Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Recent Advances in Hepatic Metabolic Regulation by the Nuclear Factor Rev-erbɑ

Author(s): Qi Zhang, Yutong Chen, Jingqi Li, Haishan Xia, Yongbin Tong* and Yuyu Liu*

Volume 25, Issue 1, 2024

Published on: 21 February, 2024

Page: [2 - 12] Pages: 11

DOI: 10.2174/0113892002290055240212074758

Price: $65

Open Access Journals Promotions 2
Abstract

Rev-erbɑ (NR1D1) is a nuclear receptor superfamily member that plays a vital role in mammalian molecular clocks and metabolism. Rev-erbɑ can regulate the metabolism of drugs and the body's glucose metabolism, lipid metabolism, and adipogenesis. It is even one of the important regulatory factors regulating the occurrence of metabolic diseases (e.g., diabetes, fatty liver). Metabolic enzymes mediate most drug metabolic reactions in the body. Rev-erbɑ has been recognized to regulate drug metabolic enzymes (such as Cyp2b10 and Ugt1a9). Therefore, this paper mainly reviewed that Rev-erbɑ regulates I and II metabolic enzymes in the liver to affect drug pharmacokinetics. The expression of these drug metabolic enzymes (up-regulated or down-regulated) is related to drug exposure and effects/ toxicity. In addition, our discussion extends to Rev-erbɑ regulating some transporters (such as P-gp, Mrp2, and Bcrp), as they also play an essential role in drug metabolism. Finally, we briefly describe the role and mechanism of nuclear receptor Rev-erbɑ in lipid and glucose homeostasis, obesity, and metabolic disorders syndrome. In conclusion, this paper aims to understand better the role and mechanism of Rev-erbɑ in regulating drug metabolism, lipid, glucose homeostasis, obesity, and metabolic disorders syndrome, which explores how to target Rev-erbɑ to guide the design and development of new drugs and provide scientific reference for the molecular mechanism of new drug development, rational drug use, and drug interaction.

Keywords: Rev-erbɑ, liver, xenobiotic metabolism, enzymes, obesity, drug metabolism enzymes, apolipoprotein A-IV.

Graphical Abstract
[1]
Miyajima, N.; Horiuchi, R.; Shibuya, Y.; Fukushige, S.; Matsubara, K.; Toyoshima, K.; Yamamoto, T. Two erbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. Cell, 1989, 57(1), 31-39.
[http://dx.doi.org/10.1016/0092-8674(89)90169-4] [PMID: 2539258]
[2]
Dumas, B.; Harding, H.P.; Choi, H.S.; Lehmann, K.A.; Chung, M.; Lazar, M.A.; Moore, D.D. A new orphan member of the nuclear hormone receptor superfamily closely related to Rev-Erb. Mol. Endocrinol., 1994, 8(8), 996-1005.
[http://dx.doi.org/10.1210/mend.8.8.7997240] [PMID: 7997240]
[3]
Korenčič, A.; Košir, R.; Bordyugov, G.; Lehmann, R.; Rozman, D.; Herzel, H. Timing of circadian genes in mammalian tissues. Sci. Rep., 2014, 4(1), 5782.
[http://dx.doi.org/10.1038/srep05782] [PMID: 25048020]
[4]
Ray, S.; Valekunja, U.K.; Stangherlin, A.; Howell, S.A.; Snijders, A.P.; Damodaran, G.; Reddy, A.B. Circadian rhythms in the absence of the clock gene Bmal1. Science, 2020, 367(6479), 800-806.
[http://dx.doi.org/10.1126/science.aaw7365] [PMID: 32054765]
[5]
Han, H.S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med., 2016, 48(3), e218.
[http://dx.doi.org/10.1038/emm.2015.122] [PMID: 26964834]
[6]
Adeva-Andany, M.M.; Pérez-Felpete, N.; Fernández-Fernández, C.; Donapetry-García, C.; Pazos-García, C. Liver glucose metabolism in humans. Biosci. Rep., 2016, 36(6), e00416.
[http://dx.doi.org/10.1042/BSR20160385] [PMID: 27707936]
[7]
Chiang, J.Y.L.; Ferrell, J.M. Bile acid metabolism in liver pathobiology. Gene Expr., 2018, 18(2), 71-87.
[http://dx.doi.org/10.3727/105221618X15156018385515] [PMID: 29325602]
[8]
Boyer, JL; Soroka, CJ Bile formation and secretion: An update. J. Hepatol., 2021, 75, 190-201.
[9]
Yu, B.; Pan, J.B.; Yu, F.Y. The combination of nuclear receptor NR1D1 and ULK1 promotes mitophagy in adipocytes to ameliorate obesity. Adipocyte, 2022, 11(1), 202-212.
[http://dx.doi.org/10.1080/21623945.2022.2060719] [PMID: 35410572]
[10]
Zhang, Y.; Fang, B.; Damle, M.; Guan, D.; Li, Z.; Kim, Y.H.; Gannon, M.; Lazar, M.A. HNF6 and Rev-erbα integrate hepatic lipid metabolism by overlapping and distinct transcriptional mechanisms. Genes Dev., 2016, 30(14), 1636-1644.
[http://dx.doi.org/10.1101/gad.281972.116] [PMID: 27445394]
[11]
Li, X.; Xu, M.; Wang, F.; Kohan, A.B.; Haas, M.K.; Yang, Q.; Lou, D.; Obici, S.; Davidson, W.S.; Tso, P. Apolipoprotein A-IV reduces hepatic gluconeogenesis through nuclear receptor NR1D1. J. Biol. Chem., 2014, 289(4), 2396-2404.
[http://dx.doi.org/10.1074/jbc.M113.511766] [PMID: 24311788]
[12]
Zollner, G.; Trauner, M. Nuclear receptors as therapeutic targets in cholestatic liver diseases. Br. J. Pharmacol., 2009, 156(1), 7-27.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00030.x] [PMID: 19133988]
[13]
Testa, B.; Pedretti, A.; Vistoli, G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov. Today, 2012, 17(11-12), 549-560.
[http://dx.doi.org/10.1016/j.drudis.2012.01.017] [PMID: 22305937]
[14]
Almazroo, O.A.; Miah, M.K.; Venkataramanan, R. Drug metabolism in the liver. Clin. Liver Dis., 2017, 21(1), 1-20.
[http://dx.doi.org/10.1016/j.cld.2016.08.001] [PMID: 27842765]
[15]
Zhang, T.; Zhao, M.; Lu, D.; Wang, S.; Yu, F.; Guo, L.; Wen, S.; Wu, B. REV-ERB α Regulates CYP7A1 through repression of liver receptor homolog-1. Drug Metab. Dispos., 2018, 46(3), 248-258.
[http://dx.doi.org/10.1124/dmd.117.078105] [PMID: 29237721]
[16]
Yu, F.; Zhang, T.; Guo, L.; Wu, B. Liver receptor homolog-1 regulates organic anion transporter 2 and docetaxel pharmacokinetics. Drug Metab. Dispos., 2018, 46(7), 980-988.
[http://dx.doi.org/10.1124/dmd.118.080895] [PMID: 29669824]
[17]
Okabe, T.; Chavan, R.; Costa, S.S.F.; Brenna, A.; Ripperger, J.A.; Albrecht, U. REV-ERBα influences stability and nuclear localization of the glucocorticoid receptor. J. Cell Sci., 2016, 129(21), 4143-4154.
[http://dx.doi.org/10.1242/jcs.190959] [PMID: 27686098]
[18]
Pascussi, J.M.; Drocourt, L.; Gerbal-Chaloin, S.; Fabre, J.M.; Maurel, P.; Vilarem, M.J. Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes. Eur. J. Biochem., 2001, 268(24), 6346-6358.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02540.x] [PMID: 11737189]
[19]
Gerbal-Chaloin, S.; Daujat, M.; Pascussi, J.M.; Pichard-Garcia, L.; Vilarem, M.J.; Maurel, P. Transcriptional regulation of CYP2C9 gene. Role of glucocorticoid receptor and constitutive androstane receptor. J. Biol. Chem., 2002, 277(1), 209-217.
[http://dx.doi.org/10.1074/jbc.M107228200] [PMID: 11679585]
[20]
Zhao, M.; Zhang, T.; Yu, F.; Guo, L.; Wu, B. E4bp4 regulates carboxylesterase 2 enzymes through repression of the nuclear receptor Rev-erbα in mice. Biochem. Pharmacol., 2018, 152, 293-301.
[http://dx.doi.org/10.1016/j.bcp.2018.04.005] [PMID: 29653076]
[21]
Takiguchi, T.; Tomita, M.; Matsunaga, N.; Nakagawa, H.; Koyanagi, S.; Ohdo, S. Molecular basis for rhythmic expression of CYP3A4 in serum-shocked HepG2 cells. Pharmacogenet. Genom., 2007, 17(12), 1047-1056.
[http://dx.doi.org/10.1097/FPC.0b013e3282f12a61] [PMID: 18004209]
[22]
Oh, J.H.; Lee, J.H.; Han, D.H.; Cho, S.; Lee, Y.J. Circadian clock is involved in regulation of hepatobiliary transport mediated by multidrug resistance-associated protein 2. J. Pharm. Sci., 2017, 106(9), 2491-2498.
[http://dx.doi.org/10.1016/j.xphs.2017.04.071] [PMID: 28479363]
[23]
Murakami, Y; Higashi, Y; Matsunaga, N; Koyanagi, S; Ohdo, S Circadian clock-controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology, 2008, 135(5), 1636-1644.
[http://dx.doi.org/10.1053/j.gastro.2008.07.073]
[24]
Duez, H.; van der Veen, J.N.; Duhem, C.; Pourcet, B.; Touvier, T.; Fontaine, C.; Derudas, B.; Baugé, E.; Havinga, R.; Bloks, V.W.; Wolters, H.; van der Sluijs, F.H.; Vennström, B.; Kuipers, F.; Staels, B. Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha. Gastroenterology, 2008, 135(2), 689-698.
[http://dx.doi.org/10.1053/j.gastro.2008.05.035] [PMID: 18565334]
[25]
Liu, D.; Zhang, C.L.; Yang, Y.; Xiang, D.C.; Gao, J.; Wang, X.T. Expression and metabolic activity of carboxylesterases in human colorectal carcinoma Caco-2 cells. World Chin. J. Digesto., 2010, 18(3), 294-297.
[http://dx.doi.org/10.11569/wcjd.v18.i3.294]
[26]
Liu, D.; Zhang, C.; Xiang, D.; Xu, Y. Effect of CES2 in rat liver and intestines on the site-specific metabolism of lrinotecan. Med. Rev., 2011, 30, 166-170.
[http://dx.doi.org/10.3870/yydb.2011.02.009]
[27]
Zhang, L.; Zhang, F.; Xiao, Y.; Du, J.; Zhang, X.; Chen, M.; Wu, B. The nuclear receptor REV-ERBα regulates CYP2E1 expression and acetaminophen hepatotoxicity. Xenobiotica, 2022, 52(6), 633-643.
[http://dx.doi.org/10.1080/00498254.2022.2128934] [PMID: 36149338]
[28]
Chen, M.; Guan, B.; Xu, H.; Yu, F.; Zhang, T.; Wu, B. The molecular mechanism regulating diurnal rhythm of flavin-containing monooxygenase 5 in mouse liver. Drug Metab. Dispos., 2019, 47(11), 1333-1342.
[http://dx.doi.org/10.1124/dmd.119.088450] [PMID: 31515204]
[29]
Zhao, M.; Zhao, H.; Deng, J.; Guo, L.; Wu, B. Role of the CLOCK protein in liver detoxification. Br. J. Pharmacol., 2019, 176(24), 4639-4652.
[http://dx.doi.org/10.1111/bph.14828] [PMID: 31404943]
[30]
Chen, M.; Chen, M.; Lu, D.; Wang, Y.; Zhang, L.; Wang, Z.; Wu, B. Period 2 regulates CYP2B10 expression and activity in mouse liver. Front. Pharmacol., 2021, 12, 764124.
[http://dx.doi.org/10.3389/fphar.2021.764124] [PMID: 34887762]
[31]
Zhang, T.; Yu, F.; Guo, L.; Chen, M.; Yuan, X.; Wu, B. Small heterodimer partner regulates circadian cytochromes p450 and drug-induced hepatotoxicity. Theranostics, 2018, 8(19), 5246-5258.
[http://dx.doi.org/10.7150/thno.28676] [PMID: 30555544]
[32]
Mackenzie, P.I.; Owens, I.S.; Burchell, B.; Bock, K.W.; Bairoch, A.; Bélanger, A.; Gigleux, S.F.; Green, M.; Hum, D.W.; Iyanagi, T.; Lancet, D.; Louisot, P.; Magdalou, J.; Roy Chowdhury, J.; Ritter, J.K.; Tephly, T.R.; Schachter, H.; Tephly, T.; Tipton, K.F.; Nebert, D.W. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics, 1997, 7(4), 255-269.
[http://dx.doi.org/10.1097/00008571-199708000-00001] [PMID: 9295054]
[33]
Meech, R.; Hu, D.G.; McKinnon, R.A.; Mubarokah, S.N.; Haines, A.Z.; Nair, P.C.; Rowland, A.; Mackenzie, P.I. The UDP-Glycosyltransferase (UGT) Superfamily: New members, new functions, and novel paradigms. Physiol. Rev., 2019, 99(2), 1153-1222.
[http://dx.doi.org/10.1152/physrev.00058.2017] [PMID: 30724669]
[34]
Steventon, G. Uridine diphosphate glucuronosyltransferase 1A1. Xenobiotica, 2020, 50(1), 64-76.
[http://dx.doi.org/10.1080/00498254.2019.1617910] [PMID: 31092094]
[35]
Liu, W.; Li, J.; Zhao, R.; Lu, Y.; Huang, P. The Uridine diphosphate (UDP)-glycosyltransferases (UGTs) superfamily: the role in tumor cell metabolism. Front. Oncol., 2023, 12, 1088458.
[http://dx.doi.org/10.3389/fonc.2022.1088458] [PMID: 36741721]
[36]
Erichsen, T.J.; Ehmer, U.; Kalthoff, S.; Lankisch, T.O.; Müller, T.M.; Munzel, P.A.; Manns, M.P.; Strassburg, C.P. Genetic variability of aryl hydrocarbon receptor (AhR)-mediated regulation of the human UDP glucuronosyltransferase (UGT) 1A4 gene. Toxicol. Appl. Pharmacol., 2008, 230(2), 252-260.
[http://dx.doi.org/10.1016/j.taap.2008.02.020] [PMID: 18433817]
[37]
Sugatani, J.; Kojima, H.; Ueda, A.; Kakizaki, S.; Yoshinari, K.; Gong, Q.H.; Owens, I.S.; Negishi, M.; Sueyoshi, T. The phenobarbital response enhancer module in the human bilirubin UDP-glucuronosyltransferase UGT1A1 gene and regulation by the nuclear receptor CAR. Hepatology, 2001, 33(5), 1232-1238.
[http://dx.doi.org/10.1053/jhep.2001.24172] [PMID: 11343253]
[38]
Senekeo-Effenberger, K.; Chen, S.; Brace-Sinnokrak, E.; Bonzo, J.A.; Yueh, M.F.; Argikar, U.; Kaeding, J.; Trottier, J.; Remmel, R.P.; Ritter, J.K.; Barbier, O.; Tukey, R.H. Expression of the human UGT1 locus in transgenic mice by 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (WY-14643) and implications on drug metabolism through peroxisome proliferator-activated receptor alpha activation. Drug Metab. Dispos., 2007, 35(3), 419-427.
[http://dx.doi.org/10.1124/dmd.106.013243] [PMID: 17151188]
[39]
Mackenzie, P.I.; Hu, D.G.; Gardner-Stephen, D.A. The regulation of UDP-glucuronosyltransferase genes by tissue-specific and ligand-activated transcription factors. Drug Metab. Rev., 2010, 42(1), 99-109.
