Review Article

Quantum Dot-based Bio-conjugates as an Emerging Bioimaging Tool for Cancer Theranostic- A Review

Author(s): Lipika Priya, Smit Mehta, Darshan Gevariya, Raghav Sharma, Drishti Panjwani, Shruti Patel, Priyanka Ahlawat, Abhay Dharamsi and Asha Patel*

Volume 25, Issue 4, 2024

Published on: 26 January, 2024

Page: [241 - 260] Pages: 20

DOI: 10.2174/0113894501283669240123105250

Price: $65

Abstract

Cancer is the most widely studied disorder in humans, but proper treatment has not yet been developed for it. Conventional therapies, like chemotherapy, radiation therapy, and surgery, have been employed. Such therapies target not only cancerous cells but also harm normal cells. Conventional therapy does not result in specific targeting and hence leads to severe side effects.

The main objective of this study is to explore the QDs. QDs are used as nanocarriers for diagnosis and treatment at the same time. They are based on the principle of theranostic approach. QDs can be conjugated with antibodies via various methods that result in targeted therapy. This results in their dual function as a diagnostic and therapeutic tool. Nanotechnology involving such nanocarriers can increase the specificity and reduce the side effects, leaving the normal cells unaffected.

This review pays attention to different methods for synthesising QDs. QDs can be obtained using either organic method and synthetic methods. It was found that QDs synthesised naturally are more feasible than the synthetic process. Top or bottom-up approaches have also emerged for the synthesis of QDs. QDs can be conjugated with an antibody via non-covalent and covalent binding. Covalent binding is much more feasible than any other method. Zero-length coupling plays an important role as EDC (1-Ethyl-3-Ethyl dimethylaminopropyl)carbodiimide is a strong crosslinker and is widely used for conjugating molecules. Antibodies work as surface ligands that lead to antigen- antibody interaction, resulting in site-specific targeting and leaving behind the normal cells unaffected. Cellular uptake of the molecule is done by either passive targeting or active targeting.

QDs are tiny nanocrystals that are inorganic in nature and vary in size and range. Based on different sizes, they emit light of specific wavelengths. They have their own luminescent and optical properties that lead to the monitoring, imaging, and transport of the therapeutic moiety to a variety of targets in the body. The surface of the QDs is modified to boost their functioning. They act as a tool for diagnosis, imaging, and delivery of therapeutic moieties. For improved therapeutic effects, nanotechnology leads the cellular uptake of nanoparticles via passive targeting or active targeting. It is a crucial platform that not only leads to imaging and diagnosis but also helps to deliver therapeutic moieties to specific sites. Therefore, this review concludes that there are numerous drawbacks to the current cancer treatment options, which ultimately result in treatment failure. Therefore, nanotechnology that involves such a nanocarrier will serve as a tool for overcoming all limitations of the traditional therapeutic approach. This approach helps in reducing the dose of anticancer agents for effective treatment and hence improving the therapeutic index. QDs can not only diagnose a disease but also deliver drugs to the cancerous site.

Keywords: QDs, theranostic, drug delivery, cancer targeting, nanotechnology, targeted drug delivery, quantum dot, conjugate.

Graphical Abstract
[1]
Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2020; 70(4): 313-3.
[http://dx.doi.org/10.3322/caac.21609] [PMID: 32767693]
[2]
Trastuzumab-decorated nanoparticles of biodegradable polymers for targeted small molecule chemotherapy. 2009. Available from:https://scholarbank.nus.edu.sg/handle/10635/17389
[3]
Bukhari SZ, Zeth K, Iftikhar M, et al. Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics. Curr Res Pharmacol Drug Discov 2021; 2: 100067.
[http://dx.doi.org/10.1016/j.crphar.2021.100067] [PMID: 34909685]
[4]
Anand U, Dey A, Chandel AKS, et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 2023; 10(4): 1367-401.
[http://dx.doi.org/10.1016/j.gendis.2022.02.007] [PMID: 37397557]
[5]
Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: Current perspectives and new challenges. ecancermedicalscience 2019; 13
[6]
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 2019; 6(1): 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[7]
Chehelgerdi M, Chehelgerdi M, Allela OQB, et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22(1): 169.
[http://dx.doi.org/10.1186/s12943-023-01865-0] [PMID: 37814270]
[8]
Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol Oncol 2021; 14(1)
[9]
Kurmi BD, Patel P, Paliwal R, Paliwal SR. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J Drug Deliv Sci Technol 2020; 57: 101682.
[http://dx.doi.org/10.1016/j.jddst.2020.101682]
[10]
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart nanomaterials in cancer theranostics: Challenges and opportunities. ACS Omega 2023; 8(16): 14290-320.
