Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Advancement and Obstacles in Improving the Stability of Nanocarriers for Precision Drug Delivery in the Field of Nanomedicine

Author(s): Kalpesh Mahajan and Sankha Bhattacharya*

Volume 24, Issue 8, 2024

Published on: 22 February, 2024

Page: [686 - 721] Pages: 36

DOI: 10.2174/0115680266287101240214071718

Price: $65

conference banner
Abstract

Nanocarriers have emerged as a promising class of nanoscale materials in the fields of drug delivery and biomedical applications. Their unique properties, such as high surface area- tovolume ratios and enhanced permeability and retention effects, enable targeted delivery of therapeutic agents to specific tissues or cells. However, the inherent instability of nanocarriers poses significant challenges to their successful application. This review highlights the importance of nanocarrier stability in biomedical applications and its impact on biocompatibility, targeted drug delivery, long shelf life, drug delivery performance, therapeutic efficacy, reduced side effects, prolonged circulation time, and targeted delivery. Enhancing nanocarrier stability requires careful design, engineering, and optimization of physical and chemical parameters. Various strategies and cutting-edge techniques employed to improve nanocarrier stability are explored, with a focus on their applications in drug delivery. By understanding the advances and challenges in nanocarrier stability, this review aims to contribute to the development and implementation of nanocarrier- based therapies in clinical settings, advancing the field of nanomedicine.

Keywords: Nanocarriers, Drug delivery, Nanomedicine, Nanocarrier stability, Targeted drug delivery, Nanoscale materials.

Graphical Abstract
[1]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[2]
Joseph, T.; Kar Mahapatra, D.; Esmaeili, A.; Piszczyk, Ł.; Hasanin, M.; Kattali, M.; Haponiuk, J.; Thomas, S. Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials, 2023, 13(3), 574.
[http://dx.doi.org/10.3390/nano13030574] [PMID: 36770535]
[3]
Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[4]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[5]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[6]
Su, S.; M Kang, P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics, 2020, 12(9), 1-27.
[http://dx.doi.org/10.3390/pharmaceutics12090837] [PMID: 32882875]
[7]
Chowdhury, A.; Kunjiappan, S.; Panneerselvam, T.; Somasundaram, B.; Bhattacharjee, C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int. Nano Lett., 2017, 7(2), 91-122.
[http://dx.doi.org/10.1007/s40089-017-0208-0]
[8]
Younis, N.K.; Ghoubaira, J.A.; Bassil, E.P.; Tantawi, H.N.; Eid, A.H. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine, 2021, 36, 102433.
[http://dx.doi.org/10.1016/j.nano.2021.102433] [PMID: 34171467]
[9]
Dang, B.T.N.; Kwon, T.K.; Lee, S.; Jeong, J.H.; Yook, S. Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy. J. Control. Release, 2024, 365, 773-800.
[http://dx.doi.org/10.1016/j.jconrel.2023.12.007] [PMID: 38081328]
[10]
Gurunathan, S.; Thangaraj, P.; Wang, L.; Cao, Q.; Kim, J.H. Nanovaccines: An effective therapeutic approach for cancer therapy. Biomed. Pharmacother., 2024, 170, 115992.
[http://dx.doi.org/10.1016/j.biopha.2023.115992] [PMID: 38070247]
[11]
Younis, N.K.; Roumieh, R.; Bassil, E.P.; Ghoubaira, J.A.; Kobeissy, F.; Eid, A.H. Nanoparticles: Attractive tools to treat colorectal cancer. Semin Cancer Biol, 2022, 86(Pt 2), 1-13.
[http://dx.doi.org/10.1016/j.semcancer.2022.08.006]
[12]
Shi, L.X.; Liu, X.R.; Zhou, L.Y.; Zhu, Z.Q.; Yuan, Q.; Zou, T. Nanocarriers for gene delivery to the cardiovascular system. Biomater. Sci., 2023, 11(24), 7709-7729.
[http://dx.doi.org/10.1039/D3BM01275A] [PMID: 37877418]
[13]
Afzal, O.; Altamimi, A.S.A.; Nadeem, M.S.; Alzarea, S.I.; Almalki, W.H.; Tariq, A.; Mubeen, B.; Murtaza, B.N.; Iftikhar, S.; Riaz, N.; Kazmi, I. Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials, 2022, 12(24), 4494.
[http://dx.doi.org/10.3390/nano12244494] [PMID: 36558344]
[14]
Ahlawat, J.; Guillama Barroso, G.; Masoudi Asil, S.; Alvarado, M.; Armendariz, I.; Bernal, J.; Carabaza, X.; Chavez, S.; Cruz, P.; Escalante, V.; Estorga, S.; Fernandez, D.; Lozano, C.; Marrufo, M.; Ahmad, N.; Negrete, S.; Olvera, K.; Parada, X.; Portillo, B.; Ramirez, A.; Ramos, R.; Rodriguez, V.; Rojas, P.; Romero, J.; Suarez, D.; Urueta, G.; Viel, S.; Narayan, M. Nanocarriers as potential drug delivery candidates for overcoming the blood–brain barrier: Challenges and possibilities. ACS Omega, 2020, 5(22), 12583-12595.
[http://dx.doi.org/10.1021/acsomega.0c01592] [PMID: 32548442]
[15]
Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics, 2022, 14(4), 883.
[http://dx.doi.org/10.3390/pharmaceutics14040883] [PMID: 35456717]
[16]
Mazayen, Z.M.; Ghoneim, A.M.; Elbatanony, R.S.; Basalious, E.B.; Bendas, E.R. Pharmaceutical nanotechnology: From the bench to the market. FJPS, 2022, 8(1), 12.
[http://dx.doi.org/10.1186/s43094-022-00400-0] [PMID: 35071609]
[17]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[18]
Adabi, M.; Naghibzadeh, M.; Adabi, M.; Zarrinfard, M.A.; Esnaashari, S.S.; Seifalian, A.M.; Faridi-Majidi, R.; Aiyelabegan, T.H.; Ghanbari, H. Biocompatibility and nanostructured materials: Applications in nanomedicine. Artif. Cells Nanomed. Biotechnol., 2017, 45(4), 833-842.
[http://dx.doi.org/10.1080/21691401.2016.1178134] [PMID: 27247194]
[19]
Guerrini, L.; Alvarez-Puebla, R.; Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials, 2018, 11(7), 1154.
[http://dx.doi.org/10.3390/ma11071154] [PMID: 29986436]
[20]
Gelperina, S.; Kisich, K.; Iseman, M.D.; Heifets, L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med., 2005, 172(12), 1487-1490.
[http://dx.doi.org/10.1164/rccm.200504-613PP] [PMID: 16151040]
[21]
Wu, L.; Zhang, J.; Watanabe, W. Physical and chemical stability of drug nanoparticles. Adv. Drug Deliv. Rev., 2011, 63(6), 456-469.
[http://dx.doi.org/10.1016/j.addr.2011.02.001] [PMID: 21315781]
[22]
Yerebasan, U.; Gul, B.B. The importance of nanotechnology and drug carrier systems in pharmacology. GSCBPS, 2020, 10(02), 014-023.
[http://dx.doi.org/10.30574/gscbps.2020.10.2.0018]
[23]
Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers, 2023, 15(7), 1596.
[http://dx.doi.org/10.3390/polym15071596] [PMID: 37050210]
[24]
Yoo, J.; Chambers, E.; Mitragotri, S. Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des, 2010, 16(21), 2298-2307.
[25]
Solaro, R.; Chiellini, F.; Battisti, A. Targeted delivery of protein drugs by nanocarriers. Materials, 2010, 3(3), 1928-1980.
[http://dx.doi.org/10.3390/ma3031928]
[26]
Patidar, A.; Thakur, D.S.; Kumar, P.; Verma, J. A review on novel lipid based nanocarriers. Int. J. Pharm. Pharm. Sci., 2010, 2(4), 30-35.
[27]
Puri, A.; Loomis, K.; Smith, B.; Lee, J.H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(6), 523-580.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[28]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials, 2019, 9(4), 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[29]
Wang, D.Y.; van der Mei, H.C.; Ren, Y.; Busscher, H.J.; Shi, L. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front Chem., 2020, 7(1), 872.
[http://dx.doi.org/10.3389/fchem.2019.00872] [PMID: 31998680]
[30]
Witika, B.A.; Poka, M.S.; Demana, P.H.; Matafwali, S.K.; Melamane, S.; Malungelo Khamanga, S.M.; Makoni, P.A. Lipid-based nanocarriers for neurological disorders: A review of the state-of-the-art and therapeutic success to date. Pharmaceutics, 2022, 14(4), 836.
[http://dx.doi.org/10.3390/pharmaceutics14040836] [PMID: 35456669]
[31]
Xue, H.; Guo, P.; Wen, W.C.; Wong, H. Lipid-Based Nanocarriers for RNA Delivery. Curr. Pharm. Des., 2015, 21(22), 3140-3147.
[http://dx.doi.org/10.2174/1381612821666150531164540] [PMID: 26027572]
[32]
Iyisan, B.; Landfester, K. Polymeric nanocarriers; Springer International Publishing, 2019.
[http://dx.doi.org/10.1007/978-3-030-12461-8_3]
[33]
Tewari, A.K.; Upadhyay, S.C.; Kumar, M.; Pathak, K.; Kaushik, D.; Verma, R.; Bhatt, S.; Massoud, E.E.S.; Rahman, M.H.; Cavalu, S. Insights on development aspects of polymeric nanocarriers: The translation from bench to clinic. Polymers, 2022, 14(17), 3545.
[http://dx.doi.org/10.3390/polym14173545] [PMID: 36080620]
[34]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel), 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[35]
Shi, Z.; Zhou, Y.; Fan, T.; Lin, Y.; Zhang, H.; Mei, L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart. Materi. Med., 2020, 1, 32-47.
[http://dx.doi.org/10.1016/j.smaim.2020.05.002]
[36]
Lin, G.; Mi, P.; Chu, C.; Zhang, J.; Liu, G. Inorganic nanocarriers overcoming multidrug resistance for cancer theranostics. Adv. Sci., 2016, 3(11), 1600134.
[http://dx.doi.org/10.1002/advs.201600134] [PMID: 27980988]
[37]
Liang, R.; Wei, M.; Evans, D.G.; Duan, X. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem. Commun., 2014, 50(91), 14071-14081.
[http://dx.doi.org/10.1039/C4CC03118K] [PMID: 24955443]
[38]
Li, Z.; Ye, E.; David, R.; Lakshminarayanan, R.; Loh, X.J. Recent advances of using hybrid nanocarriers in remotely controlled therapeutic delivery. Small, 2016, 12(35), 4782-4806.
[http://dx.doi.org/10.1002/smll.201601129] [PMID: 27482950]
[39]
Sivadasan, D.; Sultan, M.H.; Madkhali, O.; Almoshari, Y.; Thangavel, N. Polymeric lipid hybrid nanoparticles (Plns) as emerging drug delivery platform—a comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics, 2021, 13(8), 1291.
[http://dx.doi.org/10.3390/pharmaceutics13081291] [PMID: 34452251]
[40]
Hood, M.; Mari, M.; Muñoz-Espí, R. Synthetic strategies in the preparation of polymer/inorganic hybrid nanoparticles. Materials (Basel), 2014, 7(5), 4057-4087.
[http://dx.doi.org/10.3390/ma7054057] [PMID: 28788665]
[41]
Kashapov, R.; Ibragimova, A.; Pavlov, R.; Gabdrakhmanov, D.; Kashapova, N.; Burilova, E.; Zakharova, L.; Sinyashin, O. Nanocarriers for biomedicine: From lipid formulations to inorganic and hybrid nanoparticles. Int. J. Mol. Sci., 2021, 22(13), 7055.
[http://dx.doi.org/10.3390/ijms22137055] [PMID: 34209023]
[42]
Vivero-Escoto, J.L.; Huang, Y.T. Inorganic-organic hybrid nanomaterials for therapeutic and diagnostic imaging applications. Int. J. Mol. Sci., 2011, 12(6), 3888-3927.
[http://dx.doi.org/10.3390/ijms12063888] [PMID: 21747714]
[43]
Majumder, J.; Taratula, O.; Minko, T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev., 2019, 144, 57-77.
[http://dx.doi.org/10.1016/j.addr.2019.07.010] [PMID: 31400350]
[44]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Davarani, H.F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[45]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - A review (Part 2). Trop. J. Pharm. Res., 2013, 12(2), 265-273.
[http://dx.doi.org/10.4314/tjpr.v12i2.20]
[46]
Zhang, W.; Taheri-Ledari, R.; Ganjali, F.; Mirmohammadi, S.S.; Qazi, F.S.; Saeidirad, M.; KashtiAray, A.; Zarei-Shokat, S.; Tian, Y.; Maleki, A. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: A review. RSC Advances, 2022, 13(1), 80-114.
[http://dx.doi.org/10.1039/D2RA06888E] [PMID: 36605676]
[47]
Wang, N.; Cheng, X.; Li, N.; Wang, H.; Chen, H. Nanocarriers and Their Loading Strategies. Adv. Healthc. Mater., 2019, 8(6), 1801002.
[http://dx.doi.org/10.1002/adhm.201801002] [PMID: 30450761]
[48]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[49]
Rapalli, V.K.; Khosa, A.; Singhvi, G.; Girdhar, V.; Jain, R.; Dubey, S.K. Application of QbD Principles in Nanocarrier-Based Drug Delivery Systems; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-815799-2.00014-9]
[50]
Hotze, E.M.; Phenrat, T.; Lowry, G.V. Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. J. Environ. Qual., 2010, 39(6), 1909-1924.
[http://dx.doi.org/10.2134/jeq2009.0462] [PMID: 21284288]
[51]
Fernando, I.; Zhou, Y. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere, 2019, 216, 297-305.
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.122] [PMID: 30384298]
[52]
Musakhanian, J.; Rodier, J.D.; Dave, M. Oxidative stability in lipid formulations: A review of the mechanisms, drivers, and inhibitors of oxidation. AAPS PharmSciTech, 2022, 23(5), 151.
[http://dx.doi.org/10.1208/s12249-022-02282-0] [PMID: 35596043]
[53]
Caballero-George, C.; Marin; Briceño Critical evaluation of biodegradable polymers used in nanodrugs. Int. J. Nanomedicine, 2013, 8, 3071-3090.
[http://dx.doi.org/10.2147/IJN.S47186] [PMID: 23990720]
[54]
Liu, M.; Wen, J.; Sharma, M. Solid lipid nanoparticles for topical drug delivery: Mechanisms, dosage form perspectives, and translational status. Curr. Pharm. Des., 2020, 26(27), 3203-3217.
[http://dx.doi.org/10.2174/1381612826666200526145706] [PMID: 32452322]
[55]
Schöttler, S.; Landfester, K.; Mailänder, V. Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew. Chem. Int. Ed., 2016, 55(31), 8806-8815.
[http://dx.doi.org/10.1002/anie.201602233] [PMID: 27303916]
[56]
Akhter, M.H.; Khalilullah, H.; Gupta, M.; Alfaleh, M.A.; Alhakamy, N.A.; Riadi, Y.; Md, S. Impact of protein corona on the biological identity of nanomedicine: Understanding the fate of nanomaterials in the biological milieu. Biomedicines, 2021, 9(10), 1496.
[http://dx.doi.org/10.3390/biomedicines9101496] [PMID: 34680613]
[57]
Wang, Z.; Brenner, J.S. The Nano-War Against Complement Proteins. AAPS J., 2021, 23(5), 105.
[http://dx.doi.org/10.1208/s12248-021-00630-9] [PMID: 34505951]
[58]
Nelemans, L.C.; Gurevich, L. Drug delivery with polymeric nanocarriers-cellular uptake mechanisms. Materials, 2020, 13(2), 366.
[http://dx.doi.org/10.3390/ma13020366] [PMID: 31941006]
[59]
Zolnik, B.S.; González-Fernández, Á.; Sadrieh, N.; Dobrovolskaia, M.A. Nanoparticles and the immune system. Endocrinology, 2010, 151(2), 458-465.
[http://dx.doi.org/10.1210/en.2009-1082] [PMID: 20016026]
[60]
Olbrich, C.; Mu, R.H.; Berlin, D. Enzymatic degradation of SLN—effect of surfactant and.pdf. Int. J. Pharm., 1999, 180, 31-39.
[http://dx.doi.org/10.1016/S0378-5173(98)00404-9] [PMID: 10089289]
[61]
Reinholz, J.; Landfester, K.; Mailänder, V. The challenges of oral drug delivery via nanocarriers. Drug Deliv., 2018, 25(1), 1694-1705.
[http://dx.doi.org/10.1080/10717544.2018.1501119] [PMID: 30394120]
[62]
Hu, Q.; Katti, P.S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6(21), 12273-12286.
[http://dx.doi.org/10.1039/C4NR04249B] [PMID: 25251024]
[63]
Brar, S.K.; Verma, M. Measurement of nanoparticles by light-scattering techniques. Trends Analyt. Chem., 2011, 30(1), 4-17.
[http://dx.doi.org/10.1016/j.trac.2010.08.008]
[64]
Gross, J.; Sayle, S.; Karow, A.R.; Bakowsky, U.; Garidel, P. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: Influence of experimental and data evaluation parameters. Eur. J. Pharm. Biopharm., 2016, 104, 30-41.
[http://dx.doi.org/10.1016/j.ejpb.2016.04.013] [PMID: 27108267]
[65]
Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J Nanopart Res, 2023, 25, 43.
[http://dx.doi.org/10.1007/s11051-023-05690-w]
[66]
Uchechi, O.; Ogbonna, J.D.N.; Attama, A.A. Nanoparticles for dermal and transdermal drug delivery. In: Application of Nanotechnology in Drug Delivery; IntechOpen, 2014.
[http://dx.doi.org/10.5772/58672]
[67]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - A review (Part 1). Trop. J. Pharm. Res., 2013, 12(2), 255-264.
[http://dx.doi.org/10.4314/tjpr.v12i2.19]
[68]
Falsafi, S.R.; Rostamabadi, H.; Assadpour, E.; Jafari, S.M. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv. Colloid Interface Sci., 2020, 280, 102166.
[http://dx.doi.org/10.1016/j.cis.2020.102166] [PMID: 32387755]
[69]
Malatesta, M. Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures. Int. J. Mol. Sci., 2021, 22(23), 12789.
[http://dx.doi.org/10.3390/ijms222312789] [PMID: 34884592]
[70]
Sun, C.; Lux, S.; Müller, E.; Meffert, M.; Gerthsen, D. Versatile application of a modern scanning electron microscope for materials characterization. J. Mater. Sci., 2020, 55(28), 13824-13835.
[http://dx.doi.org/10.1007/s10853-020-04970-3]
[71]
Ridolfo, R.; Tavakoli, S.; Junnuthula, V.; Williams, D.S.; Urtti, A.; van Hest, J.C.M. Exploring the impact of morphology on the properties of biodegradable nanoparticles and their diffusion in complex biological medium. Biomacromolecules, 2021, 22(1), 126-133.
[http://dx.doi.org/10.1021/acs.biomac.0c00726] [PMID: 32510218]
[72]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[73]
Palanikumar, L.; Choi, E.S.; Oh, J.Y.; Park, S.A.; Choi, H.; Kim, K.; Kim, C.; Ryu, J.H. Importance of Encapsulation Stability of Nanocarriers with High Drug Loading Capacity for Increasing in vivo Therapeutic Efficacy. Biomacromolecules, 2018, 19(7), 3030-3039.
[http://dx.doi.org/10.1021/acs.biomac.8b00589] [PMID: 29883544]
[74]
Shah, A.; Aftab, S.; Nisar, J.; Ashiq, M.N.; Iftikhar, F.J. Nanocarriers for targeted drug delivery. J. Drug Deliv. Sci. Technol., 2021, 62(January), 102426.
[http://dx.doi.org/10.1016/j.jddst.2021.102426]
[75]
Jain, A.K.; Thareja, S. in vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 524-539.
[http://dx.doi.org/10.1080/21691401.2018.1561457] [PMID: 30784319]
[76]
Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug release study of the chitosan-based nanoparticles. Heliyon, 2022, 8(1), e08674.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08674] [PMID: 35028457]
[77]
Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Müller, R.H. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance. Int. J. Pharm., 2011, 414(1-2), 267-275.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.008] [PMID: 21596122]
[78]
Pereira, I.; Ferreira, N.R.; Silva, A.M.; Souto, E.B. Optimization of linalool-loaded solid lipid nanoparticles using experimental factorial department of pharmaceutical technology, faculty of pharmacy, university of coimbra, department of biology and environment, school of life and environmental science. Int. J. Pharm., 2018.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.068] [PMID: 30075252]
[79]
Fortier, C.; Durocher, Y. Surface modification of nonviral nanocarriers for enhanced gene delivery. Nanomedicine, 2014, 9(1), 135-151.
[http://dx.doi.org/10.2217/nnm.13.194]
[80]
Wu, G.; Li, P.; Feng, H.; Zhang, X.; Chu, P.K. Engineering and functionalization of biomaterials via surface modification. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(10), 2024-2042.
[http://dx.doi.org/10.1039/C4TB01934B] [PMID: 32262371]
[81]
Javed, R.; Zia, M.; Naz, S.; Aisida, S.O.; Ain, N.; Ao, Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J. Nanobiotechnology, 2020, 18(1), 172.
[http://dx.doi.org/10.1186/s12951-020-00704-4] [PMID: 33225973]
[82]
Sultana, S.W.A. Stability issues and approaches to stabilised nanoparticles based drug delivery system. J Drug Target, 2020, 28(5), 468-486.
[http://dx.doi.org/10.1080/1061186X.2020.1722137]
[83]
Mohammadi, A.; Danafar, H. Synthesis and characterization of bovine serum albumin-coated copper sulfide nanoparticles as curcumin nanocarriers. Heliyon, 2023, 9(2), e13740.
[http://dx.doi.org/10.1016/j.heliyon.2023.e13740] [PMID: 36852040]
[84]
Luo, Y.; Teng, Z.; Li, Y.; Wang, Q. Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr. Polym., 2015, 122, 221-229.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.084] [PMID: 25817662]
[85]
Campos, J.; Varas-Godoy, M.; Haidar, Z.S. Physicochemical characterization of chitosan-hyaluronan-coated solid lipid nanoparticles for the targeted delivery of paclitaxel: A proof-of-concept study in breast cancer cells. Nanomedicine, 2017, 12(5), 473-490.
[http://dx.doi.org/10.2217/nnm-2016-0371] [PMID: 28181464]
[86]
Battogtokh, G.; Joo, Y.; Abuzar, S.M.; Park, H.; Hwang, S.J. Gelatin coating for the improvement of stability and cell uptake of hydrophobic drug-containing liposomes. Molecules, 2022, 27(3), 1041.
[http://dx.doi.org/10.3390/molecules27031041] [PMID: 35164305]
[87]
Zhou, W.; Liu, W.; Zou, L.; Liu, W.; Liu, C.; Liang, R.; Chen, J. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids Surf. B Biointerfaces, 2014, 117, 330-337.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.036] [PMID: 24681045]
[88]
Yazdi, J.R.; Tafaghodi, M.; Sadri, K.; Mashreghi, M.; Nikpoor, A.R.; Nikoofal-Sahlabadi, S.; Chamani, J.; Vakili, R.; Moosavian, S.A.; Jaafari, M.R. Folate targeted PEGylated liposomes for the oral delivery of insulin: in vitro and in vivo studies. Colloids Surf. B Biointerfaces, 2020, 194(March), 111203.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111203] [PMID: 32585538]
[89]
Mu, D.; Li, J.; Qi, Y.; Sun, X.; Liu, Y.; Shen, S.; Li, Y.; Xu, B.; Zhang, B. Hyaluronic acid-coated polymeric micelles with hydrogen peroxide scavenging to encapsulate statins for alleviating atherosclerosis. J. Nanobiotechnology, 2020, 18(1), 179.
[http://dx.doi.org/10.1186/s12951-020-00744-w] [PMID: 33287831]
[90]
Rahim, S.; Perveen, S.; Ahmed, S.; Shah, M.R.; Malik, M.I. Enhancement in the antibacterial activity of cephalexin by its delivery through star-shaped poly(ε-caprolactone)-block-poly(ethylene oxide) coated silver nanoparticles. R. Soc. Open Sci., 2020, 7(10), 201097.
[http://dx.doi.org/10.1098/rsos.201097] [PMID: 33204468]
[91]
Kaaki, K.; Hervé-Aubert, K.; Chiper, M.; Shkilnyy, A.; Soucé, M.; Benoit, R.; Paillard, A.; Dubois, P.; Saboungi, M.L.; Chourpa, I. Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: relation between coating structure, surface properties, colloidal stability, and cancer cell targeting. Langmuir, 2012, 28(2), 1496-1505.
[http://dx.doi.org/10.1021/la2037845] [PMID: 22172203]
[92]
Kabary, D.M.; Helmy, M.W.; Elkhodairy, K.A.; Fang, J.Y.; Elzoghby, A.O. Hyaluronate/lactoferrin layer-by-layer-coated lipid nanocarriers for targeted co-delivery of rapamycin and berberine to lung carcinoma. Colloids Surf. B Biointerfaces, 2018, 169, 183-194.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.008] [PMID: 29775813]
[93]
Du, Y.; Ren, W.; Li, Y.; Zhang, Q.; Zeng, L.; Chi, C.; Wu, A.; Tian, J. The enhanced chemotherapeutic effects of doxorubicin loaded PEG coated TiO 2 nanocarriers in an orthotopic breast tumor bearing mouse model. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(8), 1518-1528.
[http://dx.doi.org/10.1039/C4TB01781A] [PMID: 32262424]
[94]
Wu, Q.; Gao, H.; Vriesekoop, F.; Liu, Z.; He, J.; Liang, H. Calcium phosphate coated core-shell protein nanocarriers: Robust stability, controlled release and enhanced anticancer activity for curcumin delivery. Mater. Sci. Eng. C, 2020, 115(May), 111094.
[http://dx.doi.org/10.1016/j.msec.2020.111094] [PMID: 32600698]
[95]
Amjadi, S.; Almasi, H.; Hamishehkar, H.; Alizadeh Khaledabad, M.; Lim, L.T. Coating of betanin and carvone Co-loaded nanoliposomes with synthesized cationic inulin: A strategy for enhancing the stability and bioavailability. Food Chemist., 2022, 373, 131403.
[http://dx.doi.org/10.1016/j.foodchem.2021.131403]
[96]
Wang, M.; Zhang, Y.; Fei, Z.; Xie, D.; Zhang, H.; Du, Q.; Jin, P. Hyaluronan oligosaccharides-coated paclitaxel-casein nanoparticles with enhanced stability and antitumor activity. Nutrients, 2022, 14(19), 3888.
[http://dx.doi.org/10.3390/nu14193888] [PMID: 36235540]
[97]
Shao, P.; Wang, P.; Niu, B.; Kang, J. Environmental stress stability of pectin-stabilized resveratrol liposomes with different degree of esterification. Int. J. Biol. Macromol., 2018, 119, 53-59.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.139] [PMID: 30036624]
[98]
AbdElhamid, A.S.; Zayed, D.G.; Helmy, M.W.; Ebrahim, S.M.; Bahey-El-Din, M.; Zein-El-Dein, E.A.; El-Gizawy, S.A.; Elzoghby, A.O. Lactoferrin-tagged quantum dots-based theranostic nanocapsules for combined COX-2 inhibitor/herbal therapy of breast cancer. Nanomedicine, 2018, 13(20), 2637-2656.
[http://dx.doi.org/10.2217/nnm-2018-0196] [PMID: 30338705]
[99]
Aguilera, G.; Berry, C.C.; West, R.M.; Gonzalez-Monterrubio, E.; Angulo-Molina, A.; Arias-Carrión, Ó.; Méndez-Rojas, M.Á. Carboxymethyl cellulose coated magnetic nanoparticles transport across a human lung microvascular endothelial cell model of the blood–brain barrier. Nanoscale Adv., 2019, 1(2), 671-685.
[http://dx.doi.org/10.1039/C8NA00010G] [PMID: 36132237]
[100]
Khaledian, S.; Kahrizi, D.; Moradi, S.; Martinez, F. An experimental and computational study to evaluation of chitosan/gum tragacanth coated-natural lipid-based nanocarriers for sunitinib delivery. J. Mol. Liq., 2021, 334, 116075.
[http://dx.doi.org/10.1016/j.molliq.2021.116075]
[101]
De Pasquale, D.; Marino, A.; Tapeinos, C.; Pucci, C.; Rocchiccioli, S.; Michelucci, E.; Finamore, F.; McDonnell, L.; Scarpellini, A.; Lauciello, S.; Prato, M.; Larrañaga, A.; Drago, F.; Ciofani, G. Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes. Mater. Des., 2020, 192, 108742.
[http://dx.doi.org/10.1016/j.matdes.2020.108742] [PMID: 32394995]
[102]
Zasada, K.; Łukasiewicz-Atanasov, M.; Kłysik, K.; Lewandowska-Łańcucka, J.; Gzyl-Malcher, B.; Puciul-Malinowska, A.; Karewicz, A.; Nowakowska, M. ‘One-component’ ultrathin multilayer films based on poly(vinyl alcohol) as stabilizing coating for phenytoin-loaded liposomes. Colloids Surf. B Biointerfaces, 2015, 135, 133-142.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.033] [PMID: 26253533]
[103]
Yuba, E.; Korenaga, T.; Harada, A. Hydrophilic Hyperbranched Polymer-Coated siRNA/Polyamidoamine Dendron-Bearing Lipid Complexes Preparation for High Colloidal Stability and Efficient RNAi. Bioconjug. Chem., 2021, 32(3), 563-571.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00035] [PMID: 33660999]
[104]
de Oliveira Junior, E.R.; Santos, L.C.R.; Salomão, M.A.; Nascimento, T.L.; de Almeida, R.O.G.; Lião, L.M.; Lima, E.M. Nose-to-brain drug delivery mediated by polymeric nanoparticles: Influence of PEG surface coating. Drug Deliv. Transl. Res., 2020, 10(6), 1688-1699.
[http://dx.doi.org/10.1007/s13346-020-00816-2] [PMID: 32613550]
[105]
Das, D.; Lin, S. Double-coated poly (butylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration. J. Pharm. Sci., 2005, 94(6), 1343-1353.
[http://dx.doi.org/10.1002/jps.20357] [PMID: 15858853]
[106]
Kara, G.; Malekghasemi, S.; Ozpolat, B.; Denkbas, E.B. Development of novel poly-l-lysine-modified sericin-coated superparamagnetic iron oxide nanoparticles as siRNA carrier. Colloids Surf. A Physicochem. Eng. Asp., 2021, 630(August), 127622.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127622]
[107]
Manivel, P.; Paulpandi, M.; Chen, X. Ovalbumin-coated Fe 3 O 4 nanoparticles as a nanocarrier for chlorogenic acid to promote the anticancer efficacy on MDA-MB-231 cells. New J. Chem., 2022, 46(26), 12609-12622.
[http://dx.doi.org/10.1039/D2NJ00716A]
[108]
Patriota, Y.B.G.; Arruda, I.E.S.; de Jesus Oliveira, A.C.; de Oliveira, T.C.; de Lemos Vasconcelos Silva, E.; Chaves, L.L.; de Oliveira, S.R.F.; da Silva, D.A.; de La Roca, S.M.F.; Soares-Sobrinho, J.L. Synthesis of Eudragit® L100-coated chitosan-based nanoparticles for oral enoxaparin delivery. Int. J. Biol. Macromol., 2021, 193(Pt A), 450-456.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.10.111] [PMID: 34688680]
[109]
Nguyen, T.X.; Huang, L.; Liu, L.; Elamin Abdalla, A.M.; Gauthier, M.; Yang, G. Chitosan-coated nano-liposomes for the oral delivery of berberine hydrochloride. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(41), 7149-7159.
[http://dx.doi.org/10.1039/C4TB00876F] [PMID: 32261793]
[110]
De Matteis, L. New active formulations against M. tuberculosis: Bedaquiline encapsulation in lipid nanoparticles and chitosan nanocapsules. J. Chem. Eng., 2018, 340, 181-191.
[http://dx.doi.org/10.1016/j.cej.2017.12.110]
[111]
Clemens, D.L.; Lee, B.Y.; Xue, M.; Thomas, C.R.; Meng, H.; Ferris, D.; Nel, A.E.; Zink, J.I.; Horwitz, M.A. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob. Agents Chemother., 2012, 56(5), 2535-2545.
[http://dx.doi.org/10.1128/AAC.06049-11] [PMID: 22354311]
[112]
Deol, P.; Khuller, G.K. Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochim. Biophys. Acta, Gen. Subj., 1997, 1334(2-3), 161-172.
[http://dx.doi.org/10.1016/S0304-4165(96)00088-8] [PMID: 9101710]
[113]
Ren, T.; Xu, N.; Cao, C.; Yuan, W.; Yu, X.; Chen, J.; Ren, J. Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles. J. Biomater. Sci. Polym. Ed., 2009, 20(10), 1369-1380.
[http://dx.doi.org/10.1163/092050609X12457418779185] [PMID: 19622277]
[114]
Teixeira, A.D.R.; Quaresma, A.D.V.; Branquinho, R.T.; Santos, S.L.E.N.; Magalhães, J.T.D.; Silva, F.H.R.D.; Marques, M.B.D.F.; Moura, S.A.L.D.; Barboza, A.P.M.; Araújo, M.G.D.F.; Silva, G.R.D. Miconazole-loaded nanoparticles coated with hyaluronic acid to treat vulvovaginal candidiasis. Eur. J. Pharm. Sci., 2023, 188(April), 106508.
[http://dx.doi.org/10.1016/j.ejps.2023.106508] [PMID: 37379779]
[115]
Kalhapure, R.S.; Sikwal, D.R.; Rambharose, S.; Mocktar, C.; Singh, S.; Bester, L.; Oh, J.K.; Renukuntla, J.; Govender, T. Enhancing targeted antibiotic therapy via pH responsive solid lipid nanoparticles from an acid cleavable lipid. Nanomedicine, 2017, 13(6), 2067-2077.
[http://dx.doi.org/10.1016/j.nano.2017.04.010] [PMID: 28434930]
[116]
Zhai, J.; Luwor, R.B.; Ahmed, N.; Escalona, R.; Tan, F.H.; Fong, C.; Ratcliffe, J.; Scoble, J.A.; Drummond, C.J.; Tran, N. Paclitaxel-loaded self-assembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer. ACS Appl. Mater. Interfaces, 2018, 10(30), 25174-25185.
[http://dx.doi.org/10.1021/acsami.8b08125] [PMID: 29963859]
[117]
Sharma, H.; Kumar, K.; Choudhary, C.; Mishra, P.K.; Vaidya, B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 672-679.
[http://dx.doi.org/10.3109/21691401.2014.978980] [PMID: 25406734]
[118]
Jain, N.K.; Ramteke, S.; Uma Maheshwari, R.B. Clarithromycin based oral sustained release nanoparticulate drug delivery system. Indian J. Pharm. Sci., 2006, 68(4), 479-484.
[http://dx.doi.org/10.4103/0250-474X.27822]
[119]
Pooja, D.; Panyaram, S.; Kulhari, H.; Rachamalla, S.S.; Sistla, R. Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydr. Polym., 2014, 110, 1-9.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.041] [PMID: 24906721]
[120]
Zou, W.; Cao, G.; Xi, Y.; Zhang, N. New approach for local delivery of rapamycin by bioadhesive PLGA-carbopol nanoparticles. Drug Deliv., 2009, 16(1), 15-23.
[http://dx.doi.org/10.1080/10717540802481307] [PMID: 19555304]
[121]
Thomas, D.; Latha, M.S.; Thomas, K.K. Synthesis and in vitro evaluation of alginate-cellulose nanocrystal hybrid nanoparticles for the controlled oral delivery of rifampicin. J Drug Deliv Sci Technol, 2018, 46, 392-399.
[http://dx.doi.org/10.1016/j.jddst.2018.06.004]
[122]
Owoseni-Fagbenro, K.A.; Saifullah, S.; Imran, M.; Perveen, S.; Rao, K.; Fasina, T.M.; Olasupo, I.A.; Adams, L.A.; Ali, I.; Shah, M.R. Egg proteins stabilized green silver nanoparticles as delivery system for hesperidin enhanced bactericidal potential against resistant S. aureus. J. Drug Deliv. Sci. Technol., 2019, 50, 347-354.
[http://dx.doi.org/10.1016/j.jddst.2019.02.002]
[123]
Rao, K.; Imran, M.; Jabri, T.; Ali, I.; Perveen, S.; Shafiullah; Ahmed, S.; Shah, M.R. Gum tragacanth stabilized green gold nanoparticles as cargos for Naringin loading: A morphological investigation through AFM. Carbohydr. Polym., 2017, 174, 243-252.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.071] [PMID: 28821064]
[124]
Wang, H.; Agarwal, P.; Zhao, S.; Xu, R.X.; Yu, J.; Lu, X.; He, X. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials, 2015, 72, 74-89.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.048] [PMID: 26344365]
[125]
Barick, K.C.; Ekta, E.; Gawali, S.L.; Sarkar, A.; Kunwar, A.; Priyadarsini, K.I.; Hassan, P.A. Pluronic stabilized Fe 3 O 4 magnetic nanoparticles for intracellular delivery of curcumin. RSC Advances, 2016, 6(101), 98674-98681.
[http://dx.doi.org/10.1039/C6RA21207G]
[126]
Chaiyasan, W.; Srinivas, S.P.; Tiyaboonchai, W. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol. Vis., 2015, 21(May), 1224-1234.
[PMID: 26604662]
[127]
Abbasi, S.; Paul, A.; Shao, W.; Prakash, S. Cationic albumin nanoparticles for enhanced drug delivery to treat breast cancer: preparation and in vitro assessment. J. Drug Deliv., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/686108] [PMID: 22187654]
[128]
Bohrey, S.; Chourasiya, V.; Pandey, A. Polymeric nanoparticles containing diazepam: Preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg., 2016, 3(1), 3-9.
[http://dx.doi.org/10.1186/s40580-016-0061-2] [PMID: 28191413]
[129]
Schubert, J.; Chanana, M. Coating matters: Review on colloidal stability of nanoparticles with biocompatible coatings in biological media. Curr Med Chem, 2018, 25(35), 4553-4586.
[http://dx.doi.org/10.2174/0929867325666180601101859]
[130]
Delivery, T. Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment. Ther Deliv, 2012, 3(12), 1409-1427.
[131]
Neu, M.; Germershaus, O.; Mao, S.; Voigt, K.H.; Behe, M.; Kissel, T. Crosslinked nanocarriers based upon poly(ethylene imine) for systemic plasmid delivery: in vitro characterization and in vivo studies in mice. J. Control. Release, 2007, 118(3), 370-380.
[http://dx.doi.org/10.1016/j.jconrel.2007.01.007] [PMID: 17316863]
[132]
Pardeshi, S.R.; More, M.P.; Pardeshi, C.V.; Chaudhari, P.J.; Gholap, A.D.; Patil, A.; Patil, P.B.; Naik, J.B. Novel crosslinked nanoparticles of chitosan oligosaccharide and dextran sulfate for ocular administration of dorzolamide against glaucoma. J. Drug Deliv. Sci. Technol., 2023, 86(February), 104719.
[http://dx.doi.org/10.1016/j.jddst.2023.104719]
[133]
Saeed, R.M.; Dmour, I.; Taha, M.O. Stable chitosan-based nanoparticles using polyphosphoric acid or hexametaphosphate for tandem ionotropic/covalent crosslinking and subsequent investigation as novel vehicles for drug delivery. Front. Bioeng. Biotechnol., 2020, 8(1), 4.
[http://dx.doi.org/10.3389/fbioe.2020.00004] [PMID: 32039190]
[134]
Lin, Y.H.; Tsai, S.C.; Lai, C.H.; Lee, C.H.; He, Z.S.; Tseng, G.C. Genipin-cross-linked fucose–chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials, 2013, 34(18), 4466-4479.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.028] [PMID: 23499480]
[135]
Liu, H.; Gao, C. Preparation and properties of ionically cross-linked chitosan nanoparticles. Polym. Adv. Technol., 2009, 20(7), 613-619.
[http://dx.doi.org/10.1002/pat.1306]
[136]
Chiu, H.I.; Ayub, A.D.; Mat Yusuf, S.N.A.; Yahaya, N.; Abd Kadir, E.; Lim, V. Docetaxel-loaded disulfide cross-linked nanoparticles derived from thiolated sodium alginate for colon cancer drug delivery. Pharmaceutics, 2020, 12(1), 38.
[http://dx.doi.org/10.3390/pharmaceutics12010038] [PMID: 31906511]
[137]
Zhang, F.; Pei, X.; Peng, X.; Gou, D.; Fan, X.; Zheng, X.; Song, C.; Zhou, Y.; Cui, S. Dual crosslinking of folic acid-modified pectin nanoparticles for enhanced oral insulin delivery. Biomaterials Advances, 2022, 135(February), 212746.
[http://dx.doi.org/10.1016/j.bioadv.2022.212746] [PMID: 35929218]
[138]
Deng, H.; Zhang, Y.; Wang, X.; Jianhuazhang; Cao, Y.; Liu, J.; Liu, J.; Deng, L.; Dong, A. Balancing the stability and drug release of polymer micelles by the coordination of dual-sensitive cleavable bonds in cross-linked core. Acta Biomater., 2015, 11(1), 126-136.
[http://dx.doi.org/10.1016/j.actbio.2014.09.047] [PMID: 25288518]
[139]
Ray, S.; Sinha, P.; Laha, B.; Maiti, S.; Bhattacharyya, U.K.; Nayak, A.K. Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J. Drug Deliv. Sci. Technol., 2018, 48, 21-29.
[http://dx.doi.org/10.1016/j.jddst.2018.08.016]
[140]
Faris, T.M.; Harisa, G.I.; Alanazi, F.K.; Samy, A.M.; Nasr, F.A. Developed simvastatin chitosan nanoparticles co-crosslinked with tripolyphosphate and chondroitin sulfate for ASGPR-mediated targeted HCC delivery with enhanced oral bioavailability. Saudi Pharm. J., 2020, 28(12), 1851-1867.
[http://dx.doi.org/10.1016/j.jsps.2020.11.012] [PMID: 33424274]
[141]
Zhang, Y.; Lin, L.; Liu, L.; Liu, F.; Maruyama, A.; Tian, H.; Chen, X. Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydr. Polym., 2018, 201(April), 246-256.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.063] [PMID: 30241817]
[142]
Lin, Y.H.; Sonaje, K.; Lin, K.M.; Juang, J.H.; Mi, F.L.; Yang, H.W.; Sung, H.W. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J. Control. Release, 2008, 132(2), 141-149.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.020] [PMID: 18817821]
[143]
Caddeo, C.; Díez-Sales, O.; Pons, R.; Carbone, C.; Ennas, G.; Puglisi, G.; Fadda, A.M.; Manconi, M. Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. J. Colloid Interface Sci., 2016, 461, 69-78.
[http://dx.doi.org/10.1016/j.jcis.2015.09.013] [PMID: 26397912]
[144]
Taheri Qazvini, N.; Zinatloo, S. Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J. Mater. Sci. Mater. Med., 2011, 22(1), 63-69.
[http://dx.doi.org/10.1007/s10856-010-4178-2] [PMID: 21052793]
[145]
Hasanovic, A.; Zehl, M.; Reznicek, G.; Valenta, C. Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J. Pharm. Pharmacol., 2010, 61(12), 1609-1616.
[http://dx.doi.org/10.1211/jpp.61.12.0004] [PMID: 19958582]
[146]
Simi, C.K.; Emilia Abraham, T. Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery. Bioprocess Biosyst. Eng., 2007, 30(3), 173-180.
[http://dx.doi.org/10.1007/s00449-007-0112-5] [PMID: 17278045]
[147]
Sethi, A.; Ahmad, M.; Huma, T.; Khalid, I.; Ahmad, I. Evaluation of low molecular weight cross linked chitosan nanoparticles, to enhance the bioavailability of 5-flourouracil. Dose Response, 2021, 19(2)
[http://dx.doi.org/10.1177/15593258211025353] [PMID: 34377107]
[148]
Karimi, M.H.; Mahdavinia, G.R.; Massoumi, B. pH-controlled sunitinib anticancer release from magnetic chitosan nanoparticles crosslinked with κ-carrageenan. Mater. Sci. Eng: C, 2018, 91, 705-714.
[http://dx.doi.org/10.1016/j.msec.2018.06.019]
[149]
Li, M.; Wang, K.; Wang, Y.; Han, Q.; Ni, Y.; Wen, X. Effects of genipin concentration on cross-linked β-casein micelles as nanocarrier of naringenin: Colloidal properties, structural characterization and controlled release. Food Hydrocoll., 2020, 108(17), 105989.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105989]
[150]
Zhao, X.; Bai, J.; Yang, W. Stimuli-responsive nanocarriers for therapeutic applications in cancer Nanocarriers. Cancer Biol Med., 2021, 18(2), 319-335.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0496]
[151]
Mi, P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10(10), 4557-4588.
[http://dx.doi.org/10.7150/thno.38069]
[152]
Gao, W.; Chan, J.M.; Farokhzad, O.C. reviews pH-responsive nanoparticles for drug delivery. Mol. Pharmaceutics, 2010, 7(6), 1913-1920.
[153]
Amin, M.; Huang, W.; Seynhaeve, A.L.B.; Hagen, T.L.M. Hyperthermia and temperature-sensitive nanomaterials for spatiotemporal drug delivery to solid tumors. Pharmaceutics, 2020, 12(11), 1007.
[154]
Pawar, V.; Maske, P.; Khan, A.; Ghosh, A.; Keshari, R.; Bhatt, M. Responsive nanostructure for targeted drug delivery. J. Nanotheranostics, 2023, 4(1), 55-85.
[155]
Abed, H.F.; Abuwatfa, W.H. Redox-responsive drug delivery systems: A chemical perspective. Nanomaterials, 2022, 12(18), 3183.
[156]
Blum, A.P. Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc, 2014, 137(6), 2140-2154.
[http://dx.doi.org/10.1021/ja510147n]
[157]
Yu, D.; Li, W.; Zhang, Y.; Zhang, B. Anti-tumor efficiency of paclitaxel and DNA when co-delivered by pH responsive ligand modified nanocarriers for breast cancer treatment. Biomed. Pharmacother., 2016, 83, 1428-1435.
[http://dx.doi.org/10.1016/j.biopha.2016.08.061] [PMID: 27592131]
[158]
Aryal, S.; Grailer, J.J.; Pilla, S.; Steeber, A.; Gong, S. Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. Mater. Chem., 2009, 19, 7879-7884.
[http://dx.doi.org/10.1039/b914071a]
[159]
Ghanbarzadeh, S.; Arami, S.; Pourmoazzen, Z.; Khorrami, A. Improvement of the antiproliferative effect of Rapamycin on tumor cell lines by poly (monomethylitaconate)-based pH-sensitive, plasma stable liposomes. Colloids Surf. B Biointerfaces, 2014, 115, 323-330.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.024] [PMID: 24394948]
[160]
Shah, H. pH-Responsive liposomes of dioleoyl phosphatidylethanolamine and cholesteryl hemisuccinate for the enhanced anticancer efficacy of cisplatin. Pharmaceutics, 2022, 14(1), 129.
[http://dx.doi.org/10.3390/pharmaceutics14010129]
[161]
Mukhopadhyay, P.; Maity, S.; Mandal, S.; Chakraborti, A.S.; Prajapati, A.K.; Kundu, P.P. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr. Polym., 2017.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.098] [PMID: 29279124]
[162]
Raj, R. Synthesis of pH-sensitive crosslinked guar gum- g -poly (acrylic acid- co -acrylonitrile) for the delivery of thymoquinone against in fl ammation. Int. J. Biol. Macromol., 2021, 182, 1218-1228.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.072] [PMID: 33991556]
[163]
Baranei, M.; Taheri, R.A.; Tirgar, M.; Saeidi, A.; Oroojalian, F.; Uzun, L.; Asefnejad, A.; Wurm, F.R.; Goodarzi, V. Anticancer effect of green tea extract (GTE)-Loaded pH-responsive niosome Coated with PEG against different cell lines. Mater. Today Commun., 2021, 26(October), 101751.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101751]
[164]
Sareen, R. pH triggered delivery of curcumin from Eudragit-coated chitosan microspheres for inflammatory bowel disease: Characterization and pharmacodynamic evaluation. Drug Deliv, 2016, 23(1), 55-62.
[http://dx.doi.org/10.3109/10717544.2014.903534]
[165]
Luo, J.; Li, X.; Dong, S.; Zhu, P.; Liu, W.; Zhang, S.; Du, J. Layer-by-layer coated hybrid nanoparticles with pH-sensitivity for drug delivery to treat acute lung infection. Drug Deliv., 2021, 28(1), 2460-2468.
[http://dx.doi.org/10.1080/10717544.2021.2000676] [PMID: 34766544]
[166]
Jaglal, Y.; Osman, N.; Omolo, C. A.; Mocktar, C.; Devnarain, N.; Govender, T. Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18β-glycyrrhetinic acid. J Drug Deliv Sci Technol., 2021, 64, 102607.
[http://dx.doi.org/10.1016/j.jddst.2021.102607]
[167]
Hwang, A.A.; Lee, B.Y.; Clemens, D.L.; Dillon, B.J.; Zink, J.I.; Horwitz, M.A. pH-Responsive isoniazid-loaded nanoparticles markedly improve tuberculosis treatment in mice. Small, 2015, 11(38), 5066-5078.
[http://dx.doi.org/10.1002/smll.201500937] [PMID: 26193431]
[168]
Wu, J.; Williams, G.R.; Li, H. Glucose-and temperature-sensitive nanoparticles for insulin delivery. Int J Nanomedicine., 2017, 12, 4037-4057.
[http://dx.doi.org/10.2147/IJN.S132984]
[169]
Cropek, D.; Kharlampieva, E. Temperature-sensitive polymersomes for controlled delivery of anticancer drugs. Chem. Mater., 2015, 27(23), 7945-7956.
[http://dx.doi.org/10.1021/acs.chemmater.5b03048]
[170]
Costa Lima, S.A.; Reis, S. Temperature-responsive polymeric nanospheres containing methotrexate and gold nanoparticles: A multi-drug system for theranostic in rheumatoid arthritis. Colloids Surf. B Biointerfaces, 2015, 133, 378-387.
[http://dx.doi.org/10.1016/j.colsurfb.2015.04.048] [PMID: 25979151]
[171]
Sanoj Rejinold, N.; Muthunarayanan, M.; Divyarani, V.V.; Sreerekha, P.R.; Chennazhi, K.P.; Nair, S.V.; Tamura, H.; Jayakumar, R. Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. J. Colloid Interface Sci., 2011, 360(1), 39-51.
[http://dx.doi.org/10.1016/j.jcis.2011.04.006] [PMID: 21549390]
[172]
Musyanovych, A.; Landfester, K. Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules, 2013, 14(4), 1103-1112.
[173]
Kulkarni, P.S. Mmp-9 responsive PEG cleavable nanovesicles for efficient delivery of chemotherapeutics to pancreatic cancer. Mol Pharm, 2015, 11(7), 2390-2399.
[174]
Thamphiwatana, S.; Gao, W.; Pornpattananangkul, D.; Zhang, Q.; Fu, V.; Li, J.; Li, J.; Obonyo, M.; Zhang, L. Phospholipase A2-responsive antibiotic delivery via nanoparticle-stabilized liposomes for the treatment of bacterial infection. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(46), 8201-8207.
[http://dx.doi.org/10.1039/C4TB01110D] [PMID: 25544886]
[175]
Huang, J.; Shu, Q.; Wang, L.; Wu, H.; Wang, A.Y.; Mao, H. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials, 2015, 39, 105-113.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.059] [PMID: 25477177]
[176]
Luo, Y.L.; Yang, X.L.; Xu, F.; Chen, Y.S.; Zhang, B. Thermosensitive PNIPAM-b-HTPB block copolymer micelles: Molecular architectures and camptothecin drug release. Colloids Surf. B Biointerfaces, 2014, 114, 150-157.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.043] [PMID: 24184534]
[177]
Yu, N.; Li, G.; Gao, Y.; Jiang, H.; Tao, Q. Thermo-sensitive complex micelles from sodium alginate- graft -poly( N -isopropylacrylamide) for drug release. Int. J. Biol. Macromol., 2016, 86, 296-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.066] [PMID: 26806647]
[178]
Lee, R.S.; Lin, C.H.; Aljuffali, I.A.; Hu, K.Y.; Fang, J.Y. Passive targeting of thermosensitive diblock copolymer micelles to the lungs: synthesis and characterization of poly(N-isopropylacrylamide)-block-poly(ε-caprolactone). J. Nanobiotechnology, 2015, 13(1), 42.
[http://dx.doi.org/10.1186/s12951-015-0103-7] [PMID: 26084491]
[179]
Press, D. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment. Int J Nanomedicine, 2018, 13, 1585-1600.
[180]
Xu, Y. Glycogen-based pH and redox sensitive nanoparticles with ginsenoside Rh2 for effective treatment of ulcerative colitis. Biomaterials, 2021.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121077] [PMID: 34890974]
[181]
Wang, K. Novel dual mitochondrial and CD44 receptor targeting nanoparticles for redox stimuli-triggered release. Nanoscale Res Lett, 2018, 13, 32.
[http://dx.doi.org/10.1186/s11671-018-2445-1]
[182]
Li, H. Methemoglobin as a redox-responsive nanocarrier to trigger the in situ anticancer ability of artemisinin. NPG Asia Materials, 2017, 9, e423.
[http://dx.doi.org/10.1038/am.2017.150]
[183]
Van Gheluwe, L.; Buchy, E.; Chourpa, I. Three-step synthesis of a redox-responsive blend of PEG- block-PLA and PLA and application to the nanoencapsulation of retinol. Polymers, 2020, 12(10), 2350.
[http://dx.doi.org/10.3390/polym12102350]
[184]
Jiang, Z.; Wang, Y.; Sun, L.; Yuan, B.; Tian, Y.; Xiang, L.; Li, Y.; Li, Y.; Li, J.; Wu, A. Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo. Biomaterials, 2019, 197, 41-50.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.001] [PMID: 30640136]
[185]
Jiang, Z.; Li, Y.; Wei, Z.; Yuan, B.; Wang, Y.; Akakuru, O.U.; Li, Y.; Li, J.; Wu, A. Pressure-induced amorphous zeolitic imidazole frameworks with reduced toxicity and increased tumor accumulation improves therapeutic efficacy in vivo. Bioact. Mater., 2021, 6(3), 740-748.
[http://dx.doi.org/10.1016/j.bioactmat.2020.08.036] [PMID: 33024895]
[186]
Levit, S.L.; Stwodah, R.M.; Tang, C. Rapid, room temperature nanoparticle drying and low-energy reconstitution via electrospinning. J. Pharm. Sci., 2018, 107(3), 807-813.
[http://dx.doi.org/10.1016/j.xphs.2017.10.026] [PMID: 29107044]
[187]
Marante, T.; Macedo, A.S.; Fonte, P. An overview on spray-drying of protein-loaded polymeric nanoparticles for dry powder inhalation. Pharmaceutics, 2020, 12(11), 1032.
[188]
Emami, F.; Vatanara, A.; Park, E.J.; Na, D.H. Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics, 2018, 10(3), 131.
[http://dx.doi.org/10.3390/pharmaceutics10030131]
[189]
Abdelwahed, W.; Stainmesse, S.; Fessi, H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv Drug Deliv Rev, 2006, 58(15), 1688-1713.
[http://dx.doi.org/10.1016/j.addr.2006.09.017]
[190]
Trenkenschuh, E.; Friess, W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. Eur. J. Pharm. Biopharm., 2021, 165(May), 345-360.
[http://dx.doi.org/10.1016/j.ejpb.2021.05.024] [PMID: 34052428]
[191]
Pakowski, Z. Modern methods of drying nanomaterials. Transp Porous Med, 2007, 66, 19-27.
[http://dx.doi.org/10.1007/s11242-006-9019-x]
[192]
Elham, G.; Mahsa, P.; Vatanara, A.; Vahid, R. Spray drying of nanoparticles to form fast dissolving glipizide. Asian J. Pharm. Sci., 2015, 9, 213.
[http://dx.doi.org/10.4103/0973-8398.160319]
[193]
Yang, T.; Cui, F.; Choi, M.; Cho, J. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm, 2007, 338(1-2), 317-326.
[http://dx.doi.org/10.1016/j.ijpharm.2007.02.011]
[194]
Valo, H.; Kovalainen, M.; Laaksonen, P.; Häkkinen, M.; Auriola, S.; Peltonen, L.; Linder, M.; Järvinen, K.; Hirvonen, J.; Laaksonen, T. Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices—Enhanced stability and release. J. Control. Release, 2011, 156(3), 390-397.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.016] [PMID: 21802462]
[195]
Boge, L.; Västberg, A.; Umerska, A.; Bysell, H.; Eriksson, J.; Edwards, K.; Millqvist-Fureby, A.; Andersson, M. Freeze-dried and re-hydrated liquid crystalline nanoparticles stabilized with disaccharides for drug-delivery of the plectasin derivative AP114 antimicrobial peptide. J. Colloid Interface Sci., 2018, 522, 126-135.
[http://dx.doi.org/10.1016/j.jcis.2018.03.062] [PMID: 29587194]
[196]
Miyata, K.; Kakizawa, Y.; Nishiyama, N.; Yamasaki, Y. Freeze-dried formulations for in vivo gene delivery of PEGylated polyplex micelles with disulfide crosslinked cores to the liver. J Control Release, 2005, 109(1-3), 15-23.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.043]
[197]
Wang, G.; Wang, J.J.; Chen, X.L.; Du, L.; Li, F. Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in vitro and in vivo. J. Control. Release, 2016, 235, 276-290.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.045] [PMID: 27242199]
[198]
Scolari, I. R.; Páez, P. L.; Sánchez-borzone, M. E.; Granero, G. E. Promising chitosan-coated alginate-tween 80 nanoparticles as rifampicin coadministered ascorbic acid delivery carrier against mycobacterium tuberculosis . AAPS PharmSciTech, 2019, 20(2), 67.
[http://dx.doi.org/10.1208/s12249-018-1278-7]
[199]
Zillies, J.C. Formulation development of freeze-dried oligonucleotide-loaded gelatin nanoparticles. Eur J Pharm Biopharm., 2008, 70, 514-521.
[http://dx.doi.org/10.1016/j.ejpb.2008.04.026]
[200]
Gabr, M.M.; Mortada, S.M.; Sallam, M.A. Carboxylate cross-linked cyclodextrin: A nanoporous scaffold for enhancement of rosuvastatin oral bioavailability. Eur. J. Pharm. Sci., 2017.
[http://dx.doi.org/10.1016/j.ejps.2017.09.026] [PMID: 28931488]
[201]
Pu, C.; Tang, W.; Liu, M.; Zhu, Y.; Sun, Q. Resveratrol-loaded hollow kafirin nanoparticles via gallic acid crosslinking: An evaluation compared with their solid and non-crosslinked counterparts. Food Res. Int., 2020, 135(May), 109308.
[http://dx.doi.org/10.1016/j.foodres.2020.109308] [PMID: 32527475]
[202]
Guada, M. Lipid nanoparticles for cyclosporine A administration: Development, characterization, and in vitro evaluation of their immunosuppression activity. Int J Nanomedicine, 2015, 10, 6541-6553.
[http://dx.doi.org/10.2147/IJN.S90849]
[203]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Novel spray-dried genipin-crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharm Res, 2013, 30, 512-522.
[http://dx.doi.org/10.1007/s11095-012-0897-z]
[204]
Jensen, D.M.K.; Cun, D.; Maltesen, M.J.; Frokjaer, S.; Nielsen, H.M.; Foged, C. Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation. J. Control. Release, 2010, 142(1), 138-145.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.010] [PMID: 19840823]
[205]
Guo, Y.; Baldelli, A.; Singh, A.; Fathordoobady, F.; Kitts, D.; Pratap-Singh, A. Production of high loading insulin nanoparticles suitable for oral delivery by spray drying and freeze drying techniques. Sci. Rep., 2022, 12(1), 9949.
[http://dx.doi.org/10.1038/s41598-022-13092-6] [PMID: 35705561]
[206]
Pilcer, G.; Vanderbist, F.; Amighi, K. Preparation and characterization of spray-dried tobramycin powders containing nanoparticles for pulmonary delivery. Int. J. Pharm., 2009, 365, 162-169.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.014]
[207]
Sinsuebpol, C.; Chatchawalsaisin, J.; Kulvanich, P. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery. Drug Des Devel Ther, 2013, 7, 861-873.
[http://dx.doi.org/10.2147/DDDT.S47681]
[208]
Reddy, L.H.; Sharma, R.K.; Chuttani, K.; Mishra, A.K.; Murthy, R.S.R. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton's lymphoma tumor bearing mice. JCR, 2005, 105(3), 185-198.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.028]
[209]
Alwattar, J.K.; Chouaib, R.; Khalil, A.; Mehanna, M. M.; Mehanna, M. A novel multifaceted approach for wound healing: optimization and in vivo evaluation of spray dried tadalafil loaded pro-nanoliposomal powder. Int J Pharm, 2020, 587, 119647.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119647]
[210]
Nguyen, V.H.; Thuy, V.N.; Van, T.V.; Dao, A.H.; Lee, B.J. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OpenNano, 2022, 8(June), 100064.
[http://dx.doi.org/10.1016/j.onano.2022.100064]
[211]
Looi, C.Y. Recent development of nanomaterials for transdermal drug delivery. Biomedicines., 2023, 11(4), 1124.
[212]
Jain, N.G.; Gupta, H.; Food, U.S. Parenteral drug delivery : A review parenteral drug delivery. RE:view, 2015.
[http://dx.doi.org/10.2174/187221111795471391]
[213]
Pitorre, M.; Gondé, H.; Haury, C.; Messous, M.; Poilane, J.; Boudaud, D.; Kanber, E.; Rossemond Ndombina, G.A.; Benoit, J.P.; Bastiat, G. Recent advances in nanocarrier-loaded gels: Which drug delivery technologies against which diseases? J. Control. Release, 2017, 266, 140-155.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.031] [PMID: 28951319]
[214]
Waghule, G.S.T.; Sankar, S.; Rapalli, V.K.; Gorantla, S.; Dubey, S.K.; Chellappan, D.K.; Dua, K. Emerging role of nanocarriers based topical delivery of anti-fungal agents in combating growing fungal infections. Dermatol. Ther., 2007, 33(6), e13905.
[http://dx.doi.org/10.1111/dth.13905] [PMID: 32588940]
[215]
Hu, X.; Zhang, H.; Wang, Z.; Ying, C.; Shiu, A.; Gu, Z. Microneedle array patches integrated with nanoparticles for therapy and diagnosis. Small Structures, 2014, 5(1)
[http://dx.doi.org/10.1002/sstr.202000097]
[216]
Jiang, X.; Zhao, H.; Li, W. Microneedle-mediated transdermal delivery of drug-carrying nanoparticles. Front. Bioeng. Biotechnol., 2022, 10(February), 840395.
[http://dx.doi.org/10.3389/fbioe.2022.840395] [PMID: 35223799]
[217]
Notario-Pérez, F.; Cazorla-Luna, R.; Martín-Illana, A.; Galante, J.; Ruiz-Caro, R.; das Neves, J.; Veiga, M.D. Design, fabrication and characterisation of drug-loaded vaginal films: State-of-the-art. J. Control. Release, 2020, 327(August), 477-499.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.032] [PMID: 32853730]
[218]
Park, S.; Han, U.; Choi, D.; Hong, J. Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers : design and applications. Biomateri. Res., 2018, 1-13.
[219]
Mohite, P.; Singh, S.; Pawar, A. Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: Design and applications. Biomateri. Res., 2023, 22
[http://dx.doi.org/10.3389/fddev.2023.1232012]
[220]
Gaballa, S.A.; El Garhy, O.H.; Moharram, H.; Abdelkader, H. Preparation and evaluation of cubosomes/cubosomal gels for ocular delivery of beclomethasone dipropionate for management of uveitis. Pharm Res, 2020, 37(10), 198.
[http://dx.doi.org/10.1007/s11095-020-02857-1]
[221]
Noreen, S. Optimization of novel naproxen-loaded chitosan/carrageenan nanocarrier-based gel for topical delivery: ex-vivo, histopathological, and in vivo evaluation. Pharmaceuticals, 2021, 14(6), 557.
[222]
Doppalapudi, S.; Jain, A.; Chopra, D.K.; Khan, W. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur. J. Pharm. Sci., 2017, 96, 515-529.
[http://dx.doi.org/10.1016/j.ejps.2016.10.025] [PMID: 27777066]
[223]
Rapalli, V.K.; Sharma, S.; Roy, A.; Alexander, A.; Singhvi, G. Solid lipid nanocarriers embedded hydrogel for topical delivery of apremilast: in-vitro, ex-vivo, dermatopharmacokinetic and anti-psoriatic evaluation. J. Drug Deliv. Sci. Technol., 2021, 63(February), 102442.
[http://dx.doi.org/10.1016/j.jddst.2021.102442]
[224]
Jaiswal, M.; Kumar, M.; Pathak, K. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Colloids Surf. B Biointerfaces, 2015, 130, 23-30.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.059] [PMID: 25889081]
[225]
Yang, Y.; Wang, J.; Zhang, X.; Lu, W.; Zhang, Q. A novel mixed micelle gel with thermo-sensitive property for the local delivery of docetaxel. J. Control. Release, 2009, 135(2), 175-182.
[http://dx.doi.org/10.1016/j.jconrel.2009.01.007] [PMID: 19331864]
[226]
Feng, G.; Zha, Z.; Huang, Y.; Li, J.; Wang, Y.; Ke, W. Sustained and bioresponsive two-stage delivery of therapeutic miRNA via polyplex micelle-loaded injectable hydrogels for inhibition of intervertebral disc fibrosis. Adv Healthc Mater, 2018, 7Vol. 29, 1-14.
[http://dx.doi.org/10.1002/adhm.201800623]
[227]
Joshi, S.A.; Jalalpure, S.S.; Kempwade, A.A.; Peram, M.R. Fabrication and in-vivo evaluation of lipid nanocarriers based transdermal patch of colchicine. J. Drug Deliv. Sci. Technol., 2017, 41, 444-453.
[http://dx.doi.org/10.1016/j.jddst.2017.08.013]
[228]
Arunprasert, K.; Pornpitchanarong, C.; Piemvuthi, C.; Siraprapapornsakul, S.; Sripeangchan, S.; Lertsrimongkol, O.; Opanasopit, P.; Patrojanasophon, P. Nanostructured lipid carrier-embedded polyacrylic acid transdermal patches for improved transdermal delivery of capsaicin. Eur. J. Pharm. Sci., 2022, 173(February), 106169.
[http://dx.doi.org/10.1016/j.ejps.2022.106169] [PMID: 35318130]
[229]
Vuc, S.R. Improved percutaneous delivery of ketoprofen using combined application of nanocarriers and silicon microneedles. J Pharm Pharmacol, 2013, 65(10), 1451-1462.
[http://dx.doi.org/10.1111/jphp.12118]
[230]
Patel, B.; Thakkar, H. Formulation development of fast dissolving microneedles loaded with cubosomes of febuxostat: in vitro and in vivo evaluation. Pharmaceutics, 2023, 15(1), 224.
[http://dx.doi.org/10.3390/pharmaceutics15010224]
[231]
Alkilani, A.Z.; Abu-zour, H.; Alshishani, A.; Abu-huwaij, R.; Basheer, H.A.; Abo-zour, H. Formulation and evaluation of niosomal alendronate sodium encapsulated in polymeric microneedles: in vitro studies, stability study and cytotoxicity study. Nanomaterials, 2022, 12(20), 3570.
[http://dx.doi.org/10.3390/nano12203570]
[232]
Huang, C.; Gou, K.; Yue, X.; Zhao, S.; Zeng, R.; Qu, Y.; Zhang, C. A novel hyaluronic acid-based dissolving microneedle patch loaded with ginsenoside Rg3 liposome for effectively alleviate psoriasis. Mater. Des., 2022, 224, 111363.
[http://dx.doi.org/10.1016/j.matdes.2022.111363]
[233]
Machado, A.; Cunha-Reis, C.; Araújo, F.; Nunes, R.; Seabra, V.; Ferreira, D.; das Neves, J.; Sarmento, B. Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system. Acta Biomater., 2016, 44, 332-340.
[http://dx.doi.org/10.1016/j.actbio.2016.08.018] [PMID: 27544812]
[234]
Ahmed, T.A.; Bawazir, A.O. Enhancement of simvastatin ex-vivo permeation from mucoadhesive buccal films loaded with dual drug release carriers. Int J Nanomedicine, 2020, 15, 4001-4020.
[http://dx.doi.org/10.2147/IJN.S256925]
[235]
Ryu, W.M.; Kim, S.; Min, C.H.; Bin Choy, Y. Dry tablet formulation of PLGA nanoparticles with a preocular applicator for topical drug delivery to the eye. Pharmaceutics, 2019, 11(12), 651.
[http://dx.doi.org/10.3390/pharmaceutics11120651]
[236]
Ahmed, T.A. Study the pharmacokinetics, pharmacodynamics and hepatoprotective activity of rosuvastatin from drug loaded lyophilized orodispersible tablets containing transfersomes nanoparticles. J. Drug Deliv. Sci. Technol., 2021, 63(January), 102489.
[http://dx.doi.org/10.1016/j.jddst.2021.102489]
[237]
Amira, E El-Nahas; Ahmed, N.A.; El-Kamel, A.H. Mucoadhesive buccal tablets containing silymarin Eudragit loaded nanoparticles: Formulation, characterization and ex-vivo permeation. J Microencapsul, 2017, 34(5), 463-474.
[http://dx.doi.org/10.1080/02652048.2017.1345996]
[238]
Khan, I.; Apostolou, M.; Bnyan, R.; Houacine, C.; Elhissi, A.; Yousaf, S. S. Paclitaxel-loaded micro or nano transfersome formulation into novel tablets for pulmonary drug delivery via nebulization. Int J Pharm, 2019, 575, 118919.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118919]
[239]
Mohamed, Y.; Mahmoud, T.; Mohamed, E.; Rehab, A. E. Cubosomal based oral tablet for controlled drug delivery of telmisartan: Formulation, in-vitro evaluation and in-vivo comparative pharmacokinetic study in rabbits. Drug Dev Ind Pharm, 2019, 45(6), 981-994.
[http://dx.doi.org/10.1080/03639045.2019.1590392]
[240]
Sallam, M.A.; Teresa, M.; Boscá, M. Optimization, ex-vivo permeation, and stability study of lipid nanocarrier loaded gelatin capsules for treatment of intermittent claudication . Int J Nanomedicine, 2015, 10, 4459-4478.
[241]
Hakeem, E.A.; El-Mahrouk, G.M.; Abdelbary, G.; Teaima, M.H. Freeze-dried clopidogrel loaded lyotropic liquid crystal: Box-behnken optimization, in-vitro and in-vivo evaluation. Curr. Drug Deliv., 2020, 17(3), 207-217.
[http://dx.doi.org/10.2174/1567201817666200122161433] [PMID: 31969101]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy