Research Article

通过分析克罗恩病和结直肠癌的t细胞免疫反应来剖析肠道免疫稳态机制

卷 24, 期 5, 2024

发表于: 06 February, 2024

页: [422 - 440] 页: 19

弟呕挨: 10.2174/0115665232294568240201073417

价格: $65

摘要

克罗恩病(CD)和结直肠癌(CRC)是一类肠道疾病,其特点是与肠道免疫稳态破坏相关的复杂致病机制。因此,了解这两类肠道疾病的免疫反应机制对于预防和治疗这些使人衰弱的肠道疾病具有至关重要的意义。方法:在本研究中,我们对来自原发结直肠肿瘤和克罗恩病患者的配对样本进行单细胞分析,旨在解读肠道免疫微环境组成的影响因素。通过对不同组织中的T细胞进行比对,我们鉴定出各种T细胞亚型,如γδ T细胞、NK T细胞和调节性T (Treg)细胞,它们维持免疫系统的稳态,并在富集分析中得到证实。随后,我们生成了这两种综合征中T细胞亚群的伪时间轨迹,以描述它们的分化模式并确定关键驱动基因。结果:此外,细胞通信和转录因子调节网络都是调节肠道免疫稳态的复杂机制网络的重要组成部分。鉴定出的复杂细胞相互作用提示了针对CD和CRC中拷贝数变异(CNV)水平高的上皮细胞的潜在T系免疫治疗靶点。结论:最后,对调控网络的分析揭示了几个有希望的细胞特异性转录因子(TFs)候选者。本研究主要探讨肠道疾病的免疫分子机制。它有助于描绘详细的免疫景观和揭示CD和CRC中T细胞应答机制的新见解。