[http://dx.doi.org/10.1021/acsomega.2c07840] [PMID: 37125102]
[11]
Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther 2021; 6(1): 225.
[http://dx.doi.org/10.1038/s41392-021-00631-2] [PMID: 34099630]
[12]
Mansoori B, Mohammadi A, Amin Doustvandi M, et al. Photodynamic therapy for cancer: Role of natural products. Photodiagn Photodyn Ther 2019; 26: 395-404.
[http://dx.doi.org/10.1016/j.pdpdt.2019.04.033] [PMID: 31063860]
[13]
Gao D, Guo X, Zhang X, et al. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020; 5: 100035.
[http://dx.doi.org/10.1016/j.mtbio.2019.100035] [PMID: 32211603]
[14]
Lan M, Zhao S, Liu W, Lee CS, Zhang W, Wang P. Photosensitizers for photodynamic therapy. Adv Healthc Mater 2019; 8(13): 1900132.
[http://dx.doi.org/10.1002/adhm.201900132] [PMID: 31067008]
[15]
Kadkhoda J, Tarighatnia A, Barar J, Aghanejad A, Davaran S. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagn Photodyn Ther 2022; 37: 102697.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102697] [PMID: 34936918]
[16]
Paris JL, Villaverde G, Gómez-Graña S, Vallet-Regí M. Nanoparticles for multimodal antivascular therapeutics: Dual drug release, photothermal and photodynamic therapy. Acta Biomater 2020; 101: 459-68.
[http://dx.doi.org/10.1016/j.actbio.2019.11.004] [PMID: 31706040]
[17]
Madamsetty VS, Mukherjee A, Mukherjee S. Recent trends of the bio-inspired nanoparticles in cancer theranostics. Front Pharmacol 2019; 10: 1264.
[http://dx.doi.org/10.3389/fphar.2019.01264] [PMID: 31708785]
[18]
Siddique S, Chow JCL. Recent advances in functionalized nanoparticles in cancer theranostics. Nanomaterials 2022; 12(16): 2826.
[http://dx.doi.org/10.3390/nano12162826] [PMID: 36014691]
[19]
Gidwani B, Sahu V, Shukla SS, et al. Quantum dots: Prospectives, toxicity, advances and applications. J Drug Deliv Sci Technol 2021; 61: 102308.
[http://dx.doi.org/10.1016/j.jddst.2020.102308]
[20]
Liang Z, Khawar MB, Liang J, Sun H. Bio-conjugated Quantum Dots for cancer research: Detection and imaging. Front Oncol 2021; 11: 749970.
[http://dx.doi.org/10.3389/fonc.2021.749970] [PMID: 34745974]
[21]
Hamidu A, Pitt WG, Husseini GA. Recent breakthroughs in using quantum dots for cancer imaging and drug delivery purposes. Nanomaterials 2023; 13(18): 2566.
[http://dx.doi.org/10.3390/nano13182566] [PMID: 37764594]
[22]
Abdellatif AAH, Younis MA, Alsharidah M, Al Rugaie O, Tawfeek HM. Biomedical applications of Quantum Dots: Overview, challenges, and clinical potential. Int J Nanomedicine 2022; 17: 1951-70.
[http://dx.doi.org/10.2147/IJN.S357980] [PMID: 35530976]
[23]
Singh RD, Shandilya R, Bhargava A, et al. Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: From biology to clinical translation. Front Genet 2018; 9: 616.
[http://dx.doi.org/10.3389/fgene.2018.00616] [PMID: 30574163]
[24]
O’Donnell C, Mahmoud A, Keane J, et al. An antitumorigenic role for the IL-33 receptor, ST2L, in colon cancer. Br J Cancer 2016; 114(1): 37-43.
[http://dx.doi.org/10.1038/bjc.2015.433] [PMID: 26679377]
[25]
Marcelo G, Ariana-Machado J, Enea M, et al. Toxicological evaluation of luminescent silica nanoparticles as new drug nanocarriers in different cancer cell lines. Materials 2018; 11(8): 1310.
[http://dx.doi.org/10.3390/ma11081310] [PMID: 30060598]
[26]
Gu Z, Zhu S, Yan L, Zhao F, Zhao Y. Graphene-based smart platforms for combined cancer therapy. Adv Mater 2019; 31(9): 1800662.
[http://dx.doi.org/10.1002/adma.201800662] [PMID: 30039878]
[27]
AbdElhamid AS, Helmy MW, Ebrahim SM, et al. Layer-by-layer gelatin/chondroitin quantum dots-based nanotheranostics: Combined rapamycin/celecoxib delivery and cancer imaging. Nanomedicine 2018; 13(14): 1707-30.