[http://dx.doi.org/10.3109/03602530903209544] [PMID: 20070244]
[40]
Bernard, O.; Guillemette, C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab. Dispos., 2004, 32(8), 775-778.
[http://dx.doi.org/10.1124/dmd.32.8.775] [PMID: 15258099]
[41]
Cui, C.; Shu, C.; Cao, D.; Yang, Y.; Liu, J.; Shi, S.; Shao, Z.; Wang, N.; Yang, T.; Liang, H.; Zou, S.; Hu, S. UGT1A1*6, UGT1A7*3 and UGT1A9*1b polymorphisms are predictive markers for severe toxicity in patients with metastatic gastrointestinal cancer treated with irinotecan-based regimens. Oncol. Lett., 2016, 12(5), 4231-4237.
[http://dx.doi.org/10.3892/ol.2016.5130] [PMID: 27895797]
[42]
Xu, H.; Chen, M.; Yu, F.; Zhang, T.; Wu, B. Circadian clock component rev-erb α regulates diurnal rhythm of udp-glucuronosyltransferase 1a9 and drug glucuronidation in mice. Drug Metab. Dispos., 2020, 48(8), 681-689.
[http://dx.doi.org/10.1124/dmd.120.000030] [PMID: 32527940]
[43]
Zhang, T.; Guo, L.; Yu, F.; Chen, M.; Wu, B. The nuclear receptor Rev-erbα participates in circadian regulation of Ugt2b enzymes in mice. Biochem. Pharmacol., 2019, 161, 89-97.
[http://dx.doi.org/10.1016/j.bcp.2019.01.010] [PMID: 30639455]
[44]
Noh, K.; Chow, E.C.Y.; Quach, H.P.; Groothuis, G.M.M.; Tirona, R.G.; Pang, K.S. Significance of the vitamin D receptor on crosstalk with nuclear receptors and regulation of enzymes and transporters. AAPS J., 2022, 24(4), 71.
[http://dx.doi.org/10.1208/s12248-022-00719-9] [PMID: 35650371]
[45]
Xie, A.; Robles, R.J.; Mukherjee, S.; Zhang, H.; Feldbrügge, L.; Csizmadia, E.; Wu, Y.; Enjyoji, K.; Moss, A.C.; Otterbein, L.E.; Quintana, F.J.; Robson, S.C.; Longhi, M.S. HIF-1α-induced xenobiotic transporters promote Th17 responses in Crohn’s disease. J. Autoimmun., 2018, 94, 122-133.
[http://dx.doi.org/10.1016/j.jaut.2018.07.022] [PMID: 30098863]
[46]
Okyar, A.; Kumar, S.A.; Filipski, E.; Piccolo, E.; Ozturk, N.; Xandri-Monje, H.; Pala, Z.; Abraham, K.; Gomes, A.R.G.J.; Orman, M.N.; Li, X.M.; Dallmann, R.; Lévi, F.; Ballesta, A. Sex-, feeding-, and circadian time-dependency of P-glycoprotein expression and activity - implications for mechanistic pharmacokinetics modeling. Sci. Rep., 2019, 9(1), 10505.
[http://dx.doi.org/10.1038/s41598-019-46977-0] [PMID: 31324853]
[47]
Iwasaki, M.; Koyanagi, S.; Suzuki, N.; Katamune, C.; Matsunaga, N.; Watanabe, N.; Takahashi, M.; Izumi, T.; Ohdo, S. Circadian modulation in the intestinal absorption of P-glycoprotein substrates in monkeys. Mol. Pharmacol., 2015, 88(1), 29-37.
[http://dx.doi.org/10.1124/mol.114.096735] [PMID: 25901027]
[48]
Zhou, C.; Yu, F.; Zeng, P.; Zhang, T.; Huang, H.; Chen, W.; Wu, B. Circadian sensitivity to the cardiac glycoside oleandrin is associated with diurnal intestinal P-glycoprotein expression. Biochem. Pharmacol., 2019, 169, 113622.
[http://dx.doi.org/10.1016/j.bcp.2019.08.024] [PMID: 31472126]
[49]
Yu, F.; Zhang, T.; Zhou, C.; Xu, H.; Guo, L.; Chen, M.; Wu, B. The circadian clock gene bmal1 controls intestinal exporter MRP2 and drug disposition. Theranostics, 2019, 9(10), 2754-2767.
[http://dx.doi.org/10.7150/thno.33395] [PMID: 31244920]
[50]
Wu, C.; Xiao, Y.; Wu, C.; Xie, D.; Luo, M.; Yao, D.; Chen, M.; Lu, D. Regulation of BCRP expression and sulfasalazine pharmacokinetics by the nuclear receptor REV-ERBα. Xenobiotica, 2023, 53(3), 215-222.
[http://dx.doi.org/10.1080/00498254.2023.2200839] [PMID: 37039301]
[51]
Alves-Bezerra, M.; Cohen, D.E. Triglyceride metabolism in the liver. Compr. Physiol., 2017, 8(1), 1-8.
[http://dx.doi.org/10.1002/cphy.c170012] [PMID: 29357123]
[52]
Pan, X.; Mota, S.; Zhang, B. Circadian clock regulation on lipid metabolism and metabolic diseases. Adv. Exp. Med. Biol., 2020, 1276, 53-66.
[http://dx.doi.org/10.1007/978-981-15-6082-8_5] [PMID: 32705594]
[53]
Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice. Int. J. Mol. Sci., 2020, 21(6), 2061.
[http://dx.doi.org/10.3390/ijms21062061] [PMID: 32192216]
[54]
Jager, J.; Wang, F.; Fang, B.; Lim, H.W.; Peed, L.C.; Steger, D.J.; Won, K.J.; Kharitonenkov, A.; Adams, A.C.; Lazar, M.A. The nuclear receptor rev-erbα regulates adipose tissue-specific FGF21 signaling. J. Biol. Chem., 2016, 291(20), 10867-10875.
[http://dx.doi.org/10.1074/jbc.M116.719120] [PMID: 27002153]
[55]
Yang, Z.; Tsuchiya, H.; Zhang, Y.; Lee, S.; Liu, C.; Huang, Y.; Vargas, G.M.; Wang, L. REV-ERBα activates C/EBP homologous protein to control small heterodimer partner–mediated oscillation of alcoholic fatty liver. Am. J. Pathol., 2016, 186(11), 2909-2920.
[http://dx.doi.org/10.1016/j.ajpath.2016.07.014] [PMID: 27664470]
[56]
Ni, Y.; Nan, S.; Zheng, L.; Zhang, L.; Zhao, Y.; Fu, Z. Time-dependent effect of REV-ERBα agonist SR9009 on nonalcoholic steatohepatitis and gut microbiota in mice. Chronobiol. Int., 2023, 40(6), 769-782.
[http://dx.doi.org/10.1080/07420528.2023.2207649] [PMID: 37161366]
[57]
Sitaula, S.; Zhang, J.; Ruiz, F.; Burris, T.P. Rev-erb regulation of cholesterologenesis. Biochem. Pharmacol., 2017, 131, 68-77.
[http://dx.doi.org/10.1016/j.bcp.2017.02.006] [PMID: 28213272]
[58]
Cobbina, E.; Akhlaghi, F. Non-alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev., 2017, 49(2), 197-211.
[http://dx.doi.org/10.1080/03602532.2017.1293683] [PMID: 28303724]
[59]
Zhong, D.; Cai, J.; Hu, C.; Chen, J.; Zhang, R.; Fan, C.; Li, S.; Zhang, H.; Xu, Z.; Jia, Z.; Guo, D.; Sun, Y. Inhibition of mPGES-2 ameliorates NASH by activating NR1D1 via heme. Hepatology, 2023, 78(2), 547-561.
[http://dx.doi.org/10.1002/hep.32671] [PMID: 35839302]
[60]
Yan, H.; Niimi, M.; Matsuhisa, F.; Zhou, H.; Kitajima, S.; Chen, Y.; Wang, C.; Yang, X.; Yao, J.; Yang, D.; Zhang, J.; Murakami, M.; Nakajima, K.; Wang, Y.; Liu, E.; Liang, J.; Chen, Y.E.; Fan, J. Apolipoprotein CIII deficiency protects against atherosclerosis in knockout rabbits. Arterioscler. Thromb. Vasc. Biol., 2020, 40(9), 2095-2107.
[http://dx.doi.org/10.1161/ATVBAHA.120.314368] [PMID: 32757647]
[61]
Raspé, E.; Duez, H.; Gervois, P.; Fiévet, C.; Fruchart, J.C.; Besnard, S.; Mariani, J.; Tedgui, A.; Staels, B. Transcriptional regulation of apolipoprotein C-III gene expression by the orphan nuclear receptor RORalpha. J. Biol. Chem., 2001, 276(4), 2865-2871.
[http://dx.doi.org/10.1074/jbc.M004982200] [PMID: 11053433]
[62]
Coste, H.; Rodríguez, J.C. Orphan nuclear hormone receptor Rev-erbalpha regulates the human apolipoprotein CIII promoter. J. Biol. Chem., 2002, 277(30), 27120-27129.
[http://dx.doi.org/10.1074/jbc.M203421200] [PMID: 12021280]
[63]
Kumar, N.; Solt, L.A.; Wang, Y.; Rogers, P.M.; Bhattacharyya, G.; Kamenecka, T.M.; Stayrook, K.R.; Crumbley, C.; Floyd, Z.E.; Gimble, J.M.; Griffin, P.R.; Burris, T.P. Regulation of adipogenesis by natural and synthetic REV-ERB ligands. Endocrinology, 2010, 151(7), 3015-3025.
[http://dx.doi.org/10.1210/en.2009-0800] [PMID: 20427485]
[64]
Le Martelot, G.; Claudel, T.; Gatfield, D.; Schaad, O.; Kornmann, B.; Sasso, G.L.; Moschetta, A.; Schibler, U. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol., 2009, 7(9), e1000181.
[http://dx.doi.org/10.1371/journal.pbio.1000181] [PMID: 19721697]
[65]
Chiang, J.Y.L.; Ferrell, J.M. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am. J. Physiol. Gastrointest. Liver Physiol., 2020, 318(3), G554-G573.
[http://dx.doi.org/10.1152/ajpgi.00223.2019] [PMID: 31984784]
[66]
Xing, C.; Huang, X.; Zhang, Y.; Zhang, C.; Wang, W.; Wu, L.; Ding, M.; Zhang, M.; Song, L. Sleep disturbance induces increased cholesterol level by NR1D1 mediated CYP7A1 inhibition. Front. Genet., 2020, 11, 610496.
[http://dx.doi.org/10.3389/fgene.2020.610496] [PMID: 33424933]
[67]
Li, W.K.; Li, H.; Lu, Y.F.; Li, Y.Y.; Fu, Z.D.; Liu, J. Atorvastatin alters the expression of genes related to bile acid metabolism and circadian clock in livers of mice. PeerJ, 2017, 5, e3348.
[http://dx.doi.org/10.7717/peerj.3348] [PMID: 28533986]
[68]
Wang, D.; Hartmann, K.; Seweryn, M.; Sadee, W. Interactions between regulatory variants in CYP7A1 (cholesterol 7α-hydroxylase) promoter and enhancer regions regulate CYP7A1 expression. Circ. Genom. Precis. Med., 2018, 11(10), e002082.
[http://dx.doi.org/10.1161/CIRCGEN.118.002082] [PMID: 30354296]
[69]
Huising, M.O. Paracrine regulation of insulin secretion. Diabetologia, 2020, 63(10), 2057-2063.
[http://dx.doi.org/10.1007/s00125-020-05213-5] [PMID: 32894316]
[70]
Rahim, M.; Hasenour, C.M.; Bednarski, T.K.; Hughey, C.C.; Wasserman, D.H.; Young, J.D. Multitissue 2H/13C flux analysis reveals reciprocal upregulation of renal gluconeogenesis in hepatic PEPCK-C–knockout mice. JCI Insight, 2021, 6(12), e149278.
[http://dx.doi.org/10.1172/jci.insight.149278] [PMID: 34156032]
[71]
Li, X.; Xu, M.; Wang, F.; Ji, Y.; DavidsoN, W.S.; Li, Z.; Tso, P. Interaction of ApoA-IV with NR4A1 and NR1D1 represses G6Pase and PEPCK transcription: Nuclear receptor-mediated downregulation of hepatic gluconeogenesis in mice and a human hepatocyte cell line. PLoS One, 2015, 10(11), e0142098.
[http://dx.doi.org/10.1371/journal.pone.0142098] [PMID: 26556724]
[72]
Chini, C.C.S.; Escande, C.; Nin, V.; Chini, E.N. DBC1 (Deleted in Breast Cancer 1) modulates the stability and function of the nuclear receptor Rev-erbα. Biochem. J., 2013, 451(3), 453-461.
[http://dx.doi.org/10.1042/BJ20121085] [PMID: 23398316]
[73]
Nin, V.; Chini, C.C.S.; Escande, C.; Capellini, V.; Chini, E.N. Deleted in breast cancer 1 (DBC1) protein regulates hepatic gluconeogenesis. J. Biol. Chem., 2014, 289(9), 5518-5527.
[http://dx.doi.org/10.1074/jbc.M113.512913] [PMID: 24415752]
[74]
Vieira, E.; Marroquí, L.; Figueroa, A.L.C.; Merino, B.; Fernandez-Ruiz, R.; Nadal, A.; Burris, T.P.; Gomis, R.; Quesada, I. Involvement of the clock gene Rev-erb alpha in the regulation of glucagon secretion in pancreatic alpha-cells. PLoS One, 2013, 8(7), e69939.
[http://dx.doi.org/10.1371/journal.pone.0069939] [PMID: 23936124]
[75]
Yuan, X.; Dong, D.; Li, Z.; Wu, B. Rev-erbα activation down-regulates hepatic Pck1 enzyme to lower plasma glucose in mice. Pharmacol. Res., 2019, 141, 310-318.
[http://dx.doi.org/10.1016/j.phrs.2019.01.010] [PMID: 30639375]
[76]
Schnurr, T.M.; Jakupović, H.; Carrasquilla, G.D.; Ängquist, L.; Grarup, N.; Sørensen, T.I.A.; Tjønneland, A.; Overvad, K.; Pedersen, O.; Hansen, T.; Kilpeläinen, T.O. Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: A case-cohort study. Diabetologia, 2020, 63(7), 1324-1332.
[http://dx.doi.org/10.1007/s00125-020-05140-5] [PMID: 32291466]
[77]
Ge, Q.; Qi, Z.; Xu, Z.; Li, M.; Zheng, H.; Duan, X.; Chu, M.; Zhuang, X. Comparison of different obesity indices related with hypertension among different sex and age groups in China. Nutr. Metab. Cardiovasc. Dis., 2021, 31(3), 793-801.
[http://dx.doi.org/10.1016/j.numecd.2020.11.022] [PMID: 33549448]
[78]
Chertow, G.M.; Hsu, C.; Johansen, K.L. The enlarging body of evidence: Obesity and chronic kidney disease. J. Am. Soc. Nephrol., 2006, 17(6), 1501-1502.
[http://dx.doi.org/10.1681/ASN.2006040327] [PMID: 16672317]
[79]
Li, Y.; Ma, J.; Yao, K.; Su, W.; Tan, B.; Wu, X.; Huang, X.; Li, T.; Yin, Y.; Tosini, G.; Yin, J. Circadian rhythms and obesity: Timekeeping governs lipid metabolism. J. Pineal Res., 2020, 69(3), e12682.
[http://dx.doi.org/10.1111/jpi.12682] [PMID: 32656907]
[80]
Logan, R.W.; McClung, C.A. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat. Rev. Neurosci., 2019, 20(1), 49-65.
[http://dx.doi.org/10.1038/s41583-018-0088-y] [PMID: 30459365]
[81]
Froy, O. Metabolism and circadian rhythms--implications for obesity. Endocr. Rev., 2010, 31(1), 1-24.
[http://dx.doi.org/10.1210/er.2009-0014] [PMID: 19854863]
[82]
Hernández-García, J.; Navas-Carrillo, D.; Orenes-Piñero, E. Alterations of circadian rhythms and their impact on obesity, metabolic syndrome and cardiovascular diseases. Crit. Rev. Food Sci. Nutr., 2020, 60(6), 1038-1047.
[http://dx.doi.org/10.1080/10408398.2018.1556579] [PMID: 30633544]
[83]
Crislip, G.R.; Johnston, J.G.; Douma, L.G.; Costello, H.M.; Juffre, A.; Boyd, K.; Li, W.; Maugans, C.C.; Gutierrez-Monreal, M.; Esser, K.A.; Bryant, A.J.; Liu, A.C.; Gumz, M.L. Circadian rhythm effects on the molecular regulation of physiological systems. Compr. Physiol., 2021, 12(1), 2769-2798.
[http://dx.doi.org/10.1002/cphy.c210011] [PMID: 34964116]
[84]
Patke, A.; Young, M.W.; Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol., 2020, 21(2), 67-84.
[http://dx.doi.org/10.1038/s41580-019-0179-2] [PMID: 31768006]
[85]
Teboul, M.; Delaunay, F. The orphan nuclear receptor Rev-erb alpha is a major component of the circadian clock. Med. Sci., 2003, 19(4), 411-413.
[http://dx.doi.org/10.1051/medsci/2003194411] [PMID: 12836212]
[86]
Vieira, E.; Ruano, E.; Figueroa, A.L.; Aranda, G.; Momblan, D.; Carmona, F.; Gomis, R.; Vidal, J.; Hanzu, F.A. Altered clock gene expression in obese visceral adipose tissue is associated with metabolic syndrome. PLoS One, 2014, 9(11), e111678.
[http://dx.doi.org/10.1371/journal.pone.0111678] [PMID: 25365257]
[87]
Goumidi, L.; Grechez, A.; Dumont, J.; Cottel, D.; Kafatos, A.; Moreno, L.A.; Molnar, D.; Moschonis, G.; Gottrand, F.; Huybrechts, I.; Dallongeville, J.; Amouyel, P.; Delaunay, F.; Meirhaeghe, A. Impact of REV-ERB alpha gene polymorphisms on obesity phenotypes in adult and adolescent samples. Int. J. Obes., 2013, 37(5), 666-672.
[http://dx.doi.org/10.1038/ijo.2012.117] [PMID: 22828941]
[88]
Garaulet, M.; Smith, C.E.; Gomez-Abellán, P.; Ordovás-Montañés, M.; Lee, Y.C.; Parnell, L.D.; Arnett, D.K.; Ordovás, J.M. REV-ERB-ALPHA circadian gene variant associates with obesity in two independent populations: Mediterranean and North American. Mol. Nutr. Food Res., 2014, 58(4), 821-829.
[http://dx.doi.org/10.1002/mnfr.201300361] [PMID: 24173768]
[89]
Ruano, E.G.; Canivell, S.; Vieira, E. REV-ERB ALPHA polymorphism is associated with obesity in the Spanish obese male population. PLoS One, 2014, 9(8), e104065.
[http://dx.doi.org/10.1371/journal.pone.0104065] [PMID: 25089907]
[90]
Kentish, S.J.; Vincent, A.D.; Kennaway, D.J.; Wittert, G.A.; Page, A.J. High-fat diet-induced obesity ablates gastric vagal afferent circadian rhythms. J. Neurosci., 2016, 36(11), 3199-3207.
[http://dx.doi.org/10.1523/JNEUROSCI.2710-15.2016] [PMID: 26985030]
[91]
Crew, R.C.; Waddell, B.J.; Mark, P.J. Obesity-induced changes in hepatic and placental clock gene networks in rat pregnancy. Biol. Reprod., 2018, 98(1), 75-88.
[http://dx.doi.org/10.1093/biolre/iox158] [PMID: 29186286]
[92]
Solt, L.A.; Wang, Y.; Banerjee, S.; Hughes, T.; Kojetin, D.J.; Lundasen, T.; Shin, Y.; Liu, J.; Cameron, M.D.; Noel, R.; Yoo, S.H.; Takahashi, J.S.; Butler, A.A.; Kamenecka, T.M.; Burris, T.P. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature, 2012, 485(7396), 62-68.
[http://dx.doi.org/10.1038/nature11030] [PMID: 22460951]
[93]
Wang, S.; Li, F.; Lin, Y.; Wu, B. Targeting REV-ERBα for therapeutic purposes: Promises and challenges. Theranostics, 2020, 10(9), 4168-4182.
[http://dx.doi.org/10.7150/thno.43834] [PMID: 32226546]
[94]
Yu, F.; Wang, Z.; Zhang, T.; Chen, X.; Xu, H.; Wang, F.; Guo, L.; Chen, M.; Liu, K.; Wu, B. Deficiency of intestinal Bmal1 prevents obesity induced by high-fat feeding. Nat. Commun., 2021, 12(1), 5323.
[http://dx.doi.org/10.1038/s41467-021-25674-5] [PMID: 34493722]
[95]
Rinella, M.E.; Loomba, R.; Caldwell, S.H.; Kowdley, K.; Charlton, M.; Tetri, B.; Harrison, S.A. Controversies in the diagnosis and management of NAFLD and NASH. Gastroenterol. Hepatol., 2014, 10(4), 219-227.
[PMID: 24976805]
[96]
Dongiovanni, P.; Anstee, Q.; Valenti, L. Genetic predisposition in NAFLD and NASH: Impact on severity of liver disease and response to treatment. Curr. Pharm. Des., 2013, 19(29), 5219-5238.
[http://dx.doi.org/10.2174/13816128113199990381] [PMID: 23394097]
[97]
Farrell, G.C.; Haczeyni, F.; Chitturi, S. Pathogenesis of NASH: How Metabolic complications of overnutrition favour lipotoxicity and pro-inflammatory fatty liver disease. Adv. Exp. Med. Biol., 2018, 1061, 19-44.
[http://dx.doi.org/10.1007/978-981-10-8684-7_3] [PMID: 29956204]
[98]
Griffett, K.; Bedia-Diaz, G.; Elgendy, B.; Burris, T.P. REV-ERB agonism improves liver pathology in a mouse model of NASH. PLoS One, 2020, 15(10), e0236000.
[http://dx.doi.org/10.1371/journal.pone.0236000] [PMID: 33002003]
[99]
Mridha, A.R.; Wree, A.; Robertson, A.A.B.; Yeh, M.M.; Johnson, C.D.; Van Rooyen, D.M.; Haczeyni, F.; Teoh, N.C.H.; Savard, C.; Ioannou, G.N.; Masters, S.L.; Schroder, K.; Cooper, M.A.; Feldstein, A.E.; Farrell, G.C. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol., 2017, 66(5), 1037-1046.
[http://dx.doi.org/10.1016/j.jhep.2017.01.022] [PMID: 28167322]
[100]
Wang, S.; Lin, Y.; Yuan, X.; Li, F.; Guo, L.; Wu, B. REV-ERBα integrates colon clock with experimental colitis through regulation of NF-κB/NLRP3 axis. Nat. Commun., 2018, 9(1), 4246.
[http://dx.doi.org/10.1038/s41467-018-06568-5] [PMID: 30315268]
[101]
Pourcet, B.; Zecchin, M.; Ferri, L.; Beauchamp, J.; Sitaula, S.; Billon, C.; Delhaye, S.; Vanhoutte, J.; Mayeuf-Louchart, A.; Thorel, Q.; Haas, J.T.; Eeckhoute, J.; Dombrowicz, D.; Duhem, C.; Boulinguiez, A.; Lancel, S.; Sebti, Y.; Burris, T.P.; Staels, B.; Duez, H.M. Nuclear receptor subfamily 1 group D member 1 regulates circadian activity of NLRP3 inflammasome to reduce the severity of fulminant hepatitis in mice. Gastroenterology, 2018, 154(5), 1449-1464.
[http://dx.doi.org/10.1053/j.gastro.2017.12.019] [PMID: 29277561]
[102]
Biddinger, S.B.; Almind, K.; Miyazaki, M.; Kokkotou, E.; Ntambi, J.M.; Kahn, C.R. Effects of diet and genetic background on sterol regulatory element-binding protein-1c, stearoyl-CoA desaturase 1, and the development of the metabolic syndrome. Diabetes, 2005, 54(5), 1314-1323.
[http://dx.doi.org/10.2337/diabetes.54.5.1314] [PMID: 15855315]
[103]
Biddinger, S.B.; Hernandez-Ono, A.; Rask-Madsen, C.; Haas, J.T.; Alemán, J.O.; Suzuki, R.; Scapa, E.F.; Agarwal, C.; Carey, M.C.; Stephanopoulos, G.; Cohen, D.E.; King, G.L.; Ginsberg, H.N.; Kahn, C.R. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab., 2008, 7(2), 125-134.
[http://dx.doi.org/10.1016/j.cmet.2007.11.013] [PMID: 18249172]
[104]
Croce, M.A.; Eagon, J.C.; LaRiviere, L.L.; Korenblat, K.M.; Klein, S.; Finck, B.N. Hepatic lipin 1beta expression is diminished in insulin-resistant obese subjects and is reactivated by marked weight loss. Diabetes, 2007, 56(9), 2395-2399.
[http://dx.doi.org/10.2337/db07-0480] [PMID: 17563064]
[105]
Koo, S.H.; Satoh, H.; Herzig, S.; Lee, C.H.; Hedrick, S.; Kulkarni, R.; Evans, R.M.; Olefsky, J.; Montminy, M. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nat. Med., 2004, 10(5), 530-534.
[http://dx.doi.org/10.1038/nm1044] [PMID: 15107844]
[106]
Estall, J.L.; Ruas, J.L.; Choi, C.S.; Laznik, D.; Badman, M.; Maratos-Flier, E.; Shulman, G.I.; Spiegelman, B.M. PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erbα axis. Proc. Natl. Acad. Sci., 2009, 106(52), 22510-22515.
[http://dx.doi.org/10.1073/pnas.0912533106] [PMID: 20018698]
[107]
Chavan, R.; Preitner, N.; Okabe, T.; Strittmatter, L.M.; Xu, C.; Ripperger, J.A.; Pitteloud, N.; Albrecht, U. REV-ERBα regulates Fgf21 expression in the liver via hepatic nuclear factor 6. Biol. Open, 2017, 6(1), 1-7.
[http://dx.doi.org/10.1242/bio.021519] [PMID: 27875243]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy