broad frequency range. Exp. Mech., 1983, 23(2), 158-164.
[http://dx.doi.org/10.1007/BF02320404]
[20]
Bonfiglio, P.; Pompoli, F. Determination of the dynamic complex modulus of viscoelastic materials using a time domain approach. Polym. Test., 2015, 48, 89-96.
[http://dx.doi.org/10.1016/j.polymertesting.2015.09.016]
[21]
Hou, H.; Yu, H.; Sun, L.; Cao, W. Broadband dynamic parameters measurement by longitudinal vibration testing using pulse wave, Acta. Acoust., 2015, 40, 413-421.
[22]
Jones, D.I.G. Temperature-frequency dependence of dynamic properties of damping materials. J. Sound Vibrat., 1974, 33(4), 451-470.
[http://dx.doi.org/10.1016/S0022-460X(74)80228-2]
[23]
Henriques, I.R.; Borges, L.A.; Castello, D.A. The mechanical behavior of viscoelastic materials in the frequency domain. Rev. Sci. Instrum., 2004, 75, 797-810.
[24]
Becker, G.W. Uber das dynamisch-elastische verhalten geschaumter stoffe. Acustica, 1959, 9(3), 135-143.
[25]
Rosin, G.S. Measurement of dynamic properties of acoustic materials; Moscow, 1972.
[26]
Kulik, V.M.; Boiko, A.V. Form factor for a compressed cylindrical sample. Meas. Tech., 2014, 57(8), 898-902.
[http://dx.doi.org/10.1007/s11018-014-0556-3]
[27]
Kulik, V.M.; Boiko, A.V. Form factor for a hollow cylindrical sample under shear deformation. Meas. Tech., 2015, 58(6), 603-607.
[http://dx.doi.org/10.1007/s11018-015-0761-8]
[28]
Kulik, V.M.; Boiko, A.V. Form factor of flat rings. Meas. Tech., 2017, 60(1), 37-41.
[http://dx.doi.org/10.1007/s11018-017-1146-y]
[29]
Madigosky, W.M.; Lee, G.F. Improved resonance technique for materials characterization. J. Acoust. Soc. Am., 1983, 73(4), 1374-1377.
[http://dx.doi.org/10.1121/1.389242]
[30]
Kulik, V.M.; Semenov, B.N. A two-parameter method for measuring the viscoelastic properties of polymer materials. Metrologia, 1986, 4, 32-38.
[31]
Willis, R.L.; Wu, L.; Berthelot, Y.H. Determination of the complex Young and shear dynamic moduli of viscoelastic materials. J. Acoust. Soc. Am., 2001, 109(2), 611-621.
[http://dx.doi.org/10.1121/1.1342003] [PMID: 11248968]
[32]
Kulik, V.M.; Semenov, B.N.; Morozova, S.L. Measurement of dynamic properties of viscoelastic materials. Thermophys. Aeromech., 2007, 14(2), 211-221.
[http://dx.doi.org/10.1134/S0869864307020072]
[33]
Kulik, V.M.; Semenov, B.N.; Boiko, A.V.; Seoudi, B.M.; Chun, H.H.; Lee, I. Measurement of dynamic properties of viscoelastic materials. Exp. Mech., 2009, 49(3), 417-425.
[http://dx.doi.org/10.1007/s11340-008-9165-x]
[34]
Boiko, A.V.; Kulik, V.M.; Seoudi, B.M.; Chun, H.H.; Lee, I. Measurement method of complex viscoelastic material properties. Int. J. Solids Struct., 2010, 47(3-4), 374-382.
[http://dx.doi.org/10.1016/j.ijsolstr.2009.09.037]
[35]
Landau, L.D.; Lifshits, E.M. Theory of Elasticity: Vol. 7 of Course of Theoretical Physics. Physics Today, 1975, 13(7), 44-46.
[36]
Timoshenko, S.P.; Groodier, J.N. Theory of elasticity; McGraw-Hill: London, 1982.
[37]
Christensen, R.M. Theory of viscoelasticity, 2nd ed; Academic Press, 1982.
[38]
Sadd, H.M. Elasticity: Theory, Applications and Numerics; Elsevier Inc., 2005.
[39]
Pritz, T. The Poisson’s loss factor of solid viscoelastic materials. J. Sound Vibrat., 2007, 306(3-5), 790-802.
[http://dx.doi.org/10.1016/j.jsv.2007.06.016]
[40]
Pritz, T. Measurement methods of complex Poisson’s ratio of viscoelastic materials. Appl. Acoust., 2000, 60(3), 279-292.
[http://dx.doi.org/10.1016/S0003-682X(99)00049-3]
[41]
Boiko, A.V.; Kulik, V.M. A method for the experimental determination of the viscoelastic properties of a cylindrical sample. J. Appl. Math. Mech., 2013, 77(1), 98-101.
[http://dx.doi.org/10.1016/j.jappmathmech.2013.04.012]
[42]
Lakes, R.S.; Wineman, A. On Poisson’s ratio in linearly viscoelastic solids. J. Elast., 2006, 85(1), 45-63.
[http://dx.doi.org/10.1007/s10659-006-9070-4]
[43]
Pritchard, R.H.; Lava, P.; Debruyne, D.; Terentjev, E.M. Precise determination of the Poisson ratio in soft materials with 2D digital image correlation. Soft Matter, 2013, 9(26), 6037-6045.
[http://dx.doi.org/10.1039/c3sm50901j]
[44]
Guillot, F.M.; Trivett, D.H. Complete elastic characterization of viscoelastic materials by dynamic measurements of the complex bulk and Young’s moduli as a function of temperature and hydrostatic pressure. J. Sound Vibration, 2011, 330, 3334-3351.
[45]
Tschoegl, N.W.; Knauss, W.G.; Emri, I. Poisson’s ratio in linear viscoelasticity-A critical review. Mech. Time-Depend. Mater., 2002, 6(1), 3-51.
[http://dx.doi.org/10.1023/A:1014411503170]
[46]
Greaves, G.N.; Greer, A.L.; Lakes, R.S.; Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater., 2011, 10(11), 823-837.
[http://dx.doi.org/10.1038/nmat3134] [PMID: 22020006]

© 2024 Bentham Science Publishers | Privacy Policy