关键词: 克罗恩病,结直肠癌,免疫微环境,scRNA-seq, T细胞应答,体内平衡。

图形摘要
[1]
McDowell C, Farooq U, Haseeb M. Inflammatory Bowel Disease. Statpearls. Treasure Island 2023.
[2]
Ellul P, Schembri J, Baldacchino A, et al. Post-inflammatory polyp burden as a prognostic marker of disease-outcome in patients with inflammatory bowel disease. J Crohn’s Colitis 2023; 17(4): 489-96.
[http://dx.doi.org/10.1093/ecco-jcc/jjac169] [PMID: 36322687]
[3]
Dulai PS, Sandborn WJ, Gupta S. Colorectal cancer and dysplasia in inflammatory bowel disease: A review of disease epidemiology, pathophysiology, and management. Cancer Prev Res 2016; 9(12): 887-94.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0124] [PMID: 27679553]
[4]
Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 1990; 323(18): 1228-33.
[http://dx.doi.org/10.1056/NEJM199011013231802] [PMID: 2215606]
[5]
Beaugerie L, Itzkowitz SH. Cancers complicating inflammatory bowel disease. N Engl J Med 2015; 372(15): 1441-52.
[http://dx.doi.org/10.1056/NEJMra1403718] [PMID: 25853748]
[6]
Jess T, Loftus EV Jr, Velayos FS, et al. Risk of intestinal cancer in inflammatory bowel disease: A population-based study from olmsted county, Minnesota. Gastroenterology 2006; 130(4): 1039-46.
[http://dx.doi.org/10.1053/j.gastro.2005.12.037] [PMID: 16618397]
[7]
Weismüller TJ, Wedemeyer J, Kubicka S, Strassburg CP, Manns MP. The challenges in primary sclerosing cholangitis – Aetiopathogenesis, autoimmunity, management and malignancy. J Hepatol 2008; 48: S38-57.
[http://dx.doi.org/10.1016/j.jhep.2008.01.020] [PMID: 18304683]
[8]
Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. Am J Physiol Gastrointest Liver Physiol 2004; 287(1): G7-G17.
[http://dx.doi.org/10.1152/ajpgi.00079.2004] [PMID: 15194558]
[9]
Műzes G, Molnár B, Sipos F. Regulatory T cells in inflammatory bowel diseases and colorectal cancer. World J Gastroenterol 2012; 18(40): 5688-94.
[http://dx.doi.org/10.3748/wjg.v18.i40.5688] [PMID: 23155308]
[10]
Vaghari-Tabari M, Targhazeh N, Moein S, et al. From inflammatory bowel disease to colorectal cancer: What’s the role of miRNAs? Cancer Cell Int 2022; 22(1): 146.
[http://dx.doi.org/10.1186/s12935-022-02557-3] [PMID: 35410210]
[11]
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011; 474(7351): 307-17.
[http://dx.doi.org/10.1038/nature10209] [PMID: 21677747]
[12]
Sakuraba A, Sato T, Kamada N, Kitazume M, Sugita A, Hibi T. Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn’s disease. Gastroenterology 2009; 137(5): 1736-45.
[http://dx.doi.org/10.1053/j.gastro.2009.07.049] [PMID: 19632232]
[13]
Shah SC, Itzkowitz SH. Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology 2022; 162(3): 715-730.e3.
[http://dx.doi.org/10.1053/j.gastro.2021.10.035] [PMID: 34757143]
[14]
Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet 2017; 389(10080): 1741-55.
[http://dx.doi.org/10.1016/S0140-6736(16)31711-1] [PMID: 27914655]
[15]
Ashton JJ, Boukas K, Davies J, et al. Ileal transcriptomic analysis in paediatric crohn’s disease reveals IL17- and NOD- signalling expression signatures in treatment-naïve patients and identifies epithelial cells driving differentially expressed genes. J Crohn’s Colitis 2021; 15(5): 774-86.
[http://dx.doi.org/10.1093/ecco-jcc/jjaa236] [PMID: 33232439]
[16]
Lee HO, Hong Y, Etlioglu HE, et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat Genet 2020; 52(6): 594-603.
[http://dx.doi.org/10.1038/s41588-020-0636-z] [PMID: 32451460]
[17]
Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell 2021; 184(13): 3573-3587.e29.
[http://dx.doi.org/10.1016/j.cell.2021.04.048] [PMID: 34062119]
[18]
Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20(2): 163-72.
[http://dx.doi.org/10.1038/s41590-018-0276-y] [PMID: 30643263]
[19]
Hu C, Li T, Xu Y, et al. CellMarker 2.0: An updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res 2023; 51(D1): D870-6.
[http://dx.doi.org/10.1093/nar/gkac947] [PMID: 36300619]
[20]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[21]
Otasek D, Morris JH, Bouças J, Pico AR, Demchak B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol 2019; 20(1): 185.
[http://dx.doi.org/10.1186/s13059-019-1758-4] [PMID: 31477170]
[22]
Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344(6190): 1396-401.
[http://dx.doi.org/10.1126/science.1254257] [PMID: 24925914]
[23]
Chen K, Wang Y, Hou Y, et al. Single cell RNA-seq reveals the CCL5/SDC1 receptor-ligand interaction between T cells and tumor cells in pancreatic cancer. Cancer Lett 2022; 545: 215834.