[http://dx.doi.org/10.2217/nnm-2018-0028]
[28]
Misra KP, Misra RD. Zno-based quantum dots for biosensing, cancer imaging and therapy: An overview. Biomed Mater Dev 2022; 1: 99-107.
[29]
Ko NR, Van SY, Hong SH, et al. Dual PH- and GSH-responsive degradable pegylated graphene quantum dot-based nanoparticles for enhanced HER2-positive breast cancer therapy. Nanomaterials 2020; 10(1): 91.
[http://dx.doi.org/10.3390/nano10010091] [PMID: 31906509]
[30]
Fakhroueian Z, Rajabi S, Salehi N, Tavirani MR, Noori S, Nourbakhsh M. Anticancer properties of novel zinc oxide quantum dot nanoparticles against breast cancer stem-like cells. Anticancer Drugs 2022; 33(1): e311-26.
[http://dx.doi.org/10.1097/CAD.0000000000001207] [PMID: 34419959]
[31]
Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018; 2018: 1-18.
[http://dx.doi.org/10.1155/2018/1062562] [PMID: 30073019]
[32]
Song T, Qu Y, Ren Z, et al. Synthesis and characterization of polyvinylpyrrolidone-modified zno quantum dots and their in vitro photodynamic tumor suppressive action. Int J Mol Sci 2021; 22(15): 8106.
[http://dx.doi.org/10.3390/ijms22158106] [PMID: 34360872]
[33]
Mousavi SM, Hashemi SA, Kalashgrani MY, et al. Bioactive graphene quantum dots based polymer composite for biomedical applications. Polymers 2022; 14(3): 617.
[http://dx.doi.org/10.3390/polym14030617] [PMID: 35160606]
[34]
Ali MK, Javaid S, Afzal H, et al. Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine. Environ Res 2023; 232: 116290.
[http://dx.doi.org/10.1016/j.envres.2023.116290] [PMID: 37295589]
[35]
Yuan G, Liang T, Liang Y, Pang X, Jia Z. The controlled growth of conjugated polymer-quantum dot nanocomposites via a unimolecular templating strategy. Chem Commun 2021; 57(10): 1250-3.
[http://dx.doi.org/10.1039/D0CC06498J] [PMID: 33427260]
[36]
Haitao Y. Conjugated polymer-quantum dot hybrid materials for pathogen discrimination and disinfection. ACS Appl Mater Interfaces 2020; 12(19): 21263-9.
[37]
Nagpal R, Gusain M. Synthesis methods of quantum dots. Graphene, Nanotubes and Quantum Dots-Based Nanotechnology. Woodhead Publishing 2022; pp. 599-630.
[38]
Morozova S, Alikina M, Vinogradov A, Pagliaro M. Silicon quantum dots: Synthesis, encapsulation, and application in light-emitting diodes. Front Chem 2020; 8: 191.
[http://dx.doi.org/10.3389/fchem.2020.00191] [PMID: 32318540]
[39]
Kulkarni NS, Guererro Y, Gupta N, Muth A, Gupta V. Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J Drug Deliv Sci Technol 2019; 49: 352-64.
[http://dx.doi.org/10.1016/j.jddst.2018.12.010]
[40]
Yujin C. Simple microwave-assisted synthesis of amphiphilic carbon quantum dots from A3/B2 polyamidation monomer set. ACS Appl Mater Interfaces 2017; 9(33): 27883-93.
[41]
Wilbrink JL, Huang CC, Dohnalova K, Paulusse JMJ. Critical assessment of wet-chemical oxidation synthesis of silicon quantum dots. Faraday Discuss 2020; 222(0): 149-65.
[http://dx.doi.org/10.1039/C9FD00099B] [PMID: 32104860]
[42]
Liu Q, Zheng C, Zhao H, Wang K, Tao W. Tumor cell pH detection based on CdSe quantum dots’ fluorescence charateristics. Technol Health Care 2019; 27(S1): 239-47.
[http://dx.doi.org/10.3233/THC-199023] [PMID: 31045543]
[43]
Pandey S, Mukherjee D, Kshirsagar P, Patra C, Bodas D. Multiplexed bio-imaging using cadmium telluride quantum dots synthesized by mathematically derived process parameters in a continuous flow active microreactor. Mater Today Bio 2021; 11: 100123.
[http://dx.doi.org/10.1016/j.mtbio.2021.100123] [PMID: 34458715]
[44]
Lodhi MS, Samra ZQ. Engineering quantum dot (cadmium sulfide) on antibodies for Fluoroimmunoassays. J Nanomater 2020; 2020: 1-12.
[http://dx.doi.org/10.1155/2020/4707123]
[45]
Khaledian S, Abdoli M, Fatahian R, Salehi Zahabi S. Quantum Dots in cancer cell imaging. Quantum Dots - Recent Advances, New Perspectives and Contemporary Applications. Intechopen 2023.
[http://dx.doi.org/10.5772/intechopen.107671]
[46]
Lu L, Xu Q, Wang J, Wu S, Luo Z, Lu W. Drug nanocrystals for active tumor-targeted drug delivery. Pharmaceutics 2022; 14(4): 797.
[http://dx.doi.org/10.3390/pharmaceutics14040797] [PMID: 35456631]
[47]
Li C, Lu Z, Zhang Q, et al. Confined growth of CdSe quantum dots in colloidal mesoporous silica for multifunctional nanostructures. Sci China Mater 2015; 58(6): 481-9.
[http://dx.doi.org/10.1007/s40843-015-0056-z]
[48]
Dolatyari M, Aghdam FA, Rostami G, Rostami A, Amiri IS. Introducing new conjugated quantum dots for photothermal therapy in biological applications. Plasmonics 2020; 15(6): 1565-75.
[http://dx.doi.org/10.1007/s11468-020-01171-1]
[49]
Botao J. ZnSe/zns core/shell quantum dots with superior optical properties through thermodynamic shell growth. Nano Lett 2020; 20(4): 2387-95.
[50]
Han SJ, Rathinaraj P, Park SY, et al. Specific intracellular uptake of herceptin-conjugated CdSe/ZnS quantum dots into breast cancer cells. BioMed Res Int 2014; 2014: 1-9.
[http://dx.doi.org/10.1155/2014/954307] [PMID: 24511553]
[51]
Moon H, Lee C, Lee W, Kim J, Chae H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater 2019; 31(34): 1804294.
[http://dx.doi.org/10.1002/adma.201804294] [PMID: 30650209]
[52]
Ko J, Jeong BG, Chang JH, et al. Chemically resistant and thermally stable quantum dots prepared by shell encapsulation with cross-linkable block copolymer ligands. NPG Asia Mater 2020; 12(1): 19.
[http://dx.doi.org/10.1038/s41427-020-0200-4]
[53]
Lai CF, Zhong CZ, Tong HC, Lee YC. High luminous efficacy and enhanced stability of QDs via a network silica and methylphenyl silicone hybrid for the long-term operation of on-chip white light-emitting diodes with a wide color gamut. Appl Mater Today 2020; 20: 100739.
[http://dx.doi.org/10.1016/j.apmt.2020.100739]
[54]
Xing ZC, Park MJ, Han SJ, et al. Intracellular uptake of magnetite nanoparticles conjugated with RGDS-peptide. Macromol Res 2011; 19(9): 897-903.
[http://dx.doi.org/10.1007/s13233-011-0902-0]
[55]
Lu F, Ju W, Zhao N, et al. Aqueous synthesis of PEGylated Ag2S quantum dots and their in vivo tumor targeting behavior. Biochem Biophys Res Commun 2020; 529(4): 930-5.
[http://dx.doi.org/10.1016/j.bbrc.2020.06.072] [PMID: 32819601]
[56]
Liu L, Jiang H, Dong J, et al. PEGylated MoS2 quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. Colloids Surf B Biointerfaces 2020; 185: 110590.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110590] [PMID: 31670002]
[57]
Kumagai K, Uematsu T, Torimoto T, Kuwabata S. Direct surface modification of semiconductor quantum dots with meta-organic frameworks. CrystEngComm 2019; 21(37): 5568-77.
[http://dx.doi.org/10.1039/C9CE00769E]
[58]
John VL, Nair Y, Vinod TP. Doping and surface modification of carbon quantum dots for enhanced functionalities and related applications. Part Part Syst Charact 2021; 38(11): 202100170.
[http://dx.doi.org/10.1002/ppsc.202100170]
[59]
Bannai H. Molecular membrane dynamics: Insights into synaptic function and neuropathological disease. Neurosci Res 2018; 129: 47-56.
[http://dx.doi.org/10.1016/j.neures.2017.07.007] [PMID: 28826905]
[60]
Bharathi M V, Roy N, Moharana P, Ghosh K, Paira P. Green synthesis of highly luminescent biotin-conjugated CdSe quantum dots for bioimaging applications. New J Chem 2020; 44(39): 16891-9.
[http://dx.doi.org/10.1039/D0NJ03075A]
[61]
Mittal R, Bruchez MP. Biotin-4-fluorescein based fluorescence quenching assay for determination of biotin binding capacity of streptavidin conjugated quantum dots. Bioconjug Chem 2011; 22(3): 362-8.
[http://dx.doi.org/10.1021/bc100321c] [PMID: 21314110]
[62]
Wickramathilaka MP, Tao BY. Characterization of covalent crosslinking strategies for synthesizing DNA-based bioconjugates. J Biol Eng 2019; 13(1): 63.
[http://dx.doi.org/10.1186/s13036-019-0191-2] [PMID: 31333759]
[63]
Pereira G, Monteiro C, Albuquerque G, et al. (bio)conjugation strategies applied to fluorescent semiconductor quantum dots. J Braz Chem Soc 2019.
[http://dx.doi.org/10.21577/0103-5053.20190163]
[64]
Nifontova G, Ramos-Gomes F, Baryshnikova M, Alves F, Nabiev I, Sukhanova A. Cancer cell targeting with functionalized quantum dot-encoded polyelectrolyte microcapsules. Front Chem 2019; 7: 34.
[http://dx.doi.org/10.3389/fchem.2019.00034] [PMID: 30761294]
[65]
Chakraborty P, Das SS, Dey A, et al. Quantum dots: The cutting-edge nanotheranostics in brain cancer management. J Control Release 2022; 350: 698-715.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.047] [PMID: 36057397]
[66]
Nangare S, Chandankar S, Patil P. Design of carbon and graphene quantum dots based nanotheranostics applications for glioblastoma management: Recent advanced and future prospects. J Drug Deliv Sci Technol 2023; 89: 105060.
[http://dx.doi.org/10.1016/j.jddst.2023.105060]
[67]
Zayed DG, AbdElhamid AS, Freag MS, Elzoghby AO. Hybrid quantum dot-based theranostic nanomedicines for tumor-targeted drug delivery and cancer imaging. Nanomedicine 2019; 14(3): 225-8.
[http://dx.doi.org/10.2217/nnm-2018-0414] [PMID: 30652951]
[68]
Kamila S, McEwan C, Costley D, et al. Diagnostic and therapeutic applications of quantum dots in Nanomedicine. Top Curr Chem 2016; 370: 203-24.
[http://dx.doi.org/10.1007/978-3-319-22942-3_7] [PMID: 26589510]
[69]
Riksen JJM, Nikolaev AV, van Soest G. Photoacoustic imaging on its way toward clinical utility: A tutorial review focusing on practical application in medicine. J Biomed Opt 2023; 28(12): 121205.
[http://dx.doi.org/10.1117/1.JBO.28.12.121205] [PMID: 37304059]
[70]
Zhang Y, Zhao N, Qin Y, et al. Affibody-functionalized Ag 2 S quantum dots for photoacoustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale 2018; 10(35): 16581-90.
[http://dx.doi.org/10.1039/C8NR02556H] [PMID: 30151510]
[71]
Ukhtary MS, Saito R. Surface plasmons in graphene and carbon nanotubes. Carbon 2020; 167: 455-74.
[http://dx.doi.org/10.1016/j.carbon.2020.05.019]
[72]
Sarfraz N, Khan I. Plasmonic Gold nanoparticles (AuNPs): Properties, synthesis and their advanced energy, environmental and biomedical applications. Chem Asian J 2021; 16(7): 720-42.
[http://dx.doi.org/10.1002/asia.202001202] [PMID: 33440045]
[73]
Siew Suan Ng. Composites of gold nanostars and nitrogen- and sulfur-codoped graphene quantum dots as plasmon-enhanced immunosensors for cancer prognosis. ACS Appl Nano Mater 2023.
[74]
Artyom A. Plasmon launching and scattering by silicon nanoparticles. ACS Photonics 2021; 8(6)
[75]
Upputuri PK, Pramanik M. Recent advances in photoacoustic contrast agents for in vivo imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(4): e1618.
[http://dx.doi.org/10.1002/wnan.1618] [PMID: 32027784]
[76]
Sridharan B, Lim HG. Advances in photoacoustic imaging aided by nano contrast agents: special focus on role of lymphatic system imaging for cancer theranostics. J Nanobiotechnol 2023; 21(1): 437.
[http://dx.doi.org/10.1186/s12951-023-02192-8] [PMID: 37986071]
[77]
Zhou R, Ullah K, Yang S, et al. Recent advances in graphene and black phosphorus nonlinear plasmonics. Nanophotonics 2020; 9(7): 1695-715.
[http://dx.doi.org/10.1515/nanoph-2020-0004]
[78]
Wang J, Liang D, Qu Z, Kislyakov IM, Kiselev VM, Liu J. PEGylated-folic acid-modified black phosphorus quantum dots as near-infrared agents for dual-modality imaging-guided selective cancer cell destruction. Nanophotonics 2020; 9(8): 2425-35.
[http://dx.doi.org/10.1515/nanoph-2019-0506]
[79]
Kumawat MK, Thakur M, Bahadur R, et al. Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. Mater Sci Eng C 2019; 103: 109774.
[http://dx.doi.org/10.1016/j.msec.2019.109774] [PMID: 31349528]
[80]
Li S, Su W, Wu H, et al. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat Biomed Eng 2020; 4(7): 704-16.
[http://dx.doi.org/10.1038/s41551-020-0540-y] [PMID: 32231314]
[81]
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 2019; 71(8): 1185-98.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[82]
Petrak K. The difference between targeted drug therapies and targeted-drug therapies. J Cancer Res Cell Therapeut 2018; 1(10024): 1-3.
[http://dx.doi.org/10.31579/2640-1053/032]
[83]
Pardo J, Peng Z, Leblanc R. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules 2018; 23(2): 378.
[http://dx.doi.org/10.3390/molecules23020378] [PMID: 29439409]
[84]
Wang Z, Wang L, Zhang Q, Tang B, Zhang C. Single quantum dot-based nanosensor for sensitive detection of 5-methylcytosine at both CpG and non-CpG sites. Chem Sci 2018; 9(5): 1330-8.
[http://dx.doi.org/10.1039/C7SC04813K] [PMID: 29675180]
[85]
Kesharwani P, Ma R, Sang L, et al. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol Cancer 2023; 22(1): 98.
[http://dx.doi.org/10.1186/s12943-023-01798-8] [PMID: 37344887]
[86]
Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv Drug Deliv Rev 2020; 163-164: 65-83.
[http://dx.doi.org/10.1016/j.addr.2020.06.025] [PMID: 32603814]
[87]
Kovács D, Igaz N, Gopisetty MK, Kiricsi M. Cancer therapy by silver nanoparticles: Fiction or reality? Int J Mol Sci 2022; 23(2): 839.
[http://dx.doi.org/10.3390/ijms23020839] [PMID: 35055024]
[88]
Liu Y, Li J, Chen M, Chen X, Zheng N. Palladium-based nanomaterials for cancer imaging and therapy. Theranostics 2020; 10(22): 10057-74.
[http://dx.doi.org/10.7150/thno.45990] [PMID: 32929334]
[89]
Shah S, Famta P, Bagasariya D, et al. Tuning mesoporous silica nanoparticles in novel avenues of cancer therapy. Mol Pharm 2022; 19(12): 4428-52.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00374] [PMID: 36109099]
[90]
Ashikbayeva Z, Aitkulov A, Atabaev TS, Blanc W, Inglezakis VJ, Tosi D. Green-synthesized silver nanoparticle–assisted radiofrequency ablation for improved thermal treatment distribution. Nanomaterials 2022; 12(3): 426.
[http://dx.doi.org/10.3390/nano12030426] [PMID: 35159771]
[91]
Ranoo S, Lahiri BB, Damodaran SP, Philip J. Tuning magnetic heating efficiency of colloidal dispersions of iron oxide nano-clusters by varying the surfactant concentration during solvothermal synthesis. J Mol Liq 2022; 360: 119444.
[http://dx.doi.org/10.1016/j.molliq.2022.119444]
[92]
Dadfar SM, Camozzi D, Darguzyte M, et al. Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance. J Nanobiotechnol 2020; 18(1): 22.
[http://dx.doi.org/10.1186/s12951-020-0580-1] [PMID: 31992302]
[93]
Jain A, Tiwari A, Verma A, Saraf S, Jain SK. Combination cancer therapy using multifunctional liposomes. Crit Rev Ther Drug Carrier Syst 2020; 37(2): 105-34.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2019026358] [PMID: 32865902]
[94]
Długosz O, Matyjasik W, Hodacka G, et al. Inorganic nanomaterials used in anti-cancer therapies: Further developments. Nanomaterials 2023; 13(6): 1130.
[http://dx.doi.org/10.3390/nano13061130] [PMID: 36986024]
[95]
Han Y, Liccardo L, Moretti E, Zhao H, Vomiero A. Synthesis, optical properties and applications of red/near-infrared carbon dots. J Mater Chem C Mater Opt Electron Devices 2022; 10(33): 11827-47.
[http://dx.doi.org/10.1039/D2TC02044K]
[96]
Li W, Liu Y, Wu M, et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in Alkaline Media. Adv Mater 2018; 30(31): 1800676.
[http://dx.doi.org/10.1002/adma.201800676] [PMID: 29920795]
[97]
Tabish TA, Scotton CJ, J Ferguson DC, et al. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine 2018; 13(15): 1923-37.
[http://dx.doi.org/10.2217/nnm-2018-0018] [PMID: 30124363]
[98]
Ahmad J, Garg A, Mustafa G, Ahmad MZ, Aslam M, Mishra A. Hybrid quantum dot as promising tools for Theranostic application in cancer. Electronics 2023; 12(4): 972.
[http://dx.doi.org/10.3390/electronics12040972]
[99]
Prasad R, Jain NK, Yadav AS, et al. Ultrahigh penetration and retention of graphene quantum dot mesoporous silica Nanohybrids for image guided tumor regression. ACS Appl Bio Mater 2021; 4(2): 1693-703.
[http://dx.doi.org/10.1021/acsabm.0c01478] [PMID: 35014516]
[100]
Huang X, Chen Q, Li X, et al. CKAP4 antibody-conjugated si quantum dot micelles for targeted imaging of lung cancer. Nanoscale Res Lett 2021; 16(1): 124.
[http://dx.doi.org/10.1186/s11671-021-03575-2] [PMID: 34331597]
[101]
Hu J, Liu M, Zhang C. Integration of isothermal amplification with quantum dot-based fluorescence resonance energy transfer for simultaneous detection of multiple microRNAs. Chem Sci 2018; 9(18): 4258-67.
[http://dx.doi.org/10.1039/C8SC00832A] [PMID: 29780556]
[102]
Benoiton NL. Chemistry of peptide synthesis. CRC Press 2016.
[http://dx.doi.org/10.1201/9781420027693]
[104]
Duan Q, Che M, Hu S, et al. Rapid cancer diagnosis by highly fluorescent carbon nanodots-based imaging. Anal Bioanal Chem 2019; 411(5): 967-72.
[http://dx.doi.org/10.1007/s00216-018-1500-1] [PMID: 30604036]
[105]
Cheal SM, Chung SK, Vaughn BA, Cheung NKV, Larson SM. Pretargeting: A path forward for radioimmunotherapy. J Nucl Med 2022; 63(9): 1302-15.
[http://dx.doi.org/10.2967/jnumed.121.262186] [PMID: 36215514]
[106]
Hu K, Yang Z, Zhang L, et al. Boron agents for neutron capture therapy. Coord Chem Rev 2020; 405: 213139.
[http://dx.doi.org/10.1016/j.ccr.2019.213139]
[107]
Latha BD, Soumya K, More N, et al. Fluorescent carbon quantum dots for effective tumor diagnosis: A comprehensive review. Biomed Eng Adv 2023; 5: 100072.
[http://dx.doi.org/10.1016/j.bea.2023.100072]
[108]
Pereira JFS, Jordan P, Matos P. A signaling view into the inflammatory tumor microenvironment. Immuno 2021; 1(2): 91-118.
[http://dx.doi.org/10.3390/immuno1020007]
[109]
Tian X, Zeng A, Liu Z, et al. Carbon quantum dots: in vitro and in vivo studies on biocompatibility and biointeractions for optical imaging. Int J Nanomed 2020; 15: 6519-29.
[http://dx.doi.org/10.2147/IJN.S257645] [PMID: 32943866]
[110]
Díaz-García VM, Guerrero S, Díaz-Valdi via N, et al. Biomimetic quantum dot-labeled B16F10 murine melanoma cells as a tool to monitor early steps of lung metastasis by in vivo imaging. Int J Nanomed 2018; 13: 6391-412.
[http://dx.doi.org/10.2147/IJN.S165565] [PMID: 30410327]
[111]
Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 2007; 67(3): 1138-44.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1185] [PMID: 17283148]
[112]
Gopee NV, Roberts DW, Webb P, et al. Quantitative determination of skin penetration of PEG-coated CdSe quantum dots in dermabraded but not intact SKH-1 hairless mouse skin. Toxicol Sci 2009; 111(1): 37-48.
[http://dx.doi.org/10.1093/toxsci/kfp139] [PMID: 19574408]
[113]
Grigore ME. Organic and inorganic nano-systems used in cancer treatment. Indian J Med Res 2017; 1(3)
[114]
Leng F, Liu F, Yang Y, Wu Y, Tian W. Strategies on nanodiagnostics and nanotherapies of the three common cancers. Nanomaterials 2018; 8(4): 202.
[http://dx.doi.org/10.3390/nano8040202] [PMID: 29597315]
[115]
Sebastian R. Nanomedicine-the future of cancer treatment: A review. J Cancer Prev Curr Res 2017; 8(1): 265.
[116]
Akakuru OU, Louis H, Oyebanji OO, Ita BI, Amos PI. Utility of nanomedicine for cancer treatment. J Nanomed Nanotechnol 2018; 9: 481.
[117]
VictorNawaz AF. Nanotechnology to cure breast cancer and obstacles in its way. J Nanotechnol 2021; 4: 58-70.
[118]
Guo H, Wang L. Recent progress in the development of carbon quantum dots for cell imaging. Oxford Open Mater Sci 2020; 1(1)
[http://dx.doi.org/10.1093/oxfmat/itab001]
[119]
Ranjbar-Navazi Z, Eskandani M, Johari-Ahar M, et al. Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy. J Drug Target 2018; 26(3): 267-77.
[http://dx.doi.org/10.1080/1061186X.2017.1365876] [PMID: 28795849]
[120]
Zhang RY, Wang ZY, Yang XQ, et al. Folic acid modified Pluronic F127 coating Ag 2 S quantum dot for photoacoustic imaging of tumor cell-targeting. Nanotechnology 2018; 29(5): 055101.
[http://dx.doi.org/10.1088/1361-6528/aa9acc] [PMID: 29139396]
[121]
Lewinski NA, Zhu H, Ouyang CR, et al. Trophic transfer of amphiphilic polymer coated CdSe/ZnS quantum dots to Danio rerio. Nanoscale 2011; 3(8): 3080-3.
[http://dx.doi.org/10.1039/c1nr10319a] [PMID: 21713272]
[122]
Devi S, Kumar M, Tiwari A, et al. Quantum dots: An emerging approach for cancer therapy. Front Mater 2022; 8: 798440.
[http://dx.doi.org/10.3389/fmats.2021.798440]
[123]
Safari M. Recent advances in quantum dots-based biosensors. Quantum Dots - Recent Advances, New Perspectives and Contemporary Applications. Intechopen 2023.
[http://dx.doi.org/10.5772/intechopen.108205]
[124]
Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim HW, Mozafari M. Quantum Dots: A review from concept to clinic. Biotechnol J 2020; 15(12): 2000117.
[http://dx.doi.org/10.1002/biot.202000117] [PMID: 32845071]
[125]
Pramanik S, Hill SKE, Zhi B, et al. Comparative toxicity assessment of novel Si quantum dots and their traditional Cd-based counterparts using bacteria models Shewanella oneidensis and Bacillus subtilis. Environ Sci Nano 2018; 5(8): 1890-901.
[http://dx.doi.org/10.1039/C8EN00332G]
[126]
Zhong L, Zhang L, Li Y, et al. Assessment of the toxicity of quantum dots through biliometric analysis. Int J Environ Res Public Health 2021; 18(11): 5768.
[http://dx.doi.org/10.3390/ijerph18115768] [PMID: 34072155]
[127]
Yuxian D. Boron dopants in red-emitting B and n co-doped carbon quantum dots enable targeted imaging of lysosomes. ACS Appl Mater Interfaces 2023; 15(13): 17045-53.
[128]
Liang X, Tang M. Research advances on cytotoxicity of cadmium-containing quantum dots. J Nanosci Nanotechnol 2019; 19(9): 5375-87.
[http://dx.doi.org/10.1166/jnn.2019.16783] [PMID: 30961689]
[129]
Shao J, Zhang J, Jiang C, Lin J, Huang P. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem Eng J 2020; 400: 126009.
[http://dx.doi.org/10.1016/j.cej.2020.126009]
[130]
Sahu A, Kumar D. Core-shell quantum dots: A review on classification, materials, application, and theoretical modeling. J Alloys Compd 2022; 924: 166508.
[http://dx.doi.org/10.1016/j.jallcom.2022.166508]
[131]
Patel A, Patel A, Patel R, Dharamsi A. Application of failure mode effect analysis in wurster-based pelletization technology: A technical note. AAPS PharmSciTech 2019; 20(8): 324.
[http://dx.doi.org/10.1208/s12249-019-1516-7] [PMID: 31654266]
[132]
Patel S, Patel V, Yadav M, et al. Development of surface conjugated block co polymeric micelles as targeted therapeutics: characterization and in-vitro cell viability. J Polym Res 2023; 30(1): 14.
[http://dx.doi.org/10.1007/s10965-022-03362-2]
[133]
Panjwani D, Patel S, Mishra D, et al. Avidin-Biotin functionalized self-assembled protein nanoparticles as EGFR targeted therapeutics for the treatment of lung cancer: Characterization and cell viability. J Dispers Sci Technol 2022; 1-4.
[134]
Patel A, Panjwani D, Mishra D, Patel S, Patel V, Dharamsi A. A perspective on EGFR and proteasome-based targeted therapy for cancer. Curr Drug Targets 2022; 23(15): 1406-17.
[http://dx.doi.org/10.2174/1389450123666220908095121] [PMID: 36089785]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy