Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Smartphone-Based Colourimetric Detection of Methyl Red, Co(II), Uric Acid, and Topotecan after Pre-concentration onto a Hectorite Clay-Hydroxyethylcellulose Hybrid

Author(s): Anastasios Phoebus Mazarakis and Georgia Eleni Tsotsou*

Volume 20, Issue 6, 2024

Published on: 19 March, 2024

Page: [429 - 437] Pages: 9

DOI: 10.2174/0115734110290080240314043658

conference banner
Abstract

Objective: This paper describes a new, digital image colourimetry-based format for the quantification of analytes in an aqueous solution.

Methods: The proposed method is based on analyte pre-concentration by adsorption onto Bentone LT. Bentone LT pellet isolation comes after adsorption, followed by in-situ application of an analyteselective chromogenic reaction. The resulting pellet colouration is captured by the phone’s integrated camera and assessed using the free open-source image processing software, ImageJ. Responses are calibrated and quantified.

Results: We tested the applicability of the proposed methodology for the quantification of specific model analytes which are of concern in environmental matrices (methyl red, Co(II), uric acid, topotecan). The smartphone-based assay was proven reliable in quantifying the model analytes (standard recovery of 82-116%), alone or in mixture, from dilute aqueous solutions and was found to depict accurately the adsorption behaviour followed photometrically in solution. Lower limit of linearity was calculated at 0.05, 0.11, 0.85 and 0.20 μg/mL for methyl red, Co(II), uric acid, and topotecan, respectively. The proposed format was found superior when compared to alternative published photometric/ colourimetric assays in terms of the lower limit of linearity. In the presence of possible adsorption interferents, the lower limit of linear response was shifted to slightly higher concentrations for topotecan i.e. from 0.2 μg/mL to 0.5 μg/mL.

Conclusion: We here demonstrate the extended applicability of the proposed methodology for the smartphone-based quantification of the specific model analytes. The applicability of this analysis format likely extends to other analytes, where analyte-specific colour formation is feasible.

Keywords: Digital image colourimetry, pre-concentration, adsorption, clay, methyl red, Co(II), uric acid, topotecan.

Graphical Abstract
[1]
Trellu, C.; Olvera Vargas, H.; Mousset, E.; Oturan, N.; Oturan, M.A. Electrochemical technologies for the treatment of pesticides. Curr. Opin. Electrochem., 2021, 26, 100677.
[http://dx.doi.org/10.1016/j.coelec.2020.100677]
[2]
Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kaushik, A.; Sonne, C.; Kim, K.H.; Kumar, S. Emerging nanobiotechnology in agriculture for the management of pesticide residues. J. Hazard. Mater., 2021, 401, 123369.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123369] [PMID: 32763682]
[3]
Kaur, N.; Prabhakar, N. Current scenario in organophosphates detection using electrochemical biosensors. Trends Analyt. Chem., 2017, 92, 62-85.
[http://dx.doi.org/10.1016/j.trac.2017.04.012]
[4]
Umapathi, R.; Sonwal, S.; Lee, M.J.; Mohana Rani, G.; Lee, E.S.; Jeon, T.J.; Kang, S.M.; Oh, M.H.; Huh, Y.S. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coord. Chem. Rev., 2021, 446, 214061.
[http://dx.doi.org/10.1016/j.ccr.2021.214061]
[6]
Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Montone, C.M.; Piovesana, S.; Laganà, A.; Laganà, A. Recent applications of magnetic solid-phase extraction for sample preparation. Chromatographia, 2019, 82(8), 1251-1274.
[http://dx.doi.org/10.1007/s10337-019-03721-0]
[7]
Arduini, F.; Ricci, F.; Tuta, C.S.; Moscone, D.; Amine, A.; Palleschi, G. Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode. Anal. Chim. Acta, 2006, 580(2), 155-162.
[http://dx.doi.org/10.1016/j.aca.2006.07.052] [PMID: 17723768]
[8]
Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem., 2012, 429(1), 19-31.
[http://dx.doi.org/10.1016/j.ab.2012.06.025] [PMID: 22759777]
[9]
Kim, K.; Kabir, E.; Ara, S. Science of the total environment exposure to pesticides and the associated human health effects. Sci. Total Environ., 2016, 575, 525-535.
[http://dx.doi.org/10.1016/j.scitotenv.2016.09.009] [PMID: 27614863]
[10]
Singh, P.K.; Kaur, J. Enzyme-based optical biosensors for organophosphate class of pesticide detection. PCCP, 2020, 22(27)
[http://dx.doi.org/10.1039/D0CP01647K]
[11]
Chawla, P.; Kaushik, R.; Swaraj, V.J.S.; Kumar, N. Organophosphorus pesticides residues in food and their colorimetric detection. Environ. Nanotechnol. Monit. Manag., 2018, 10, 292-307.
[http://dx.doi.org/10.1016/j.enmm.2018.07.013]
[12]
Mostafalou, S.; Abdollahi, M. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol., 2013, 268(2), 157-177.
[http://dx.doi.org/10.1016/j.taap.2013.01.025] [PMID: 23402800]
[13]
Farkhondeh, T.; Mehrpour, O.; Forouzanfar, F.; Roshanravan, B.; Samarghandian, S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: A review. Environ. Sci. Pollut. Res. Int., 2020, 27(20), 24799-24814.
[http://dx.doi.org/10.1007/s11356-020-09045-z] [PMID: 32358751]
[14]
Bilal, M.; Iqbal, H.M.N.; Barceló, D. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. Sci. Total Environ., 2019, 695, 133896.
[http://dx.doi.org/10.1016/j.scitotenv.2019.133896] [PMID: 31756868]
[15]
Fallah, Z.; Nazarzadeh, E.; Ghomi, M.; Ahmadijokani, F. Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials. Chemosphere, 2021, 275, 130055.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130055]
[16]
De Luca, V.; Mandrich, L.; Manco, G. Development of a qualitative test to detect the presence of organophosphate pesticides on fruits and vegetables. Life, 2023, 13(2), 1-490.
[http://dx.doi.org/10.3390/life13020490]
[17]
Mali, H.; Shah, C.; Raghunandan, B.H.; Prajapati, A.S.; Patel, D.H.; Trivedi, U.; Subramanian, R.B. Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. J. Environ. Sci., 2023, 127, 234-250.
[http://dx.doi.org/10.1016/j.jes.2022.04.023] [PMID: 36522056]
[18]
Yadav, M.; Shukla, A.K.; Srivastva, N.; Upadhyay, S.N.; Dubey, S.K. Utilization of microbial community potential for removal of chlorpyrifos  A review. Crit. Rev. Biotechnol., 2015, 36(4), 727-742.
[http://dx.doi.org/10.3109/07388551.2015.1015958] [PMID: 25782532]
[19]
Kaushal, J.; Khatri, M.; Arya, S.K. A treatise on organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. Ecotoxicol. Environ. Saf., 2021, 207, 111483.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111483] [PMID: 33120277]
[20]
Kwong, T.C. Organophosphate pesticides: Biochemistry and clinical toxicology. Ther. Drug Monit., 2002, 241, 144-149.
[21]
Tahara, M.; Kubota, R.; Nakazawa, H.; Tokunaga, H. Use of cholinesterase activity as an indicator for the effects of combinations of organophosphorus pesticides in water from environmental sources. Water Res., 2005, 39(20), 5112-5118.
[http://dx.doi.org/10.1016/j.watres.2005.09.042]
[22]
Smith, A.G.; Gangolli, S.D. Organochlorine chemicals in seafood: Occurrence and health concerns. Food Chem. Toxicol., 2002, 40(6), 767-779.
[23]
Knapton, D.; Burnworth, M.; Rowan, S.J.; Weder, C. Fluorescent organometallic sensors for the detection of chemical-warfare-agent mimics. Angew. Chem. Int. Ed., 2006, 45(35), 5825-5829.
[http://dx.doi.org/10.1002/anie.200601634] [PMID: 16874825]
[24]
Issaka, E.; Wariboko, M.A.; Johnson, N.A.N.; Aniagyei, O.N. Advanced visual sensing techniques for on-site detection of pesticide residue in water environments. Heliyon, 2023, 9(3), e13986.
[http://dx.doi.org/10.1016/j.heliyon.2023.e13986] [PMID: 36915503]
[25]
Zhao, F.; Wang, L.; Li, M.; Wang, M.; Liu, G.; Ping, J. Nanozyme-based biosensor for organophosphorus pesticide monitoring: Functional design, biosensing strategy, and detection application. Trends Analyt. Chem., 2023, 165, 117152.
[http://dx.doi.org/10.1016/j.trac.2023.117152]
[26]
Mitobe, H.; Ibaraki, T.; Tanabe, A. High performance liquid chromatographic determination of pesticides in soluble phase and suspended phase in river water. Toxicol. Environ. Chem., 2008, 81(3-4), 97-110.
[http://dx.doi.org/10.1080/02772240109359023]
[27]
Hoff, V.D.; Zoonen, P.V.; Rene, G. Trace analysis of pesticides by gas chromatography. J. Chromatogr. A, 1999, 843(1-2), 301-322.
[28]
Acosta-Dacal, A.; Rial-Berriel, C.; Díaz-Díaz, R.; Bernal-Suárez, M.M.; Luzardo, O.P. Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Sci. Total Environ., 2021, 753, 142015.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142015] [PMID: 33207465]
[29]
Pawar, U.D.; Pawar, C.D.; Kulkarni, U.K.; Pardeshi, R.K. Development method of high-performance thin-layer chromatographic detection of synthetic organophosphate insecticide profenofos in visceral samples J. Plan. Chromat. Mod. TLC, 2020, 33, 203-206.
[http://dx.doi.org/10.1007/s00764-020-00015-2]
[30]
Sanganalmath, P.U.; Nagaraju, P.M.; Sreeramulu, K. Determination of quinalphos in human whole blood samples by high-performance thin-layer chromatography for forensic applications. J. Chromatogr. A, 2019, 1594, 181-189.
[http://dx.doi.org/10.1016/j.chroma.2019.02.003] [PMID: 30745138]
[31]
Cao, J.; Wang, M.; Yu, H.; She, Y.; Cao, Z.; Ye, J.; El-aty, A.M.A.; Hacimuftuoglu, A.; Wang, J.; Lao, S. An overview on the mechanisms and applications of enzyme inhibition-based methods for determination of organophosphate and carbamate pesticides. J. Agric. Food Chem., 2020, 68(28), 7298-7315.
[http://dx.doi.org/10.1021/acs.jafc.0c01962]
[32]
Sereshti, H.; Amirafshar, A.; Kadi, A.; Rashidi Nodeh, H.; Rezania, S.; Hoang, H.Y.; Barghi, A.; Vasseghian, Y. Isolation of organophosphate pesticides from water using gold nanoparticles doped magnetic three-dimensional graphene oxide. Chemosphere, 2023, 320, 138065.
[http://dx.doi.org/10.1016/j.chemosphere.2023.138065] [PMID: 36754307]
[33]
Parham, H.; Rahbar, N. Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode. J. Hazard. Mater., 2010, 177(1-3), 1077-1084.
[http://dx.doi.org/10.1016/j.jhazmat.2010.01.031] [PMID: 20097474]
[34]
Xie, Y.; Yu, Y.; Lu, L.; Ma, X.; Gong, L.; Huang, X.; Liu, G.; Yu, Y. CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for malathion detection. J. Electroanal. Chem., 2018, 812, 82-89.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.043]
[35]
Bolat, G.; Abaci, S.; Vural, T.; Bozdogan, B.; Denkbas, E.B. Sensitive electrochemical detection of fenitrothion pesticide based on self-assembled peptide-nanotubes modified disposable pencil graphite electrode. J. Electroanal. Chem., 2018, 809, 88-95.
[http://dx.doi.org/10.1016/j.jelechem.2017.12.060]
[36]
Huang, B.; Zhang, W.; Chen, C. Electrochemical determination of methyl parathion at a Pd/MWCNTs-modified electrode. Microchimica Acta, 2010, 171, 57-62.
[http://dx.doi.org/10.1007/s00604-010-0408-z]
[37]
Govindasamy, M.; Rajaji, U.; Chen, S.; Kumaravel, S. Detection of pesticide residues (fenitrothion) in fruit samples based on niobium carbideamolybdenum nanocomposite: An electrocatalytic approach. Anal. Chim. Acta, 2018, 1030, 52-60.
[http://dx.doi.org/10.1016/j.aca.2018.05.044] [PMID: 30032773]
[38]
Man, H.; Chaima, M.; Wang, X.; Xiu, L.; Yang, L.; Huang, J. Fluorescent detection of organophosphorus pesticides using carbon dots derived from broccoli. Arab. J. Sci. Eng., 2023, 48(7), 8315-8324.
[http://dx.doi.org/10.1007/s13369-022-06675-y]
[39]
Bhattu, M.; Verma, M.; Kathuria, D. Recent advancements in the detection of organophosphate pesticides: A review. Anal. Methods, 2021, 13(38), 4390-4428.
[http://dx.doi.org/10.1039/D1AY01186C] [PMID: 34486591]
[40]
Long, Q.; Li, H.; Zhang, Y.; Yao, S. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosens. Bioelectron., 2015, 68, 168-174.
[http://dx.doi.org/10.1016/j.bios.2014.12.046] [PMID: 25569873]
[41]
Wu, X.; Wang, P.; Hou, S.; Wu, P.; Xue, J. Fluorescence sensor for facile and visual detection of organophosphorus pesticides using AIE fluorogens-SiO2-MnO2 sandwich nanocomposites. Talanta, 2019, 198, 8-14.
[http://dx.doi.org/10.1016/j.talanta.2019.01.082] [PMID: 30876606]
[42]
Zhan, Y.; Yang, J.; Guo, L.; Luo, F.; Qiu, B.; Hong, G.; Lin, Z. Targets regulated formation of boron nitride quantum dots: Gold nanoparticles nanocomposites for ultrasensitive detection of acetylcholinesterase activity and its inhibitors. Sens. Actuators B Chem., 2019, 279, 61-68.
[http://dx.doi.org/10.1016/j.snb.2018.09.097]
[43]
Ghodsi, J.; Rafati, A.A. A novel molecularly imprinted sensor for imidacloprid pesticide based on poly(levodopa) electro-polymerized/TiO2 nanoparticles composite. Anal. Bioanal. Chem., 2018, 410(29), 7621-7633.
[http://dx.doi.org/10.1007/s00216-018-1372-4] [PMID: 30267274]
[44]
Wang, Y.; Abd El-Aty, A.M.; Wang, S.; Cui, X.; Zhao, J.; Lei, X.; Xu, L.; She, Y.; Jin, F.; Eun, J.B.; Shim, J.H.; Wang, J.; Jin, M.; Hammock, B.D. Competitive fluorescent immunosensor based on catalytic hairpin self-assembly for multiresidue detection of organophosphate pesticides in agricultural products. Food Chem., 2023, 413, 135607.
[http://dx.doi.org/10.1016/j.foodchem.2023.135607] [PMID: 36773354]
[45]
Molaei, M.J. Carbon quantum dots and their biomedical and therapeutic applications: A review. RSC Advances, 2019, 9(12), 6460-6481.
[http://dx.doi.org/10.1039/C8RA08088G] [PMID: 35518468]
[46]
Lin, B.; Yan, Y.; Guo, M.; Cao, Y.; Yu, Y.; Zhang, T.; Huang, Y.; Wu, D. Modification-free carbon dots as turn-on fluorescence probe for detection of organophosphorus pesticides. Food Chem., 2018, 245, 1176-1182.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.038] [PMID: 29287338]
[47]
Wei, J.; Yang, Y.; Dong, J.; Wang, S.; Li, P. Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots. Mikrochim. Acta, 2019, 186(2), 66.
[http://dx.doi.org/10.1007/s00604-018-3175-x] [PMID: 30627852]
[48]
Hou, J.; Dong, G.; Tian, Z.; Lu, J.; Wang, Q.; Ai, S.; Wang, M. A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system. Food Chem., 2016, 202, 81-87.
[http://dx.doi.org/10.1016/j.foodchem.2015.11.134] [PMID: 26920268]
[49]
Sensing of deadly toxic chemical warfare agents. In: Nerve Agent Simulants, and their Toxicological Aspects; Elsevier, 2023; pp. 1-736.
[http://dx.doi.org/10.1016/C2020-0-03742-4]
[50]
Lazarević-Pašti, T. Carbon materials for organophosphate pesticide sensing. Chemosensors, 2023, 11(2), 93.
[http://dx.doi.org/10.3390/chemosensors11020093]
[51]
Rao, C.N.R.; Cheetham, A.K. Science and technology of nanomaterials: Current status and future prospects. In: World Scientific Series in 20th Century Chemistry;; World scientific, 2003; pp. 45-52.
[http://dx.doi.org/10.1142/9789812835734_0005]
[52]
Wang, J. Carbon‐nanotube based electrochemical biosensors: A review. Electroanalysis, 2005, 17(1), 7-14.
[http://dx.doi.org/10.1002/elan.200403113]
[53]
Dou, X.; Zhang, L.; Liu, C.; Li, Q.; Luo, J.; Yang, M. Fluorometric competitive immunoassay for chlorpyrifos using rhodamine-modified gold nanoparticles as a label. Mikrochim. Acta, 2018, 185(1), 41.
[http://dx.doi.org/10.1007/s00604-017-2561-0] [PMID: 29594500]
[54]
Hung, S.H.; Lee, J.Y.; Hu, C.C.; Chiu, T.C. Gold-nanoparticle-based fluorescent “turn-on” sensor for selective and sensitive detection of dimethoate. Food Chem., 2018, 260, 61-65.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.149] [PMID: 29699682]
[55]
Chang, H.C.; Lin, J.C.; Lin, S.L.; Chang, I.N.; Lin, C.S.; Chen, S.Y. Automatic microfluidic fluorescence-array measurement system for detecting organic phosphate. Technol. Health Care, 2015, 24(s1), S41-S48.
[http://dx.doi.org/10.3233/THC-151050] [PMID: 26409537]
[56]
Hsu, C.W.; Lin, Z.Y.; Chan, T.Y.; Chiu, T.C.; Hu, C.C. Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate. Food Chem., 2017, 224, 353-358.
[http://dx.doi.org/10.1016/j.foodchem.2016.12.095] [PMID: 28159279]
[57]
Bavili Tabrizi, A.; Abdollahi, A. Determination of organothiophosphate insecticides in environmental water samples by a very simple and sensitive spectrofluorimetric method. Bull. Environ. Contam. Toxicol., 2015, 95(4), 536-541.
[http://dx.doi.org/10.1007/s00128-015-1612-7]
[58]
Cetrangolo, G.P.; Gori, C.; Rusko, J.; Terreri, S.; Manco, G.; Cimmino, A.; Febbraio, F. Determination of picomolar concentrations of paraoxon in human urine by fluorescence-based enzymatic assay. Sensors, 2019, 19(22), 4852.
[http://dx.doi.org/10.3390/s19224852] [PMID: 31703397]
[59]
Loganathan, C.; Gowthaman, N.S.K.; Abraham John, S. Chain-like 2-amino-4-thiazoleacetic acid tethered AuNPs as colorimetric and spectrophotometric probe for organophosphate pesticide in water and fruit samples. Microchem. J., 2021, 168, 106495.
[http://dx.doi.org/10.1016/j.microc.2021.106495]
[60]
Liang, B.; Han, L. Displaying of acetylcholinesterase mutants on surface of yeast for ultra-trace fluorescence detection of organophosphate pesticides with gold nanoclusters. Biosens. Bioelectron., 2020, 148, 111825.
[http://dx.doi.org/10.1016/j.bios.2019.111825] [PMID: 31677527]
[61]
Ibrahim, I.A.; Abbas, A.M.; Darwish, H.M. Fluorescence sensing of dichlorvos pesticide by the luminescent Tb(III)‐3‐ally‐salicylohydrazide probe. Luminescence, 2017, 32(8), 1541-1546.
[http://dx.doi.org/10.1002/bio.3357] [PMID: 28660707]
[62]
Jiang, M.; Chen, C.; He, J.; Zhang, H.; Xu, Z. Fluorescence assay for three organophosphorus pesticides in agricultural products based on magnetic-assisted fluorescence labeling aptamer probe. Food Chem., 2020, 307, 125534.
[http://dx.doi.org/10.1016/j.foodchem.2019.125534] [PMID: 31644980]
[63]
Clapp, A. Potential clinical applications of quantum dots. Int. J. Nanomedicine, 2008, 151, 151.
[http://dx.doi.org/10.2147/IJN.S614]
[64]
Zheng, Z.; Zhou, Y.; Li, X.; Liu, S.; Tang, Z. Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens. Bioelectron., 2011, 26(6), 3081-3085.
[http://dx.doi.org/10.1016/j.bios.2010.12.021] [PMID: 21196108]
[65]
Hu, T.; Xu, J.; Ye, Y.; Han, Y.; Li, X.; Wang, Z.; Sun, D.; Zhou, Y.; Ni, Z. Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor. Biosens. Bioelectron., 2019, 136, 112-117.
[http://dx.doi.org/10.1016/j.bios.2019.04.036] [PMID: 31054518]
[66]
Yan, X.; Li, H.; Wang, X.; Su, X. A novel fluorescence probing strategy for the determination of parathion-methyl. Talanta, 2015, 131, 88-94.
[http://dx.doi.org/10.1016/j.talanta.2014.07.032] [PMID: 25281077]
[67]
Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front Chem., 2014, 2, 63.
[http://dx.doi.org/10.3389/fchem.2014.00063] [PMID: 25221775]
[68]
Hu, Y.; Li, J.; Li, X. Leek-derived codoped carbon dots as efficient fluorescent probes for dichlorvos sensitive detection and cell multicolor imaging. Anal. Bioanal. Chem., 2019, 411(29), 7879-7887.
[http://dx.doi.org/10.1007/s00216-019-02192-4] [PMID: 31691847]
[69]
Yao, Y.; Liu, Y.; Zhang, H.; Wang, X. A highly sensitive and low-background fluorescence assay for pesticides residues based on hybridization chain reaction amplification assisted by magnetic separation. Methods Appl. Fluoresc., 2019, 7(3), 035006.
[http://dx.doi.org/10.1088/2050-6120/ab1e7a] [PMID: 31042679]
[70]
Yan, X.; Li, H.; Han, X.; Su, X. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosens. Bioelectron., 2015, 74, 277-283.
[http://dx.doi.org/10.1016/j.bios.2015.06.020] [PMID: 26143468]
[71]
Zhang, C.; Jiang, Z.; Jin, M.; Du, P.; Chen, G.; Cui, X.; Zhang, Y.; Qin, G.; Yan, F.; Abd El-Aty, A.M. Hacimüftüoğlu, A.; Wang, J. Fluorescence immunoassay for multiplex detection of organophosphate pesticides in agro-products based on signal amplification of gold nanoparticles and oligonucleotides. Food Chem., 2020, 326, 126813.
[http://dx.doi.org/10.1016/j.foodchem.2020.126813] [PMID: 32438234]
[72]
Wu, X.; Song, Y.; Yan, X.; Zhu, C.; Ma, Y.; Du, D.; Lin, Y. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens. Bioelectron., 2017, 94, 292-297.
[http://dx.doi.org/10.1016/j.bios.2017.03.010] [PMID: 28315592]
[73]
Whangsuk, W.; Thiengmag, S.; Dubbs, J.; Mongkolsuk, S.; Loprasert, S. Specific detection of the pesticide chlorpyrifos by a sensitive genetic-based whole cell biosensor. Anal. Biochem., 2016, 493, 11-13.
[http://dx.doi.org/10.1016/j.ab.2015.09.022] [PMID: 26452613]
[74]
Li, W.; Rong, Y.; Wang, J.; Li, T.; Wang, Z. MnO2 switch-bridged DNA walker for ultrasensitive sensing of cholinesterase activity and organophosphorus pesticides. Biosens. Bioelectron., 2020, 169, 112605.
[http://dx.doi.org/10.1016/j.bios.2020.112605] [PMID: 32947079]
[75]
Azab, H.A.; Khairy, G.M.; Kamel, R.M. Time-resolved fluorescence sensing of pesticides chlorpyrifos, crotoxyphos and endosulfan by the luminescent Eu(III)–8-allyl-3-carboxycoumarin probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 148, 114-124.
[http://dx.doi.org/10.1016/j.saa.2015.03.098] [PMID: 25875033]
[76]
Wang, M.; Su, K.; Cao, J.; She, Y.; Abd El-Aty, A.M. Hacımüftüoğlu, A.; Wang, J.; Yan, M.; Hong, S.; Lao, S.; Wang, Y. “Off-On” non-enzymatic sensor for malathion detection based on fluorescence resonance energy transfer between β-cyclodextrin@Ag and fluorescent probe. Talanta, 2019, 192, 295-300.
[http://dx.doi.org/10.1016/j.talanta.2018.09.060] [PMID: 30348392]
[77]
Karami, R.; Mohsenifar, A.; Mesbah Namini, S.M.; Kamelipour, N.; Rahmani-Cherati, T.; Roodbar Shojaei, T.; Tabatabaei, M. A novel nanobiosensor for the detection of paraoxon using chitosan-embedded organophosphorus hydrolase immobilized on Au nanoparticles. Prep. Biochem. Biotechnol., 2016, 46(6), 559-566.
[http://dx.doi.org/10.1080/10826068.2015.1084930] [PMID: 26503886]
[78]
Song, W.; Zhang, H.J.; Liu, Y.H.; Ren, C.L.; Chen, H.L. A new fluorescence probing strategy for the detection of parathion-methyl based on N -doped carbon dots and methyl parathion hydrolase. Chin. Chem. Lett., 2017, 28(8), 1675-1680.
[http://dx.doi.org/10.1016/j.cclet.2017.05.001]
[79]
Wang, P.; Li, H.; Hassan, M.M.; Guo, Z.; Zhang, Z.Z.; Chen, Q. Fabricating an acetylcholinesterase modulated UCNPs-Cu2+ fluorescence biosensor for ultrasensitive detection of organophosphorus pesticides-diazinon in food. J. Agric. Food Chem., 2019, 67(14), 4071-4079.
[http://dx.doi.org/10.1021/acs.jafc.8b07201]
[80]
Chowdhary, S.; Bhattacharyya, R.; Banerjee, D. A novel fluorescence based assay for the detection of organophosphorus pesticide exposed cholinesterase activity using 1-naphthyl acetate. Biochimie, 2019, 160, 100-112.
[http://dx.doi.org/10.1016/j.biochi.2019.02.014] [PMID: 30822441]
[81]
Khaksarinejad, R.; Mohsenifar, A.; Rahmani-Cherati, T.; Karami, R.; Tabatabaei, M. An organophosphorus hydrolase-based biosensor for direct detection of paraoxon using silica-coated magnetic nanoparticles. Appl. Biochem. Biotechnol., 2015, 176(2), 359-371.
[http://dx.doi.org/10.1007/s12010-015-1579-1] [PMID: 25825249]
[82]
Mehta, J.; Dhaka, S.; Paul, A.K.; Dayananda, S.; Deep, A. Organophosphate hydrolase conjugated UiO-66-NH2 MOF based highly sensitive optical detection of methyl parathion. Environ. Res., 2019, 174, 46-53.
[http://dx.doi.org/10.1016/j.envres.2019.04.018] [PMID: 31029941]
[83]
Fernandes, G.M.; Silva, W.R.; Barreto, D.N.; Lamarca, R.S.; Lima Gomes, P.C.F. Flávio da S Petruci, J.; Batista, A.D. Novel approaches for colorimetric measurements in analytical chemistry: A review. Anal. Chim. Acta, 2020, 1135, 187-203.
[http://dx.doi.org/10.1016/j.aca.2020.07.030] [PMID: 33070854]
[84]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[85]
Piriya, A.; Joseph, P.; Daniel, K. Colorimetric sensors for rapid detection of various analytes. Mater. Sci. Eng. C, 2017, 78, 1231-1245.
[http://dx.doi.org/10.1016/j.msec.2017.05.018]
[86]
Yüce, M.; Kurt, H.; Hussain, B.; Budak, H. Systematic evolution of ligands by exponential enrichment for aptamer selection. In: Biomedical Applications of Functionalized Nanomaterials; Elsevier, 2018; pp. 211-243.
[http://dx.doi.org/10.1016/B978-0-323-50878-0.00008-2]
[87]
Zhang, Y.; Lai, B.; Juhas, M. Recent advances in aptamer discovery and applications. Molecules, 2019, 24(5), 941.
[http://dx.doi.org/10.3390/molecules24050941] [PMID: 30866536]
[88]
Wang, R.H.; Zhu, C.L.; Wang, L.L.; Xu, L.Z.; Wang, W.L.; Yang, C.; Zhang, Y. Dual-modal aptasensor for the detection of isocarbophos in vegetables. Talanta, 2019, 205, 120094.
[http://dx.doi.org/10.1016/j.talanta.2019.06.094] [PMID: 31450466]
[89]
Liang, N.; Hu, X.; Li, W.; Mwakosya, A.W.; Guo, Z.; Xu, Y.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Shi, J. Fluorescence and colorimetric dual-mode sensor for visual detection of malathion in cabbage based on carbon quantum dots and gold nanoparticles. Food Chem., 2021, 343, 128494.
[http://dx.doi.org/10.1016/j.foodchem.2020.128494] [PMID: 33162257]
[90]
Štěpánková, Š.; Vorčáková, K. Cholinesterase-based biosensors. J. Enzyme Inhib. Med. Chem., 2016, 31(suppl. 3), 180-193.
[http://dx.doi.org/10.1080/14756366.2016.1204609] [PMID: 27405024]
[91]
Zhang, S.X.; Xue, S.F.; Deng, J.; Zhang, M.; Shi, G.; Zhou, T. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides. Biosens. Bioelectron., 2016, 85, 457-463.
[http://dx.doi.org/10.1016/j.bios.2016.05.040] [PMID: 27208478]
[92]
Luo, D.; Chen, H.; Zhou, P.; Tao, H.; Wu, Y. Oligonucleotides and pesticide regulated peroxidase catalytic activity of hemin for colorimetric detection of isocarbophos in vegetables by naked eyes. Anal. Bioanal. Chem., 2019, 411(29), 7857-7868.
[http://dx.doi.org/10.1007/s00216-019-02185-3] [PMID: 31705220]
[93]
Guo, L.; Li, Z.; Chen, H.; Wu, Y.; Chen, L.; Song, Z.; Lin, T. Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine-starch color reaction. Anal. Chim. Acta, 2017, 967, 59-63.
[http://dx.doi.org/10.1016/j.aca.2017.02.028] [PMID: 28390486]
[94]
Nouanthavong, S.; Nacapricha, D.; Henry, C.S.; Sameenoi, Y. Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. Analyst, 2016, 141(5), 1837-1846.
[http://dx.doi.org/10.1039/C5AN02403J] [PMID: 26842266]
[95]
Qian, S.; Lin, H. Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides. Anal. Chem., 2015, 87(10), 5395-5400.
[http://dx.doi.org/10.1021/acs.analchem.5b00738] [PMID: 25913282]
[96]
Mane, P.C.; Shinde, M.D.; Varma, S.; Chaudhari, B.P.; Fatehmulla, A.; Shahabuddin, M.; Amalnerkar, D.P.; Aldhafiri, A.M.; Chaudhari, R.D. Highly sensitive label-free bio-interfacial colorimetric sensor based on silk fibroin-gold nanocomposite for facile detection of chlorpyrifos pesticide. Sci. Rep., 2020, 10(1), 4198.
[http://dx.doi.org/10.1038/s41598-020-61130-y] [PMID: 32144298]
[97]
Singh, S.; Tripathi, P.; Kumar, N.; Nara, S. Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens. Bioelectron., 2017, 92, 280-286.
[http://dx.doi.org/10.1016/j.bios.2016.11.011] [PMID: 27840040]
[98]
Bordbar, M.M.; Nguyen, T.A.; Arduini, F.; Bagheri, H. A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Mikrochim. Acta, 2020, 187(11), 621.
[http://dx.doi.org/10.1007/s00604-020-04596-x] [PMID: 33084996]
[99]
Guo, J.; Wong, J.X.H.; Cui, C.; Li, X.; Yu, H.Z. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues. Analyst, 2015, 140(16), 5518-5525.
[http://dx.doi.org/10.1039/C5AN00874C] [PMID: 26087169]
[100]
Cacciotti, I.; Pallotto, F.; Scognamiglio, V.; Moscone, D.; Arduini, F. Reusable optical multi-plate sensing system for pesticide detection by using electrospun membranes as smart support for acetylcholinesterase immobilisation. Mater. Sci. Eng. C, 2020, 111, 110744.
[http://dx.doi.org/10.1016/j.msec.2020.110744] [PMID: 32279763]
[101]
Che Sulaiman, I.S.; Chieng, B.W.; Osman, M.J.; Ong, K.K.; Rashid, J.I.A.; Wan Yunus, W.M.Z.; Noor, S.A.M.; Kasim, N.A.M.; Halim, N.A.; Mohamad, A. A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Mikrochim. Acta, 2020, 187(2), 131.
[http://dx.doi.org/10.1007/s00604-019-3893-8] [PMID: 31940088]
[102]
Wang, X.; Yang, Y.; Dong, J.; Bei, F.; Ai, S. Lanthanum-functionalized gold nanoparticles for coordination–bonding recognition and colorimetric detection of methyl parathion with high sensitivity. Sens. Actuators B Chem., 2014, 204, 119-124.
[http://dx.doi.org/10.1016/j.snb.2014.07.093]
[103]
Fahimi-Kashani, N.; Hormozi-Nezhad, M.R. Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides. Anal. Chem., 2016, 88(16), 8099-8106.
[http://dx.doi.org/10.1021/acs.analchem.6b01616] [PMID: 27412472]
[104]
Ma, S.; He, J.; Guo, M.; Sun, X.; Zheng, M.; Wang, Y. Ultrasensitive colorimetric detection of triazophos based on the aggregation of silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2018, 538, 343-349.
[http://dx.doi.org/10.1016/j.colsurfa.2017.11.030]
[105]
Kim, M.S.; Kim, G.W.; Park, T.J. A facile and sensitive detection of organophosphorus chemicals by rapid aggregation of gold nanoparticles using organic compounds. Biosens. Bioelectron., 2015, 67, 408-412.
[http://dx.doi.org/10.1016/j.bios.2014.08.073] [PMID: 25216978]
[106]
Martinez, A.W.; Phillips, S.T.; Carrilho, E.; Thomas, S.W., III; Sindi, H.; Whitesides, G.M. Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem., 2008, 80(10), 3699-3707.
[http://dx.doi.org/10.1021/ac800112r] [PMID: 18407617]
[107]
Garciá-Miranda Ferrari, A.; Carrington, P.; Rowley-Neale, S.J.; Banks, C.E. Recent advances in portable heavy metal electrochemical sensing platforms. Environ. Sci. Wat. Res., 2020, 6(10)
[http://dx.doi.org/10.1039/D0EW00407C]
[108]
Sekhar, P.K.; Brosha, E.L.; Mukundan, R.; Garzon, F. Chemical sensors for environmental monitoring and homeland security. Electrochem. Soc. Interface, 2010, 19(4), 35-40.
[http://dx.doi.org/10.1149/2.F04104if]
[109]
Tajik, S.; Beitollahi, H.; Garkani Nejad, F.; Sheikhshoaie, I.; Nugraha, A.S.; Jang, H.W.; Yamauchi, Y.; Shokouhimehr, M. Performance of metal–organic frameworks in the electrochemical sensing of environmental pollutants. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(13), 8195-8220.
[http://dx.doi.org/10.1039/D0TA08344E]
[110]
Vikrant, K.; Tsang, D.C.W.; Raza, N.; Giri, B.S.; Kukkar, D.; Kim, K.H. Potential utility of metal–organic framework-based platform for sensing pesticides. ACS Appl. Mater. Interfaces, 2018, 10(10), 8797-8817.
[http://dx.doi.org/10.1021/acsami.8b00664] [PMID: 29465977]
[111]
Ranjith, K.S.; Vilian, A.T.E.; Ghoreishian, S.M.; Umapathi, R.; Huh, Y.S.; Han, Y.K. An ultrasensitive electrochemical sensing platform for rapid detection of rutin with a hybridized 2D-1D MXene-FeWO4 nanocomposite. Sens. Actuators B Chem., 2021, 344, 130202.
[http://dx.doi.org/10.1016/j.snb.2021.130202]
[112]
Ezhil Vilian, A.T.; Umapathi, R.; Hwang, S.K.; Lee, M.J.; Huh, Y.S.; Han, Y.K. Simple synthesis of a clew-like tungsten carbide nanocomposite decorated with gold nanoparticles for the ultrasensitive detection of tert-butylhydroquinone. Food Chem., 2021, 348, 128936.
[http://dx.doi.org/10.1016/j.foodchem.2020.128936] [PMID: 33508604]
[113]
Vilian, A.T.E.; Umapathi, R.; Hwang, S.K.; Huh, Y.S.; Han, Y.K. Pd–Cu nanospheres supported on MO2C for the electrochemical sensing of nitrites. J. Hazard. Mater., 2021, 408, 124914.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124914] [PMID: 33360698]
[114]
Vilian, A.T.E.; Ranjith, K.S.; Lee, S.J.; Hwang, S.K.; Umapathi, R.; Oh, C.W.; Huh, Y.S.; Han, Y.K. Controllable synthesis of bottlebrush-like ZnO nanowires decorated on carbon nanofibers as an efficient electrocatalyst for the highly sensitive detection of silymarin in biological samples. Sens. Actuators B Chem., 2020, 321, 128544.
[http://dx.doi.org/10.1016/j.snb.2020.128544]
[115]
Beatriz, P. Electrochemical (bio)sensors for pesticides detection using screen-printed electrodes. Biosensors, 2020, 10(4), 1-32.
[116]
Simões, F.R.; Xavier, M.G. Electrochemical Sensors;, Elsevier Inc. 2017.
[http://dx.doi.org/10.1016/B978-0-323-49780-0.00006-5]
[117]
Wen, W.; Yan, X.; Zhu, C.; Du, D.; Lin, Y. Recent advances in electrochemical immunosensors. Anal. Chem., 2017, 89(1), 138-156.
[http://dx.doi.org/10.1021/acs.analchem.6b04281] [PMID: 28105820]
[118]
Wang, W.; Wang, X.; Cheng, N.; Luo, Y.; Lin, Y.; Xu, W.; Du, D. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. Trends Analyt. Chem., 2020, 132, 116041.
[http://dx.doi.org/10.1016/j.trac.2020.116041]
[119]
Duan, S.; Wu, X.; Shu, Z.; Xiao, A.; Chai, B.; Pi, F.; Wang, J.; Dai, H.; Liu, X. Curcumin-enhanced MOF electrochemical sensor for sensitive detection of methyl parathion in vegetables and fruits. Microchem. J., 2023, 184, 108182.
[http://dx.doi.org/10.1016/j.microc.2022.108182]
[120]
Liu, X.; Li, Y.; Qiao, W.; Chang, M.; Li, Y. A non-enzymatic electrochemical sensor based on nitrogen-doped mesoporous carbon@hydroxyl-functionalized ionic liquid composites modified electrode for the detection of fenitrothion. RSC Advances, 2023, 13(19), 13030-13039.
[http://dx.doi.org/10.1039/D3RA01011B] [PMID: 37124009]
[121]
Surucu, O.; Bolat, G.; Abaci, S. Electrochemical behavior and voltammetric detection of fenitrothion based on a pencil graphite electrode modified with reduced graphene oxide (RGO)/poly(E)-1-(4-((4-(phenylamino)phenyl)diazenyl)phenyl)ethanone(DPA) composite film. Talanta, 2017, 168, 113-120.
[http://dx.doi.org/10.1016/j.talanta.2017.03.033] [PMID: 28391829]
[122]
Kumaravel, A.; Chandrasekaran, M. Electrochemical determination of chlorpyrifos on a nano-TiO2 cellulose acetate composite modified glassy carbon electrode. J. Agric. Food Chem., 2015, 63(27), 6150-6156.
[http://dx.doi.org/10.1021/acs.jafc.5b02057] [PMID: 26075585]
[123]
Kumaravel, A.; Chandrasekaran, M. A novel nanosilver/nafion composite electrode for electrochemical sensing of methyl parathion and parathion. J. Electroanal. Chem., 2010, 638(2), 231-235.
[http://dx.doi.org/10.1016/j.jelechem.2009.11.002]
[124]
Kumaravel, A.; Chandrasekaran, M. A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion. J. Electroanal. Chem., 2011, 650(2), 163-170.
[http://dx.doi.org/10.1016/j.jelechem.2010.10.013]
[125]
Pellicer, C.; Gomez-Caballero, A.; Unceta, N.; Goicolea, M.A.; Barrio, R.J. Using a portable device based on a screen-printed sensor modified with a molecularly imprinted polymer for the determination of the insecticide fenitrothion in forest samples. Anal. Methods, 2010, 2(9), 1280.
[http://dx.doi.org/10.1039/c0ay00329h]
[126]
Sundaresan, R.; Mariyappan, V.; Chen, T.W.; Chen, S.M.; Akilarasan, M.; Liu, X.; Yu, J. One-dimensional rare-earth tungstate nanostructure encapsulated reduced graphene oxide electrocatalyst-based electrochemical sensor for the detection of organophosphorus pesticide. J. Nanostructure Chem., 2023.
[http://dx.doi.org/10.1007/s40097-023-00524-6]
[127]
Wang, Y.; Jin, J.; Yuan, C.; Zhang, F.; Ma, L.; Qin, D.; Shan, D.; Lu, X. A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides. Analyst, 2015, 140(2), 560-566.
[http://dx.doi.org/10.1039/C4AN00981A] [PMID: 25416618]
[128]
Motaharian, A.; Motaharian, F.; Abnous, K.; Hosseini, M.R.M.; Hassanzadeh-Khayyat, M. Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples. Anal. Bioanal. Chem., 2016, 408(24), 6769-6779.
[http://dx.doi.org/10.1007/s00216-016-9802-7] [PMID: 27497964]
[129]
Kang, T.F.; Wang, F.; Lu, L.P.; Zhang, Y.; Liu, T.S. Methyl parathion sensors based on gold nanoparticles and Nafion film modified glassy carbon electrodes. Sens. Actuators B Chem., 2010, 145(1), 104-109.
[http://dx.doi.org/10.1016/j.snb.2009.11.038]
[130]
Vukojević V.; Djurdjić S.; Jevtić S.; Pergal, M.V.; Marković A.; Mutić J.; Petković B.B.; Stanković D.M. First electrochemical investigation of organophosphorus pesticide azametiphos and its quantification using electroanalytical approach. Int. J. Environ. Anal. Chem., 2018, 98(13), 1175-1185.
[http://dx.doi.org/10.1080/03067319.2018.1537394]
[131]
Al-Qasmi, N.; Hameed, A.; Khan, A.N.; Aslam, M.; Ismail, I.M.I.; Soomro, M.T. Mercury meniscus on solid silver amalgam electrode as a sensitive electrochemical sensor for tetrachlorvinphos. J. Saudi Chem. Soc., 2018, 22(4), 496-507.
[http://dx.doi.org/10.1016/j.jscs.2016.07.005]
[132]
Wang, J. Analytical electrochemistry;; Wiley, 2023, pp. 1-240.
[133]
Shu, Z.; Zou, Y.; Wu, X.; Zhang, Q.; Shen, Y.; Xiao, A.; Duan, S.; Pi, F.; Liu, X.; Wang, J.; Dai, H. NH2-MIL-125(Ti)/reduced graphene oxide enhanced electrochemical detection of fenitrothion in agricultural products. Foods, 2023, 12(7), 1534.
[http://dx.doi.org/10.3390/foods12071534] [PMID: 37048355]
[134]
Bakytkarim, Y.; Tursynbolat, S.; Zeng, Q.; Huang, J.; Wang, L. Nanomaterial ink for on-site painted sensor on studies of the electrochemical detection of organophosphorus pesticide residuals of supermarket vegetables. J. Electroanal. Chem., 2019, 841, 45-50.
[http://dx.doi.org/10.1016/j.jelechem.2019.03.063]
[135]
Bolat, G.; Abaci, S. Non-enzymatic electrochemical sensing of malathion pesticide in tomato and apple samples based on gold nanoparticles-chitosan-ionic liquid hybrid nanocomposite. Sensors, 2018, 18(3), 773.
[http://dx.doi.org/10.3390/s18030773] [PMID: 29510525]
[136]
Ding, R.; Jiang, W.; Ma, Y.; Yang, Q.; Han, X.; Hou, X. A highly sensitive MXene/AuPt/AChE-based electrochemical platform for the detection of chlorpyrifos. Microchem. J., 2023, 187, 108425.
[http://dx.doi.org/10.1016/j.microc.2023.108425]
[137]
Al’Abri, A.M.; Abdul Halim, S.N.; Abu Bakar, N.K.; Saharin, S.M.; Sherino, B.; Rashidi Nodeh, H.; Mohamad, S. Highly sensitive and selective determination of malathion in vegetable extracts by an electrochemical sensor based on Cu-metal organic framework. J. Environ. Sci. Health B, 2019, 54(12), 930-941.
[http://dx.doi.org/10.1080/03601234.2019.1652072] [PMID: 31407615]
[138]
Ghodsi, J.; Rafati, A.A. A voltammetric sensor for diazinon pesticide based on electrode modified with TiO2 nanoparticles covered multi walled carbon nanotube nanocomposite. J. Electroanal. Chem., 2017, 807, 1-9.
[http://dx.doi.org/10.1016/j.jelechem.2017.11.003]
[139]
Kumaravel, A.; Murugananthan, M.; Mangalam, R.; Jayakumar, S. A novel, biocompatible and electrocatalytic stearic acid/nanosilver modified glassy carbon electrode for the sensing of paraoxon pesticide in food samples and commercial formulations. Food Chem., 2020, 323, 126814.
[http://dx.doi.org/10.1016/j.foodchem.2020.126814] [PMID: 32334304]
[140]
Pelit, F.O. Ertaş H.; Nil Ertaş F. Development of an adsorptive catalytic stripping voltammetric method for the determination of an endocrine disruptor pesticide chlorpyrifos and its application to the wine samples. J. Appl. Electrochem., 2011, 41(11), 1279-1285.
[http://dx.doi.org/10.1007/s10800-011-0336-6]
[141]
Kumaravel, A.; Murugananthan, M. Electrochemical detection of fenitrothion usingnanosilver/dodecane modified glassy carbon electrode. Sens. Actuators B Chem., 2021, 331, 129467.
[http://dx.doi.org/10.1016/j.snb.2021.129467]
[142]
Mello, L.D.; Kubota, L.T. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem., 2002, 77(2), 237-256.
[http://dx.doi.org/10.1016/S0308-8146(02)00104-8]
[143]
Khaled, E.; Kamel, M.S.; Hassan, H.N.A.; Abdel-Gawad, H.; Aboul-Enein, H.Y. Performance of a portable biosensor for the analysis of ethion residues. Talanta, 2014, 119, 467-472.
[http://dx.doi.org/10.1016/j.talanta.2013.11.001] [PMID: 24401442]
[144]
Li, S.; Liang, R.; Qin, W.; Yao, R. Potentiometric detection of trace-level chlorpyrifos in seawater using a polymeric membrane electrode coupled with on-line molecularly imprinted solid-phase extraction. Int. J. Electrochem. Sci., 2015, 10(2), 1393-1403.
[http://dx.doi.org/10.1016/S1452-3981(23)05080-0]
[145]
Kim, M.; Iezzi, R., Jr; Shim, B.S.; Martin, D.C. Impedimetric biosensors for detecting vascular endothelial growth factor (VEGF) based on poly(3,4-ethylene dioxythiophene) (PEDOT)/Gold Nanoparticle (Au NP) Composites. Front Chem., 2019, 7, 234.
[http://dx.doi.org/10.3389/fchem.2019.00234] [PMID: 31058131]
[146]
Nagabooshanam, S.; Sharma, S.; Roy, S.; Mathur, A.; Krishnamurthy, S.; Bharadwaj, L.M. Development of field deployable sensor for detection of pesticide from food chain. IEEE Sens. J., 2021, 21(4), 4129-4134.
[http://dx.doi.org/10.1109/JSEN.2020.3030034]
[147]
Mubarok, A.Z.; Lin, S.T.; Mani, V.; Huang, C.H.; Huang, S.T. Design of controlled multi-probe coupled assay via bioinspired signal amplification approach for mercury detection. RSC Advances, 2016, 6(63), 58485-58492.
[http://dx.doi.org/10.1039/C6RA11735J]
[148]
Xu, G.; Hou, J.; Zhao, Y.; Bao, J.; Yang, M.; Fa, H.; Yang, Y.; Li, L.; Huo, D.; Hou, C. Dual-signal aptamer sensor based on polydopamine-gold nanoparticles and exonuclease I for ultrasensitive malathion detection. Sens. Actuators B Chem., 2019, 287, 428-436.
[http://dx.doi.org/10.1016/j.snb.2019.01.113]
[149]
Hou, L.; Zhang, X.; Kong, M.; Jiang, G.; Sun, Y.; Mo, W.; Lin, T.; Ye, F.; Zhao, S. A competitive immunoassay for electrochemical impedimetric determination of chlorpyrifos using a nanogold-modified glassy carbon electrode based on enzymatic biocatalytic precipitation. Mikrochim. Acta, 2020, 187(4), 204.
[http://dx.doi.org/10.1007/s00604-020-4175-1] [PMID: 32146610]
[150]
Zare, A.R.; Ensafi, A.A.; Rezaei, B. An impedimetric biosensor based on poly(l-lysine)-decorated multiwall carbon nanotubes for the determination of diazinon in water and fruits. J. Indian Chem. Soc., 2019, 16(12), 2777-2785.
[http://dx.doi.org/10.1007/s13738-019-01741-z]
[151]
Malvano, F.; Albanese, D.; Pilloton, R.; Di Matteo, M.; Crescitelli, A. A new label-free impedimetric affinity sensor based on cholinesterases for detection of organophosphorous and carbamic pesticides in food samples: Impedimetric versus amperometric detection. Food Bioprocess Technol., 2017, 10(10), 1834-1843.
[http://dx.doi.org/10.1007/s11947-017-1955-7]
[152]
Khairy, M.; Ayoub, H.A.; Banks, C.E. Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem., 2018, 255, 104-111.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.004] [PMID: 29571455]
[153]
Hernandez-Vargas, G.; Sosa-Hernández, J.; Saldarriaga-Hernandez, S.; Villalba-Rodríguez, A.; Parra-Saldivar, R.; Iqbal, H. Electrochemical biosensors: A solution to pollution detection with reference to environmental contaminants. Biosensors, 2018, 8(2), 29.
[http://dx.doi.org/10.3390/bios8020029] [PMID: 29587374]
[154]
Xu, G.; Huo, D.; Hou, C.; Zhao, Y.; Bao, J.; Yang, M.; Fa, H. A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta, 2018, 178, 1046-1052.
[http://dx.doi.org/10.1016/j.talanta.2017.08.086] [PMID: 29136795]
[155]
Hua, Q.T.; Ruecha, N.; Hiruta, Y.; Citterio, D. Disposable electrochemical biosensor based on surface-modified screen-printed electrodes for organophosphorus pesticide analysis. Anal. Methods, 2019, 11(27), 3439-3445.
[http://dx.doi.org/10.1039/C9AY00852G]
[156]
Guo, Y.; Sun, X.; Liu, X.; Sun, X.; Zhao, G.; Chen, D.; Wang, X. A miniaturized portable instrument for rapid determination pesticides residues in vegetables and fruits. IEEE Sens. J., 2015, 15(7), 4046-4052.
[http://dx.doi.org/10.1109/JSEN.2015.2410532]
[157]
Mahmoudi, E.; Fakhri, H.; Hajian, A.; Afkhami, A.; Bagheri, H. High-performance electrochemical enzyme sensor for organophosphate pesticide detection using modified metal-organic framework sensing platforms. Bioelectrochemistry, 2019, 130, 107348.
[http://dx.doi.org/10.1016/j.bioelechem.2019.107348] [PMID: 31437810]
[158]
He, L.; Cui, B.; Liu, J.; Song, Y.; Wang, M.; Peng, D.; Zhang, Z. Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion. Sens. Actuators B Chem., 2018, 258, 813-821.
[http://dx.doi.org/10.1016/j.snb.2017.11.161]
[159]
Itkes, M.P.M.; de Oliveira, G.G.; Silva, T.A.; Fatibello-Filho, O.; Janegitz, B.C. Voltammetric sensing of fenitrothion in natural water and orange juice samples using a single-walled carbon nanohorns and zein modified sensor. J. Electroanal. Chem., 2019, 840, 21-26.
[http://dx.doi.org/10.1016/j.jelechem.2019.03.055]
[160]
Pajooheshpour, N.; Rezaei, M.; Hajian, A.; Afkhami, A.; Sillanpää, M.; Arduini, F.; Bagheri, H. Protein templated Au-Pt nanoclusters-graphene nanoribbons as a high performance sensing layer for the electrochemical determination of diazinon. Sens. Actuators B Chem., 2018, 275, 180-189.
[http://dx.doi.org/10.1016/j.snb.2018.08.014]
[161]
Kumar, T.H.V.; Sundramoorthy, A.K. Electrochemical biosensor for methyl parathion based on single-walled carbon nanotube/glutaraldehyde crosslinked acetylcholinesterase-wrapped bovine serum albumin nanocomposites. Anal. Chim. Acta, 2019, 1074, 131-141.
[http://dx.doi.org/10.1016/j.aca.2019.05.011] [PMID: 31159933]
[162]
Nagabooshanam, S.; Roy, S.; Mathur, A.; Mukherjee, I.; Krishnamurthy, S.; Bharadwaj, L.M. Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things. Sci. Rep., 2019, 9(1), 19862.
[http://dx.doi.org/10.1038/s41598-019-56510-y] [PMID: 31882767]
[163]
Tunesi, M.M.; Kalwar, N.; Abbas, M.W.; Karakus, S.; Soomro, R.A.; Kilislioglu, A.; Abro, M.I.; Hallam, K.R. Functionalised CuO nanostructures for the detection of organophosphorus pesticides: A non-enzymatic inhibition approach coupled with nano-scale electrode engineering to improve electrode sensitivity. Sens. Actuators B Chem., 2018, 260, 480-489.
[http://dx.doi.org/10.1016/j.snb.2018.01.084]
[164]
Wang, Z.; Ma, B.; Shen, C.; Cheong, L.Z. Direct, selective and ultrasensitive electrochemical biosensing of methyl parathion in vegetables using Burkholderia cepacia lipase@MOF nanofibers-based biosensor. Talanta, 2019, 197, 356-362.
[http://dx.doi.org/10.1016/j.talanta.2019.01.052] [PMID: 30771947]
[165]
Thangarasu, R.; Victor, V.D.; Alagumuthu, M. MnO2/PANI/rGO–A modified carbon electrode based electrochemical sensor to detect organophosphate pesticide in real food samples. Anal. Bioanal. Electrochem., 2019, 11(4), 427-447.
[166]
Chauhan, N.; Pundir, C.S. An amperometric acetylcholinesterase sensor based on Fe3O4 nanoparticle/multi-walled carbon nanotube-modified ITO-coated glass plate for the detection of pesticides. Electrochim. Acta, 2012, 67, 79-86.
[http://dx.doi.org/10.1016/j.electacta.2012.02.012]
[167]
Alves, M.F.; Corrêa, R.A.M.S.; Da Cruz, F.S.; Franco, D.L.; Ferreira, L.F. Electrochemical enzymatic fenitrothion sensor based on a tyrosinase/poly(2-hydroxybenzamide)-modified graphite electrode. Anal. Biochem., 2018, 553, 15-23.
[http://dx.doi.org/10.1016/j.ab.2018.05.014] [PMID: 29777681]
[168]
Sgobbi, L.F.; Machado, S.A.S. Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosens. Bioelectron., 2018, 100, 290-297.
[http://dx.doi.org/10.1016/j.bios.2017.09.019] [PMID: 28942211]
[169]
Wei, M.; Feng, S. Amperometric determination of organophosphate pesticides using a acetylcholinesterase based biosensor made from nitrogen-doped porous carbon deposited on a boron-doped diamond electrode. Mikrochim. Acta, 2017, 184(9), 3461-3468.
[http://dx.doi.org/10.1007/s00604-017-2380-3]
[170]
Arduini, F.; Cinti, S.; Caratelli, V.; Amendola, L.; Palleschi, G.; Moscone, D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron., 2019, 126, 346-354.
[http://dx.doi.org/10.1016/j.bios.2018.10.014] [PMID: 30466052]
[171]
Tang, W.; Yang, J.; Wang, F.; Wang, J.; Li, Z. Thiocholine-triggered reaction in personal glucose meters for portable quantitative detection of organophosphorus pesticide. Anal. Chim. Acta, 2019, 1060, 97-102.
[http://dx.doi.org/10.1016/j.aca.2019.01.051] [PMID: 30902336]
[172]
Zhao, F.; He, J.; Li, X.; Bai, Y.; Ying, Y.; Ping, J. Smart plant-wearable biosensor for in-situ pesticide analysis. Biosens. Bioelectron., 2020, 170, 112636.
[http://dx.doi.org/10.1016/j.bios.2020.112636] [PMID: 33017772]
[173]
Khalifa, M.E.; Abdallah, A.B. Molecular imprinted polymer based sensor for recognition and determination of profenofos organophosphorous insecticide. Biosens. Bioelectron. X, 2019, 1, 100027.
[http://dx.doi.org/10.1016/j.biosx.2019.100027]
[174]
Okumura, L.L.; Saczk, A.A.; Oliveira, M.F.; Fulgêncio, A.C.C.; Torrezani, L.; Gomes, P.E.N.; Peixoto, R.M. Electrochemical feasibility study of methyl parathion determination on graphite-modified basal plane pyrolytic graphite electrode. J. Braz. Chem. Soc., 2011, 22(4), 652-659.
[http://dx.doi.org/10.1590/S0103-50532011000400007]
[175]
Velusamy, V.; Palanisamy, S.; Chen, S.W.; Balu, S.; Yang, T.C.K.; Banks, C.E. Novel electrochemical synthesis of cellulose microfiber entrapped reduced graphene oxide: A sensitive electrochemical assay for detection of fenitrothion organophosphorus pesticide. Talanta, 2019, 192, 471-477.
[http://dx.doi.org/10.1016/j.talanta.2018.09.055] [PMID: 30348420]
[176]
Wu, J.; Yang, Q.; Li, Q.; Li, H.; Li, F. Two-dimensional MnO2 nanozyme-mediated homogeneous electrochemical detection of organophosphate pesticides without the interference of H2O2 and color. Anal. Chem., 2021, 93(8), 4084-4091.
[http://dx.doi.org/10.1021/acs.analchem.0c05257] [PMID: 33588528]
[177]
Song, B.; Cao, W.; Wang, Y. A methyl parathion electrochemical sensor based on Nano-TiO2, graphene composite film modified electrode. Fuller. Nanotub. Carbon Nanostruct., 2016, 24(7), 435-440.
[http://dx.doi.org/10.1080/1536383X.2016.1174696]
[178]
Jangid, K.; Sahu, R.P.; Pandey, R.; Chen, R.; Zhitomirsky, I.; Puri, I.K. Multiwalled carbon nanotubes coated with nitrogen–sulfur co-doped activated carbon for detecting fenitrothion. ACS Appl. Nano Mater., 2021, 4(5), 4781-4789.
[http://dx.doi.org/10.1021/acsanm.1c00376]
[179]
Zhang, J.; Hu, H.; Wang, P.; Zhang, C.; Wu, M.; Yang, L. A stable biosensor for organophosphorus pesticide detection based on chitosan modified graphene. Biotechnol. Appl. Biochem., 2022, 69(2), 567-575.
[http://dx.doi.org/10.1002/bab.2133] [PMID: 33660328]
[180]
Fu, X.C.; Zhang, C.; Li, X.H.; Zhang, J.; Wei, G. Mono-6-thio-β-cyclodextrin-functionalized AuNP/two-dimensional TiO2 nanosheet nanocomposite for the electrochemical determination of trace methyl parathion in water. Anal. Methods, 2019, 11(37), 4751-4760.
[http://dx.doi.org/10.1039/C9AY01338E]
[181]
Thet Tun, W.S.; Saenchoopa, A.; Daduang, S.; Daduang, J.; Kulchat, S.; Patramanon, R. Electrochemical biosensor based on cellulose nanofibers/graphene oxide and acetylcholinesterase for the detection of chlorpyrifos pesticide in water and fruit juice. RSC Advances, 2023, 13(14), 9603-9614.
[http://dx.doi.org/10.1039/D3RA00512G] [PMID: 36968027]
[182]
Shams, N.; Lim, H.N.; Hajian, R.; Yusof, N.A.; Abdullah, J.; Sulaiman, Y.; Ibrahim, I.; Huang, N.M. Electrochemical sensor based on gold nanoparticles/ethylenediamine-reduced graphene oxide for trace determination of fenitrothion in water. RSC Advances, 2016, 6(92), 89430-89439.
[http://dx.doi.org/10.1039/C6RA13384C]
[183]
Khadem, M.; Faridbod, F.; Norouzi, P.; Rahimi Foroushani, A.; Ganjali, M.R.; Shahtaheri, S.J.; Yarahmadi, R. Modification of carbon paste electrode based on molecularly imprinted polymer for electrochemical determination of diazinon in biological and environmental samples. Electroanalysis, 2017, 29(3), 708-715.
[http://dx.doi.org/10.1002/elan.201600293]
[184]
Tan, X.; Liu, Y.; Zhang, T.; Luo, S.; Liu, X.; Tian, H.; Yang, Y.; Chen, C. Ultrasensitive electrochemical detection of methyl parathion pesticide based on cationic water-soluble pillar[5]arene and reduced graphene nanocomposite. RSC Advances, 2019, 9(1), 345-353.
[http://dx.doi.org/10.1039/C8RA08555B] [PMID: 35521608]
[185]
Galeano-Díaz, T.; Guiberteau-Cabanillas, A.; Espinosa-Mansilla, A.; López-Soto, M.D. Adsorptive stripping square wave voltammetry (Ad-SSWV) accomplished with second-order multivariate calibration. Anal. Chim. Acta, 2008, 618(2), 131-139.
[http://dx.doi.org/10.1016/j.aca.2008.04.058] [PMID: 18513534]
[186]
Majidi, M.R.; Asadpour-Zeynali, K.; Nazarpur, M. Determination of fenitrothion in river water and commercial formulations by adsorptive stripping voltammetry with a carbon ceramic electrode. J. Aoac intern., 2009, 9, 548-554.
[http://dx.doi.org/10.1093/jaoac/92.2.548]
[187]
Li, H.; Wang, Z.; Wu, B.; Liu, X.; Xue, Z.; Lu, X. Rapid and sensitive detection of methyl-parathion pesticide with an electropolymerized, molecularly imprinted polymer capacitive sensor. Electrochim. Acta, 2012, 62, 319-326.
[http://dx.doi.org/10.1016/j.electacta.2011.12.035]
[188]
Amare, M.; Abicho, S.; Admassie, S. Determination of fenitrothion in water using a voltammetric sensor based on a polymer-modified glassy carbon electrode. J. Aoac Intern., 2014, 97, 580-585.
[http://dx.doi.org/10.5740/jaoacint.12-124]
[189]
Raymundo-Pereira, P.A.; Gomes, N.O.; Shimizu, F.M.; Machado, S.A.S.; Oliveira, O.N., Jr. Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors. Chem. Eng. J., 2021, 408, 127279.
[http://dx.doi.org/10.1016/j.cej.2020.127279]
[190]
Aghoutane, Y.; Diouf, A.; Österlund, L.; Bouchikhi, B.; El Bari, N. Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry, 2020, 132, 107404.
[http://dx.doi.org/10.1016/j.bioelechem.2019.107404] [PMID: 31911357]
[191]
Zeng, Y.; Yu, D.; Yu, Y.; Zhou, T.; Shi, G. Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes–poly(acrylamide) nanocomposite film modified electrode. J. Hazard. Mater., 2012, 217-218, 315-322.
[http://dx.doi.org/10.1016/j.jhazmat.2012.03.033] [PMID: 22494904]
[192]
Ma, H.; Wang, L.; Liu, Z.; Guo, Y. Ionic liquid–graphene hybrid nanosheets-based electrochemical sensor for sensitive detection of methyl parathion. Int. J. Environ. Anal. Chem., 2016, 96(2), 161-172.
[http://dx.doi.org/10.1080/03067319.2015.1114111]
[193]
Pedrosa, V.A.; Miwa, D.; Machado, S.A.S.; Avaca, L.A. On the utilization of boron doped diamond electrode as a sensor for parathion and as an anode for electrochemical combustion of parathion. Electroanalysis, 2006, 18(16), 1590-1597.
[http://dx.doi.org/10.1002/elan.200603561]
[194]
Mersal, G.A.M.; El-Sheshtawy, H.S.; Amin, M.A.; Mostafa, N.Y.; Mezni, A.; Alharthi, S.; Boukherroub, R.; Ibrahim, M.M. Simultaneous hydrolysis and detection of organophosphate by benzimidazole containing ligand-based zinc(II) complexes. Crystals, 2021, 11(6), 714.
[http://dx.doi.org/10.3390/cryst11060714]
[195]
Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev., 2022, 453, 214305.
[http://dx.doi.org/10.1016/j.ccr.2021.214305]
[196]
Sivakumar, R.; Lee, N.Y. Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water. Chemosphere, 2021, 275, 130096.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130096] [PMID: 33677270]
[197]
Marx, Í.M.G. Emerging trends of electrochemical sensors in food analysis. Electrochem, 2023, 4(1), 42-46.
[http://dx.doi.org/10.3390/electrochem4010004]
[198]
Gumber, K. Naked eye sensors for on-site pesticide detection: A review. J. Plant Prot. Res., 2023, 63, 173-184.
[http://dx.doi.org/10.24425/jppr.2023.145752]
[199]
Umapathi, R.; Rani, G.M.; Kim, E.; Park, S.Y.; Cho, Y.; Huh, Y.S. Sowing kernels for food safety: Importance of rapid on‐site detction of pesticide residues in agricultural foods. Food Front., 2022, 3(4), 666-676.
[http://dx.doi.org/10.1002/fft2.166]
[200]
Peng, S.; Wang, A.; Lian, Y.; Zhang, X.; Zeng, B.; Chen, Q.; Yang, H.; Li, J.; Li, L.; Dan, J.; Liao, J.; Zhou, S. Smartphone-based molecularly imprinted sensors for rapid detection of thiamethoxam residues and applications. PLoS One, 2021, 16(11), e0258508.
[http://dx.doi.org/10.1371/journal.pone.0258508] [PMID: 34748559]
[201]
Umapathi, R.; Ghoreishian, S.M.; Rani, G.M.; Cho, Y.; Huh, Y.S. Review—emerging trends in the development of electrochemical devices for the on-site detection of food contaminants. ECS Sensors Plus, 2022, 1(4), 1-5.

© 2024 Bentham Science Publishers | Privacy Policy