Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Unveiling Therapeutic Avenues for Crohn’s Disease Management: Exploring Inhibitors for Adherent-Invasive Escherichia coli Propanediol Dehydratase

Author(s): Mohammed Bourhia*, Md. Eram Hosen, Md Omar Faruqe, Faria Tasnim, Mohamed Taibi, Amine Elbouzidi, Yousef A. Bin Jardan, Samir Ibenmoussa and Abdeslam Asehraou

Volume 20, Issue 7, 2024

Published on: 24 April, 2024

Page: [741 - 751] Pages: 11

DOI: 10.2174/0115734064295521240227052730

conference banner
Abstract

Introduction: Inflammatory Bowel Disease (IBD) encompasses a group of chronic disorders distinguished by inflammation of the gastrointestinal tract. Among these, Crohn's Disease (CD) stands out as a complex and impactful condition due to challenges for both diagnosis and management, making it a cynosure of research.

Methods: In CD, there is the predominance of proinflammatory bacteria, including the Adherentinvasive Escherichia coli (AIEC) with virulence-associated metabolic enzyme Propanediol Dehydratase (pduC), which has been identified as a therapeutic target for the management of CD. Herein, molecular modeling techniques, including molecular docking, Molecular Mechanics with Generalized Born and Surface Area (MMGBSA), drug-likeness, and pharmacokinetics profiling, were utilized to probe the potentials of eighty antibacterial compounds to serve as inhibitors of pduC.

Results: The results of this study led to the identification of five compounds with promising potentials; the results of the molecular docking simulation revealed the compounds as possessing better binding affinities for the target compared to the standard drug (sulfasalazine), while Lipinski’s rule of five-based assessment of their drug-likeness properties revealed them as potential oral drugs. MMGBSA free energy calculation and Molecular Dynamics (MD) simulation of the complexes formed a sequel to molecular docking, revealing the compounds as stable binders in the active site of the protein.

Conclusion: Ultimately, the results of this study have revealed five compounds to possess the potential to serve as inhibitors of pduC of AIEC. However, experimental studies are still needed to validate the findings of this study.

Keywords: Inflammatory bowel disease, Crohn’s disease, adherent-invasive Escherichia coli, propanediol dehydratase, molecular modeling, diagnosis and management.

« Previous
Graphical Abstract
[1]
Eckburg, P.B.; Relman, D.A. The role of microbes in Crohn’s disease. Clin. Infect. Dis., 2007, 44(2), 256-262.
[http://dx.doi.org/10.1086/510385]
[2]
Frank, D.N.; Robertson, C.E.; Hamm, C.M.; Kpadeh, Z.; Zhang, T.; Chen, H.; Zhu, W.; Sartor, R.B.; Boedeker, E.C.; Harpaz, N.; Pace, N.R.; Li, E. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis., 2011, 17(1), 179-184.
[http://dx.doi.org/10.1002/ibd.21339] [PMID: 20839241]
[3]
Sokol, H.; Lay, C.; Seksik, P.; Tannock, G.W. Analysis of bacterial bowel communities of IBD patients: What has it revealed? Inflamm. Bowel Dis., 2008, 14(6), 858-867.
[http://dx.doi.org/10.1002/ibd.20392] [PMID: 18275077]
[4]
Zheng, L.; Duan, S.L.; Dai, Y.C.; Wu, S.C. Role of adherent invasive Escherichia coli in pathogenesis of inflammatory bowel disease. World J. Clin. Cases, 2022, 10(32), 11671-11689.
[http://dx.doi.org/10.12998/wjcc.v10.i32.11671] [PMID: 36405271]
[5]
Viladomiu, M.; Metz, M.; Lima, S.; Guo, C.J.; Simpson, K.; Scherl, E.; Longman, R. P065 Metabolic utilisation of propanediol by adherent-invasive E. coli regulates intestinal tissue immunity. J. Crohn’s Colitis, 2020, 14(S1), S166-S167.
[http://dx.doi.org/10.1093/ecco-jcc/jjz203.194]
[6]
Viladomiu, M.; Metz, M.; Lima, S.; Guo, C.J.; Simpson, K.; Longman, R. 9 Metabolic utilization of propanediol by adherent-invasive E. coli regulates intestinal tissue immunity. Inflamm. Bowel Dis., 2020, 26(S1), S33-S33.
[http://dx.doi.org/10.1093/ibd/zaa010.083]
[7]
Carrière, J.; Michaud, D.A.; Nguyen, H.T. Infectious etiopathogenesis of Crohn’s disease. World J. Gastroenterol., 2014, 20(34), 12102-12117.
[http://dx.doi.org/10.3748/wjg.v20.i34.12102] [PMID: 25232246]
[8]
Shi, H.Y.; Ng, S.C. The state of the art on treatment of Crohn’s disease. J. Gastroenterol., 2018, 53(9), 989-998.
[http://dx.doi.org/10.1007/s00535-018-1479-6] [PMID: 29980848]
[9]
Kumar, S. Role of computer-aided drug design in the discovery and development of new medicinal agents a review. J. Med. Pharm. Allied Sci., 2022, 11(3), 4794-4801.
[http://dx.doi.org/10.55522/jmpas.V11I3.2300]
[10]
Olowosoke, C.B.; Gbemisola, O.; Alaba, A.A.; Adepoju, O.H.; Okorie, B.; Odjegba, P.I.; Ogunsanmi, A.O.; Oke, G.A.; Akinlolu, O.; Olubena, T.L.; Bello, R.O.; Adegboyega, B.B. Multi-regulator of EZH2-PPARs therapeutic targets: A hallmark for prospective restoration of pancreatic insulin production and cancer dysregulation. Appl. Biochem. Biotechnol., 2023, 195(12), 7520-7552.
[http://dx.doi.org/10.1007/s12010-023-04433-w] [PMID: 37010741]
[11]
Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Barnett, B.E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.; Fan, J.; Garmiri, P.; da Gonzales, C.L.J.; Ellis, H.E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.J.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.H.; Axelsen, K.B.; Bansal, P.; Baratin, D.; Neto, B.T.M.; Blatter, M.C.; Bolleman, J.T.; Boutet, E.; Breuza, L.; Gil, B.C.; Casas, C.C.; Echioukh, K.C.; Coudert, E.; Cuche, B.; de Castro, E.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gaudet, P.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz, N.; Hulo, C.; Nouspikel, H.N.; Jungo, F.; Kerhornou, A.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; Muthukrishnan, V.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Poux, S.; Pozzato, M.; Pruess, M.; Redaschi, N.; Rivoire, C.; Sigrist, C.J.A.; Sonesson, K.; Sundaram, S.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Zhang, J. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res., 2023, 51(D1), D523-D531.
[http://dx.doi.org/10.1093/nar/gkac1052] [PMID: 36408920]
[12]
Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303.
[http://dx.doi.org/10.1093/nar/gky427] [PMID: 29788355]
[13]
Ogbodo, U.C.; Balogun, T.A.; Omoboyede, V. Integrated computational approach identifies potential inhibitors of ASK1-(JNK/P38) interaction signaling: New insights into cancer therapeutics. J. Biomol. Struct. Dyn., 2023, 2023, 1-14.
[http://dx.doi.org/10.1080/07391102.2023.2291546] [PMID: 37021478]
[14]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[15]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[16]
Land, H.; Humble, M.S. YASARA: A tool to obtain structural guidance in biocatalytic investigations. In: Protein Engineering; Springer, 2018; pp. 43-67.
[http://dx.doi.org/10.1007/978-1-4939-7366-8_4]
[17]
Harrach, M.F.; Drossel, B. Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. J. Chem. Phys., 2014, 140(17), 174501.
[http://dx.doi.org/10.1063/1.4872239] [PMID: 24811640]
[18]
Krieger, E.; Dunbrack, R.L.; Hooft, R.W.W.; Krieger, B. Assignment of protonation states in proteins and ligands: Combining pK a prediction with hydrogen bonding network optimization. In: Computational Drug Discovery and Design; Springer, 2012; pp. 405-421.
[http://dx.doi.org/10.1007/978-1-61779-465-0_25]
[19]
Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103(19), 8577-8593.
[http://dx.doi.org/10.1063/1.470117]
[20]
Krieger, E.; Vriend, G. New ways to boost molecular dynamics simulations. J. Comput. Chem., 2015, 36(13), 996-1007.
[http://dx.doi.org/10.1002/jcc.23899] [PMID: 25824339]
[21]
Baildya, N.; Khan, A.A.; Ghosh, N.N.; Dutta, T.; Chattopadhyay, A.P. Screening of potential drug from Azadirachta indica (Neem) extracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies. J. Mol. Struct., 2021, 1227, 129390.
[http://dx.doi.org/10.1016/j.molstruc.2020.129390] [PMID: 33041371]
[22]
Islam, R.; Parves, M.R.; Paul, A.S.; Uddin, N.; Rahman, M.S.; Mamun, A.A.; Hossain, M.N.; Ali, M.A.; Halim, M.A. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 39(9), 3213-3224.
[PMID: 32340562]
[23]
Olukunle, O.F.; Omoboyede, V.; Chukwuemeka, P.O. Network pharmacology and molecular docking-based identification of drug candidates and key targets of Allium sativum for colorectal cancer treatment. J. Biomol. Struct. Dyn., 2023, 2023, 1-14.
[http://dx.doi.org/10.1080/07391102.2023.2220823] [PMID: 37325859]
[24]
Tripathi, S.K.; Muttineni, R.; Singh, S.K. Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors. J. Theor. Biol., 2013, 334, 87-100.
[http://dx.doi.org/10.1016/j.jtbi.2013.05.014] [PMID: 23727278]
[25]
Lyne, P.D.; Lamb, M.L.; Saeh, J.C. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J. Med. Chem., 2006, 49, 16-4805.4808.
[http://dx.doi.org/10.1021/jm060522a]
[26]
Akash, S.; Hosen, M.E.; Mahmood, S.; Supti, S.J.; Kumer, A.; Sultana, S.; Jannat, S.; Bayıl, I.; Nafidi, H.A.; Jardan, Y.A.B.; Mekonnen, A.B.; Bourhia, M. Anti-parasitic drug discovery against Babesia microti by natural compounds: An extensive computational drug design approach. Front. Cell. Infect. Microbiol., 2023, 13, 1222913.
[http://dx.doi.org/10.3389/fcimb.2023.1222913] [PMID: 37662005]
[27]
Hosen, M.E.; Rahman, M.S.; Faruqe, M.O.; Khalekuzzaman, M.; Islam, M.A.; Acharjee, U.K.; Zaman, R. Molecular docking and dynamics simulation approach of Camellia sinensis leaf extract derived compounds as potential cholinesterase inhibitors. In Silico Pharmacol., 2023, 11(1), 14.
[http://dx.doi.org/10.1007/s40203-023-00151-7] [PMID: 37255739]

© 2024 Bentham Science Publishers | Privacy Policy