[http://dx.doi.org/10.1016/j.canlet.2022.215834] [PMID: 35917973]
[24]
Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32(4): 381-6.
[http://dx.doi.org/10.1038/nbt.2859] [PMID: 24658644]
[25]
Garcia-Alonso L, Handfield LF, Roberts K, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat Genet 2021; 53(12): 1698-711.
[http://dx.doi.org/10.1038/s41588-021-00972-2] [PMID: 34857954]
[26]
Xu Q, Chen S, Hu Y, Huang W. Single-cell RNA transcriptome reveals the intra-tumoral heterogeneity and regulators underlying tumor progression in metastatic pancreatic ductal adenocarcinoma. Cell Death Discov 2021; 7(1): 331.
[http://dx.doi.org/10.1038/s41420-021-00663-1] [PMID: 34732701]
[27]
Aibar S, González-Blas CB, Moerman T, et al. SCENIC: Single-cell regulatory network inference and clustering. Nat Methods 2017; 14(11): 1083-6.
[http://dx.doi.org/10.1038/nmeth.4463] [PMID: 28991892]
[28]
Zheng Z, Yu T, Zhao X, Gao X, Zhao Y, Liu G. Intratumor heterogeneity: A new perspective on colorectal cancer research. Cancer Med 2020; 9(20): 7637-45.
[http://dx.doi.org/10.1002/cam4.3323] [PMID: 32853464]
[29]
Buikhuisen JY, Torang A, Medema JP. Exploring and modelling colon cancer inter-tumour heterogeneity: Opportunities and challenges. Oncogenesis 2020; 9(7): 66.
[http://dx.doi.org/10.1038/s41389-020-00250-6] [PMID: 32647253]
[30]
Lee RD, Munro SA, Knutson TP, LaRue RS, Heltemes-Harris LM, Farrar MA. Single-cell analysis identifies dynamic gene expression networks that govern B cell development and transformation. Nat Commun 2021; 12(1): 6843.
[http://dx.doi.org/10.1038/s41467-021-27232-5] [PMID: 34824268]
[31]
Zhang C, Li D, Yu R, et al. Immune landscape of gastric carcinoma tumor microenvironment identifies a peritoneal relapse relevant immune signature. Front Immunol 2021; 12: 651033.
[http://dx.doi.org/10.3389/fimmu.2021.651033] [PMID: 34054812]
[32]
Li G, Zhang B, Hao J, et al. Identification of novel population-specific cell subsets in chinese ulcerative colitis patients using single-cell RNA sequencing. Cell Mol Gastroenterol Hepatol 2021; 12(1): 99-117.
[http://dx.doi.org/10.1016/j.jcmgh.2021.01.020] [PMID: 33545427]
[33]
Yi H, Li G, Long Y, et al. Integrative multi-omics analysis of a colon cancer cell line with heterogeneous Wnt activity revealed RUNX2 as an epigenetic regulator of EMT. Oncogene 2020; 39(28): 5152-64.
[http://dx.doi.org/10.1038/s41388-020-1351-z] [PMID: 32535615]
[34]
Wang H, Gong P, Chen T, et al. Colorectal cancer stem cell states uncovered by simultaneous single-cell analysis of transcriptome and telomeres. Adv Sci 2021; 8(8): 2004320.
[http://dx.doi.org/10.1002/advs.202004320] [PMID: 33898197]
[35]
Devlin JC, Axelrad J, Hine AM, et al. Single-cell transcriptional survey of ileal-anal pouch immune cells from ulcerative colitis patients. Gastroenterology 2021; 160(5): 1679-93.
[http://dx.doi.org/10.1053/j.gastro.2020.12.030] [PMID: 33359089]
[36]
Sathe A, Grimes SM, Lau BT, et al. Single-cell genomic characterization reveals the cellular reprogramming of the gastric tumor microenvironment. Clin Cancer Res 2020; 26(11): 2640-53.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3231] [PMID: 32060101]
[37]
Wang R, Dang M, Harada K, et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma. Nat Med 2021; 27(1): 141-51.
[http://dx.doi.org/10.1038/s41591-020-1125-8] [PMID: 33398161]
[38]
Smillie CS, Biton M, Ordovas-Montanes J, et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 2019; 178(3): 714-730.e22.
[http://dx.doi.org/10.1016/j.cell.2019.06.029] [PMID: 31348891]
[39]
Zhang M, Hu S, Min M, et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut 2021; 70(3): 464-75.
[http://dx.doi.org/10.1136/gutjnl-2019-320368] [PMID: 32532891]
[40]
Fakih M, Ouyang C, Wang C, et al. Immune overdrive signature in colorectal tumor subset predicts poor clinical outcome. J Clin Invest 2019; 129(10): 4464-76.
[http://dx.doi.org/10.1172/JCI127046] [PMID: 31524634]
[41]
Okumura R, Takeda K. Maintenance of gut homeostasis by the mucosal immune system. Proc Jpn Acad, Ser B, Phys Biol Sci 2016; 92(9): 423-35.
[http://dx.doi.org/10.2183/pjab.92.423] [PMID: 27840390]
[42]
Hirsch D, Wangsa D, Zhu YJ, et al. Dynamics of genome alterations in crohn’s disease–associated colorectal carcinogenesis. Clin Cancer Res 2018; 24(20): 4997-5011.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0630] [PMID: 29967250]
[43]
Bonneville M, O’Brien RL, Born WK, Gammadelta T. γδ T cell effector functions: A blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10(7): 467-78.
[http://dx.doi.org/10.1038/nri2781] [PMID: 20539306]
[44]
Zhang N, Bevan MJ. CD8(+) T cells: Foot soldiers of the immune system. Immunity 2011; 35(2): 161-8.
[http://dx.doi.org/10.1016/j.immuni.2011.07.010] [PMID: 21867926]
[45]
Kim M, Min YK, Jang J, Park H, Lee S, Lee CH. Single-cell RNA sequencing reveals distinct cellular factors for response to immunotherapy targeting CD73 and PD-1 in colorectal cancer. J Immunother Cancer 2021; 9(7): e002503.
[http://dx.doi.org/10.1136/jitc-2021-002503] [PMID: 34253638]
[46]
Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J 2019; 17: 1-13.
[http://dx.doi.org/10.1016/j.csbj.2018.11.004] [PMID: 30581539]
[47]
Reis BS, Darcy PW, Khan IZ, et al. TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδ T cell subsets. Science 2022; 377(6603): 276-84.
[http://dx.doi.org/10.1126/science.abj8695] [PMID: 35857588]
[48]
Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017; 27(1): 109-18.
[http://dx.doi.org/10.1038/cr.2016.151] [PMID: 27995907]
[49]
Zhang L, Yu X, Zheng L, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 2018; 564(7735): 268-72.
[http://dx.doi.org/10.1038/s41586-018-0694-x] [PMID: 30479382]
[50]
Roda G, Jianyu X, Park MS, et al. Characterizing CEACAM5 interaction with CD8α and CD1d in intestinal homeostasis. Mucosal Immunol 2014; 7(3): 615-24.
[http://dx.doi.org/10.1038/mi.2013.80] [PMID: 24104458]
[51]
Saiz-Gonzalo G, Hanrahan N, Rossini V, et al. Regulation of CEACAM family members by IBD-associated triggers in intestinal epithelial cells, their correlation to inflammation and relevance to IBD pathogenesis. Front Immunol 2021; 12: 655960.
[http://dx.doi.org/10.3389/fimmu.2021.655960] [PMID: 34394073]
[52]
Cheng D, Semmens K, McManus E, et al. The nuclear transcription factor, TAF7, is a cytoplasmic regulator of protein synthesis. Sci Adv 2021; 7(50): eabi5751.
[http://dx.doi.org/10.1126/sciadv.abi5751] [PMID: 34890234]
[53]
Wang D, Diao H, Getzler AJ, et al. The transcription factor runx3 establishes chromatin accessibility of cis-regulatory landscapes that drive memory cytotoxic T lymphocyte formation. Immunity 2018; 48(4): 659-674.e6.
[http://dx.doi.org/10.1016/j.immuni.2018.03.028] [PMID: 29669249]
[54]
Ha F, Khalil H. Crohn’s disease: A clinical update. Therap Adv Gastroenterol 2015; 8(6): 352-9.
[http://dx.doi.org/10.1177/1756283X15592585] [PMID: 26557891]
[55]
Kong L, Pokatayev V, Lefkovith A, et al. The landscape of immune dysregulation in Crohn’s disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity 2023; 56(2): 444-458.e5.
[http://dx.doi.org/10.1016/j.immuni.2023.01.002] [PMID: 36720220]
[56]
Molinari C, Marisi G, Passardi A, Matteucci L, De Maio G, Ulivi P. Heterogeneity in colorectal cancer: A challenge for personalized medicine? Int J Mol Sci 2018; 19(12): 3733.
[http://dx.doi.org/10.3390/ijms19123733] [PMID: 30477151]
[57]
Fanelli GN, Dal Pozzo CA, Depetris I, et al. The heterogeneous clinical and pathological landscapes of metastatic Braf-mutated colorectal cancer. Cancer Cell Int 2020; 20(1): 30.
[http://dx.doi.org/10.1186/s12935-020-1117-2] [PMID: 32015690]
[58]
Schönefeldt S, Wais T, Herling M, et al. The diverse roles of γδ T cells in cancer: From rapid immunity to aggressive lymphoma. Cancers 2021; 13(24): 6212.
[http://dx.doi.org/10.3390/cancers13246212] [PMID: 34944832]
[59]
Uldrich AP, Le Nours J, Pellicci DG, et al. CD1d-lipid antigen recognition by the γδ TCR. Nat Immunol 2013; 14(11): 1137-45.
[http://dx.doi.org/10.1038/ni.2713] [PMID: 24076636]
[60]
De Rosa SC, Mitra DK, Watanabe N, Herzenberg LA, Herzenberg LA, Roederer M. Vδ1 and Vδ2 γδ T cells express distinct surface markers and might be developmentally distinct lineages. J Leukoc Biol 2001; 70(4): 518-26.
[http://dx.doi.org/10.1189/jlb.70.4.518] [PMID: 11590187]
[61]
Colombo MP, Piconese S. Regulatory T-cell inhibition versus depletion: The right choice in cancer immunotherapy. Nat Rev Cancer 2007; 7(11): 880-7.
[http://dx.doi.org/10.1038/nrc2250] [PMID: 17957190]
[62]
Park M, Kang KW, Kim JW. The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46(1): 1-17.
[http://dx.doi.org/10.1007/s12272-023-01427-4] [PMID: 36645575]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy