Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Potential Neuroprotective Role of Neurotrophin in Traumatic Brain Injury

Author(s): Rei Shian Yap, Jaya Kumar and Seong Lin Teoh*

Volume 23, Issue 10, 2024

Published on: 25 January, 2024

Page: [1189 - 1202] Pages: 14

DOI: 10.2174/0118715273289222231219094225

Price: $65

Abstract

Traumatic brain injury (TBI) is a major global health issue that affects millions of people every year. It is caused by any form of external force, resulting in temporary or permanent impairments in the brain. The pathophysiological process following TBI usually involves excitotoxicity, mitochondrial dysfunction, oxidative stress, inflammation, ischemia, and apoptotic cell death. It is challenging to find treatment for TBI due to its heterogeneous nature, and no therapeutic interventions have been approved thus far. Neurotrophins may represent an alternative approach for TBI treatment because they influence various functional activities in the brain. The present review highlights recent studies on neurotrophins shown to possess neuroprotective roles in TBI. Neurotrophins, specifically brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have demonstrated reduced neuronal death, alleviated neuroinflammatory responses and improved neurological functions following TBI via their immunomodulatory, anti-inflammatory and antioxidant properties. Further studies are required to ensure the efficacy and safety of neurotrophins to be used as TBI treatment in clinical settings.

Keywords: Traumatic brain injury, brain-derived neurotrophic factor, nerve growth factor, neurotrophin, cell-based therapy, nanoparticles, biomaterials.

Graphical Abstract
[1]
Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg 2019; 130(4): 1080-97.
[http://dx.doi.org/10.3171/2017.10.JNS17352] [PMID: 29701556]
[2]
Andriessen TMJC, Jacobs B, Vos PE. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med 2010; 14(10): 2381-92.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01164.x] [PMID: 20738443]
[3]
Fadzil F, Mei AKC, Mohd Khairy A, Kumar R, Mohd Azli AN. Value of repeat CT brain in mild traumatic brain injury patients with high risk of intracerebral hemorrhage progression. Int J Environ Res Public Health 2022; 19(21): 14311.
[http://dx.doi.org/10.3390/ijerph192114311] [PMID: 36361190]
[4]
Becker RE, Kapogiannis D, Greig NH. Does traumatic brain injury hold the key to the Alzheimer’s disease puzzle? Alzheimers Dement 2018; 14(4): 431-43.
[http://dx.doi.org/10.1016/j.jalz.2017.11.007] [PMID: 29245000]
[5]
McKee AC, Cantu RC, Nowinski CJ, et al. Chronic traumatic encephalopathy in athletes: Progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 2009; 68(7): 709-35.
[http://dx.doi.org/10.1097/NEN.0b013e3181a9d503] [PMID: 19535999]
[6]
Marshall SA, Riechers RG II. Diagnosis and management of moderate and severe traumatic brain injury sustained in combat. Mil Med 2012; 177(8S): 76-85.
[http://dx.doi.org/10.7205/MILMED-D-12-00142] [PMID: 22953444]
[7]
Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol 2017; 16(12): 987-1048.
[http://dx.doi.org/10.1016/S1474-4422(17)30371-X] [PMID: 29122524]
[8]
Forslund MV, Perrin PB, Røe C, et al. Global outcome trajectories up to 10 years after moderate to severe traumatic brain injury. Front Neurol 2019; 10: 219.
[http://dx.doi.org/10.3389/fneur.2019.00219] [PMID: 30923511]
[9]
Miller GF, DePadilla L, Xu L. Costs of nonfatal traumatic brain injury in the United States, 2016. Med Care 2021; 59(5): 451-5.
[http://dx.doi.org/10.1097/MLR.0000000000001511] [PMID: 33528230]
[10]
Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveill Summ 2017; 66(9): 1-16.
[http://dx.doi.org/10.15585/mmwr.ss6609a1] [PMID: 28301451]
[11]
Centers for Disease Control and Prevention. Surveillance report of traumatic brain injury-related hospitalizations and deaths by age group, sex, and mechanism of injury—United States, 2016 and 2017. Atlanta 2021.
[12]
Iaccarino C, Carretta A, Nicolosi F, Morselli C. Epidemiology of severe traumatic brain injury. J Neurosurg Sci 2018; 62(5): 535-41.
[http://dx.doi.org/10.23736/S0390-5616.18.04532-0] [PMID: 30182649]
[13]
Ng SY, Lee AYW. Traumatic brain injuries: Pathophysiology and potential therapeutic targets. Front Cell Neurosci 2019; 13: 528.
[http://dx.doi.org/10.3389/fncel.2019.00528] [PMID: 31827423]
[14]
Prasetyo E. The primary, secondary, and tertiary brain injury. Crit Care Shock 2020; 23: 4-13.
[15]
Borlongan C, Acosta S, de la Pena I, et al. Neuroinflammatory responses to traumatic brain injury: Etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr Dis Treat 2015; 11: 97-106.
[http://dx.doi.org/10.2147/NDT.S65815] [PMID: 25657582]
[16]
Thapa K, Khan H, Singh TG, Kaur A. Traumatic brain injury: Mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci 2021; 71(9): 1725-42.
[http://dx.doi.org/10.1007/s12031-021-01841-7] [PMID: 33956297]
[17]
Rauchman SH, Zubair A, Jacob B, et al. Traumatic brain injury: Mechanisms, manifestations, and visual sequelae. Front Neurosci 2023; 17: 1090672.
[http://dx.doi.org/10.3389/fnins.2023.1090672] [PMID: 36908792]
[18]
Harish G, Mahadevan A, Pruthi N, et al. Characterization of traumatic brain injury in human brains reveals distinct cellular and molecular changes in contusion and pericontusion. J Neurochem 2015; 134(1): 156-72.
[http://dx.doi.org/10.1111/jnc.13082] [PMID: 25712633]
[19]
Vespa P, Prins M, Ronne-Engstrom E, et al. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: A microdialysis study. J Neurosurg 1998; 89(6): 971-82.
[http://dx.doi.org/10.3171/jns.1998.89.6.0971] [PMID: 9833824]
[20]
Mira RG, Cerpa W. Building a bridge between NMDAR-mediated excitotoxicity and mitochondrial dysfunction in chronic and acute diseases. Cell Mol Neurobiol 2021; 41(7): 1413-30.
[http://dx.doi.org/10.1007/s10571-020-00924-0] [PMID: 32700093]
[21]
Hill RL, Singh IN, Wang JA, Hall ED. Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury. Neurochem Int 2017; 111: 45-56.
[http://dx.doi.org/10.1016/j.neuint.2017.03.015] [PMID: 28342966]
[22]
Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 2018; 15: 490-503.
[http://dx.doi.org/10.1016/j.redox.2018.01.008] [PMID: 29413961]
[23]
Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther 2017; 360(1): 201-5.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[24]
Wang HC, Lin YJ, Shih FY, et al. The role of serial oxidative stress levels in acute traumatic brain injury and as predictors of outcome. World Neurosurg 2016; 87: 463-70.
[http://dx.doi.org/10.1016/j.wneu.2015.10.010] [PMID: 26481337]
[25]
Muballe KD, Sewani-Rusike CR, Longo-Mbenza B, Iputo J. Predictors of recovery in moderate to severe traumatic brain injury. J Neurosurg 2019; 131(5): 1648-57.
[http://dx.doi.org/10.3171/2018.4.JNS172185] [PMID: 30497133]
[26]
Yen HC, Chen TW, Yang TC, Wei HJ, Hsu JC, Lin CL. Levels of F2-isoprostanes, F4-neuroprostanes, and total nitrate/nitrite in plasma and cerebrospinal fluid of patients with traumatic brain injury. Free Radic Res 2015; 49(12): 1419-30.
[http://dx.doi.org/10.3109/10715762.2015.1080363] [PMID: 26271312]
[27]
Lorente L, Martín MM, Abreu-González P, et al. Association between serum malondialdehyde levels and mortality in patients with severe brain trauma injury. J Neurotrauma 2015; 32(1): 1-6.
[http://dx.doi.org/10.1089/neu.2014.3456] [PMID: 25054973]
[28]
Lorente L, Martín MM, Abreu-González P, et al. Maintained high sustained serum malondialdehyde levels after severe brain trauma injury in non-survivor patients. BMC Res Notes 2019; 12(1): 789.
[http://dx.doi.org/10.1186/s13104-019-4828-5] [PMID: 31796118]
[29]
Chiu CC, Liao YE, Yang LY, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 2016; 272: 38-49.
[http://dx.doi.org/10.1016/j.jneumeth.2016.06.018] [PMID: 27382003]
[30]
Serpa RO, Ferguson L, Larson C, et al. Pathophysiology of pediatric traumatic brain injury. Front Neurol 2021; 12: 696510.
[http://dx.doi.org/10.3389/fneur.2021.696510] [PMID: 34335452]
[31]
Juengst SB, Kumar RG, Failla MD, Goyal A, Wagner AK. Acute inflammatory biomarker profiles predict depression risk following moderate to severe traumatic brain injury. J Head Trauma Rehabil 2015; 30(3): 207-18.
[http://dx.doi.org/10.1097/HTR.0000000000000031] [PMID: 24590155]
[32]
Kumar RG, Boles JA, Wagner AK. Chronic inflammation after severe traumatic brain injury: Characterization and associations with outcome at 6 and 12 months postinjury. J Head Trauma Rehabil 2015; 30(6): 369-81.
[http://dx.doi.org/10.1097/HTR.0000000000000067] [PMID: 24901329]
[33]
Tehse J, Taghibiglou C. The overlooked aspect of excitotoxicity: Glutamate‐independent excitotoxicity in traumatic brain injuries. Eur J Neurosci 2019; 49(9): 1157-70.
[http://dx.doi.org/10.1111/ejn.14307] [PMID: 30554430]
[34]
Wang Y, Nelson LD, LaRoche AA, et al. Cerebral blood flow alterations in acute sport-related concussion. J Neurotrauma 2016; 33(13): 1227-36.
[http://dx.doi.org/10.1089/neu.2015.4072] [PMID: 26414315]
[35]
Haber M, Amyot F, Kenney K, et al. Vascular abnormalities within normal appearing tissue in chronic traumatic brain injury. J Neurotrauma 2018; 35(19): 2250-8.
[http://dx.doi.org/10.1089/neu.2018.5684] [PMID: 29609518]
[36]
Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: Similarities and differences. J Cereb Blood Flow Metab 2004; 24(2): 133-50.
[http://dx.doi.org/10.1097/01.WCB.0000111614.19196.04] [PMID: 14747740]
[37]
Wu Y, Wu H, Zeng J, et al. Mild traumatic brain injury induces microvascular injury and accelerates Alzheimer-like pathogenesis in mice. Acta Neuropathol Commun 2021; 9(1): 74.
[http://dx.doi.org/10.1186/s40478-021-01178-7] [PMID: 33892818]
[38]
Hay JR, Johnson VE, Young AMH, Smith DH, Stewart W. Blood-Brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol 2015; 74(12): 1147-57.
[http://dx.doi.org/10.1097/NEN.0000000000000261] [PMID: 26574669]
[39]
Petersen A, Soderstrom M, Saha B, Sharma P. Animal models of traumatic brain injury: A review of pathophysiology to biomarkers and treatments. Exp Brain Res 2021; 239(10): 2939-50.
[http://dx.doi.org/10.1007/s00221-021-06178-6] [PMID: 34324019]
[40]
Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic brain injury: An overview of epidemiology, pathophysiology, and medical management. Med Clin North Am 2020; 104(2): 213-38.
[http://dx.doi.org/10.1016/j.mcna.2019.11.001] [PMID: 32035565]
[41]
Abdelmalik PA, Draghic N, Ling GSF. Management of moderate and severe traumatic brain injury. Transfusion 2019; 59(S2): 1529-38.
[http://dx.doi.org/10.1111/trf.15171] [PMID: 30980755]
[42]
Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 2017; 80(1): 6-15.
[http://dx.doi.org/10.1227/NEU.0000000000001432]
[43]
Chesnut RM, Temkin N, Carney N, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 2012; 367(26): 2471-81.
[http://dx.doi.org/10.1056/NEJMoa1207363] [PMID: 23234472]
[44]
Talving P, Karamanos E, Teixeira PG, et al. Intracranial pressure monitoring in severe head injury: Compliance with Brain Trauma Foundation guidelines and effect on outcomes: A prospective study. J Neurosurg 2013; 119(5): 1248-54.
[http://dx.doi.org/10.3171/2013.7.JNS122255] [PMID: 23971954]
[45]
Rejdak K, Sienkiewicz-Jarosz H, Bienkowski P, Alvarez A. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med Res Rev 2023; 43(5): 1668-700.
[http://dx.doi.org/10.1002/med.21960] [PMID: 37052231]
[46]
Omar NA, Kumar J, Teoh SL. Neurotrophin-3 and neurotrophin-4: The unsung heroes that lies behind the meninges. Neuropeptides 2022; 92: 102226.
[http://dx.doi.org/10.1016/j.npep.2022.102226] [PMID: 35030377]
[47]
Houlton J, Abumaria N, Hinkley SFR, Clarkson AN. Therapeutic potential of neurotrophins for repair after brain injury: A helping hand from biomaterials. Front Neurosci 2019; 13: 790.
[http://dx.doi.org/10.3389/fnins.2019.00790] [PMID: 31427916]
[48]
Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 2001; 24(1): 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[49]
Becker K, Cana A, Baumgärtner W, Spitzbarth I. p75 Neurotrophin receptor: A double-edged sword in pathology and regeneration of the central nervous system. Vet Pathol 2018; 55(6): 786-801.
[http://dx.doi.org/10.1177/0300985818781930] [PMID: 29940812]
[50]
Conroy JN, Coulson EJ. High-affinity TrkA and p75 neurotrophin receptor complexes: A twisted affair. J Biol Chem 2022; 298(3): 101568.
[http://dx.doi.org/10.1016/j.jbc.2022.101568] [PMID: 35051416]
[51]
Kalish H, Phillips TM. Analysis of neurotrophins in human serum by immunoaffinity capillary electrophoresis (ICE) following traumatic head injury. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878(2): 194-200.
[http://dx.doi.org/10.1016/j.jchromb.2009.10.022] [PMID: 19896422]
[52]
Poduslo JF, Curran GL. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res 1996; 36(2): 280-6.
[http://dx.doi.org/10.1016/0169-328X(95)00250-V] [PMID: 8965648]
[53]
Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic factor BDNF, Physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci 2020; 21(20): 7777.
[http://dx.doi.org/10.3390/ijms21207777] [PMID: 33096634]
[54]
Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of neurotrophic factors in glial cells in the central nervous system: Expression and properties in neurodegeneration and injury. Front Physiol 2019; 10: 486.
[http://dx.doi.org/10.3389/fphys.2019.00486] [PMID: 31105589]
[55]
Korley FK, Diaz-Arrastia R, Wu AHB, et al. Circulating brain-derived neurotrophic factor has diagnostic and prognostic value in traumatic brain injury. J Neurotrauma 2016; 33(2): 215-25.
[http://dx.doi.org/10.1089/neu.2015.3949] [PMID: 26159676]
[56]
Lesniak A, Poznański P, Religa P, Nawrocka A, Bujalska-Zadrozny M, Sacharczuk M. Loss of brain-derived neurotrophic factor (BDNF) resulting from congenital- or mild traumatic brain injury-induced blood-brain barrier disruption correlates with depressive-like behaviour. Neuroscience 2021; 458: 1-10.
[http://dx.doi.org/10.1016/j.neuroscience.2021.01.013] [PMID: 33465406]
[57]
Afzal M, Kazmi I, Quazi AM, et al. 6-Shogaol attenuates traumatic brain injury-induced anxiety/depression-like behavior via inhibition of oxidative stress-influenced expressions of inflammatory mediators TNF-α, IL-1β, and BDNF: Insight into the mechanism. ACS Omega 2022; 7(1): 140-8.
[http://dx.doi.org/10.1021/acsomega.1c04155] [PMID: 35036685]
[58]
Gustafsson D, Klang A, Thams S, Rostami E. The role of BDNF in experimental and clinical traumatic brain injury. Int J Mol Sci 2021; 22(7): 3582.
[http://dx.doi.org/10.3390/ijms22073582] [PMID: 33808272]
[59]
Narayanan V, Veeramuthu V, Ahmad-Annuar A, et al. Missense mutation of brain derived neurotrophic factor (BDNF) alters neurocognitive performance in patients with mild traumatic brain injury: A longitudinal study. PLoS One 2016; 11(7): e0158838.
[http://dx.doi.org/10.1371/journal.pone.0158838] [PMID: 27438599]
[60]
Giarratana AO, Teng S, Reddi S, et al. BDNF Val66Met genetic polymorphism results in poor recovery following repeated mild traumatic brain injury in a mouse model and treatment with AAV-BDNF improves outcomes. Front Neurol 2019; 10: 1175.
[http://dx.doi.org/10.3389/fneur.2019.01175] [PMID: 31787925]
[61]
Hayes JP, Reagan A, Logue MW, et al. BDNF genotype is associated with hippocampal volume in mild traumatic brain injury. Genes Brain Behav 2018; 17(2): 107-17.
[http://dx.doi.org/10.1111/gbb.12403] [PMID: 28755387]
[62]
Jeon S, Baik J, Kim J, et al. Intrathecal dexmedetomidine attenuates mechanical allodynia through the downregulation of brain-derived neurotrophic factor in a mild traumatic brain injury rat model. Korean J Anesthesiol 2023; 76(1): 56-66.
[http://dx.doi.org/10.4097/kja.22209] [PMID: 35760392]
[63]
Blaha GR, Raghupathi R, Saatman KE, McIntosh TK. Brain-derived neurotrophic factor administration after traumatic brain injury in the rat does not protect against behavioral or histological deficits. Neuroscience 2000; 99(3): 483-93.
[http://dx.doi.org/10.1016/S0306-4522(00)00214-1] [PMID: 11029540]
[64]
Lin TS, Woon CK, Hui WK, Abas R, Haron MH, Das S. Natural product-based nanomedicine: Recent advances and issues for the treatment of Alzheimer’s disease. Curr Neuropharmacol 2022; 20(8): 1498-518.
[http://dx.doi.org/10.2174/1570159X20666211217163540] [PMID: 34923947]
[65]
Hu H, Chen X, Zhao K, Zheng W, Gao C. Recent advances in biomaterials-based therapies for alleviation and regeneration of traumatic brain injury. Macromol Biosci 2023; 23(5): 2200577.
[http://dx.doi.org/10.1002/mabi.202200577] [PMID: 36758541]
[66]
Khalin I, Alyautdin R, Wong TW, Gnanou J, Kocherga G, Kreuter J. Brain-derived neurotrophic factor delivered to the brain using poly (lactide-co-glycolide) nanoparticles improves neurological and cognitive outcome in mice with traumatic brain injury. Drug Deliv 2016; 23(9): 3520-8.
[http://dx.doi.org/10.1080/10717544.2016.1199609] [PMID: 27278330]
[67]
Yin R, Zhao S, Qiu C. Brain-derived neurotrophic factor fused with a collagen-binding domain inhibits neuroinflammation and promotes neurological recovery of traumatic brain injury mice via TrkB signalling. J Pharm Pharmacol 2020; 72(4): 539-50.
[http://dx.doi.org/10.1111/jphp.13233] [PMID: 32034779]
[68]
Wu CH, Hung TH, Chen CC, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS One 2014; 9(11): e113397.
[http://dx.doi.org/10.1371/journal.pone.0113397] [PMID: 25415296]
[69]
Agrawal R, Noble E, Tyagi E, Zhuang Y, Ying Z, Gomez-Pinilla F. Flavonoid derivative 7,8-DHF attenuates TBI pathology via TrkB activation. Biochim Biophys Acta Mol Basis Dis 2015; 1852(5): 862-72.
[http://dx.doi.org/10.1016/j.bbadis.2015.01.018] [PMID: 25661191]
[70]
Zhao S, Gao X, Dong W, Chen J. The role of 7,8-dihydroxyflavone in preventing dendrite degeneration in cortex after moderate traumatic brain injury. Mol Neurobiol 2016; 53(3): 1884-95.
[http://dx.doi.org/10.1007/s12035-015-9128-z] [PMID: 25801526]
[71]
Nishio T, Furukawa S, Akiguchi I, et al. Cellular localization of nerve growth factor-like immunoreactivity in adult rat brain: Quantitative and immunohistochemical study. Neuroscience 1994; 60(1): 67-84.
[http://dx.doi.org/10.1016/0306-4522(94)90204-6] [PMID: 8052420]
[72]
Thoenen H, Bandtlow C, Heumann R, Lindholm D, Meyer M, Rohrer H. Nerve growth factor: Cellular localization and regulation of synthesis. Cell Mol Neurobiol 1988; 8(1): 35-40.
[http://dx.doi.org/10.1007/BF00712909] [PMID: 3042143]
[73]
DeKosky ST, Goss JR, Miller PD, Styren SD, Kochanek PM, Marion D. Upregulation of nerve growth factor following cortical trauma. Exp Neurol 1994; 130(2): 173-7.
[http://dx.doi.org/10.1006/exnr.1994.1196] [PMID: 7867748]
[74]
Goss JR, O’Malley ME, Zou L, Styren SD, Kochanek PM, DeKosky ST. Astrocytes are the major source of nerve growth factor upregulation following traumatic brain injury in the rat. Exp Neurol 1998; 149(2): 301-9.
[http://dx.doi.org/10.1006/exnr.1997.6712] [PMID: 9500953]
[75]
Chiaretti A, Antonelli A, Riccardi R, et al. Nerve growth factor expression correlates with severity and outcome of traumatic brain injury in children. Eur J Paediatr Neurol 2008; 12(3): 195-204.
[http://dx.doi.org/10.1016/j.ejpn.2007.07.016] [PMID: 17881264]
[76]
Wang T, Liu Y, Zhu Y. Combined use of exogenous nerve growth factor and basic fibroblast growth factor promotes proliferation of endogenous brain cells in a rat model of severe traumatic brain injury. Chin J Tissue Eng Res 2019; 23: 3998-4003.
[http://dx.doi.org/10.3969/j.issn.2095-4344.1771]
[77]
DeKosky ST, Abrahamson EE, Taffe KM, Dixon CE, Kochanek PM, Ikonomovic MD. Effects of post‐injury hypothermia and nerve growth factor infusion on antioxidant enzyme activity in the rat: Implications for clinical therapies. J Neurochem 2004; 90(4): 998-1004.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02575.x] [PMID: 15287906]
[78]
Manni L, Leotta E, Mollica I, et al. Acute intranasal treatment with nerve growth factor limits the onset of traumatic brain injury in young rats. Br J Pharmacol 2023; 180(15): 1949-64.
[http://dx.doi.org/10.1111/bph.16056] [PMID: 36780920]
[79]
Lv Q, Fan X, Xu G, et al. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats. Brain Res 2013; 1493: 80-9.
[http://dx.doi.org/10.1016/j.brainres.2012.11.028] [PMID: 23183041]
[80]
Tian L, Guo R, Yue X, et al. Intranasal administration of nerve growth factor ameliorate β-amyloid deposition after traumatic brain injury in rats. Brain Res 2012; 1440: 47-55.
[http://dx.doi.org/10.1016/j.brainres.2011.12.059] [PMID: 22284619]
[81]
Lv Q, Lan W, Sun W, et al. Intranasal nerve growth factor attenuates tau phosphorylation in brain after traumatic brain injury in rats. J Neurol Sci 2014; 345(1-2): 48-55.
[http://dx.doi.org/10.1016/j.jns.2014.06.037] [PMID: 25128470]
[82]
Chiaretti A, Conti G, Falsini B, et al. Intranasal Nerve Growth Factor administration improves cerebral functions in a child with severe traumatic brain injury: A case report. Brain Inj 2017; 31(11): 1538-47.
[http://dx.doi.org/10.1080/02699052.2017.1376760] [PMID: 28972396]
[83]
Wang Y, Jia F, Lin Y. Poly(butyl cyanoacrylate) nanoparticles-delivered β-nerve growth factor promotes the neurite outgrowth and reduces the mortality in the rat after traumatic brain injury. Nanotechnology 2022; 33(13): 135101.
[http://dx.doi.org/10.1088/1361-6528/ac44e8] [PMID: 34929684]
[84]
Stelmashook EV, Genrikhs EE, Novikova SV, et al. Behavioral effect of dipeptide NGF mimetic GK-2 in an in vivo model of rat traumatic brain injury and its neuroprotective and regenerative properties in vitro. Int J Neurosci 2015; 125(5): 375-9.
[http://dx.doi.org/10.3109/00207454.2014.935376] [PMID: 24950445]
[85]
Genrikhs EE, Voronkov DN, Kapkaeva MR, et al. The delayed protective effect of GK-2, а dipeptide mimetic of Nerve Growth Factor, in a model of rat traumatic brain injury. Brain Res Bull 2018; 140: 148-53.
[http://dx.doi.org/10.1016/j.brainresbull.2018.05.002] [PMID: 29730416]
[86]
Lin Y, Wan J, Gao G, et al. Direct hippocampal injection of pseudo lentivirus-delivered nerve growth factor gene rescues the damaged cognitive function after traumatic brain injury in the rat. Biomaterials 2015; 69: 148-57.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.010] [PMID: 26285082]
[87]
Han Q, Ordaz JD, Liu NK, et al. Descending motor circuitry required for NT-3 mediated locomotor recovery after spinal cord injury in mice. Nat Commun 2019; 10(1): 5815.
[http://dx.doi.org/10.1038/s41467-019-13854-3] [PMID: 31862889]
[88]
Ye J, Xue R, Ji ZY, et al. Effect of NT-3 on repair of spinal cord injury through the MAPK signaling pathway. Eur Rev Med Pharmacol Sci 2020; 24(5): 2165-72.
[http://dx.doi.org/10.26355/eurrev_202003_20481] [PMID: 32196567]
[89]
Akyol O, Sherchan P, Yilmaz G, et al. Neurotrophin-3 provides neuroprotection via TrkC receptor dependent pErk5 activation in a rat surgical brain injury model. Exp Neurol 2018; 307: 82-9.
[http://dx.doi.org/10.1016/j.expneurol.2018.06.002] [PMID: 29883578]
[90]
Koo HM, Lee SM, Kim MH. Spontaneous wheel running exercise induces brain recovery via neurotrophin-3 expression following experimental traumatic brain injury in rats. J Phys Ther Sci 2013; 25(9): 1103-7.
[http://dx.doi.org/10.1589/jpts.25.1103] [PMID: 24259924]
[91]
Yang JT, Lee TH, Weng HH, et al. Dexamethasone enhances NT-3 expression in rat hippocampus after traumatic brain injury. Exp Neurol 2005; 192(2): 437-43.
[http://dx.doi.org/10.1016/j.expneurol.2004.12.023] [PMID: 15755560]
[92]
Grundy PL, Patel N, Harbuz MS, Lightman SL, Sharples PM. Adrenalectomy further suppresses the NT-3 mRNA response to traumatic brain injury but this effect is not reversed with corticosterone. Brain Res Mol Brain Res 2004; 120(2): 188-92.
[http://dx.doi.org/10.1016/j.molbrainres.2003.09.018] [PMID: 14741409]
[93]
Royo NC, Conte V, Saatman KE, et al. Hippocampal vulnerability following traumatic brain injury: A potential role for neurotrophin‐4/5 in pyramidal cell neuroprotection. Eur J Neurosci 2006; 23(5): 1089-102.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04642.x] [PMID: 16553773]
[94]
Royo NC, LeBold D, Magge SN, et al. Neurotrophin-mediated neuroprotection of hippocampal neurons following traumatic brain injury is not associated with acute recovery of hippocampal function. Neuroscience 2007; 148(2): 359-70.
[http://dx.doi.org/10.1016/j.neuroscience.2007.06.014] [PMID: 17681695]
[95]
Gincberg G, Shohami E, Trembovler V, Alexandrovich AG, Lazarovici P, Elchalal U. Nerve growth factor plays a role in the neurotherapeutic effect of a CD45 + pan-hematopoietic subpopulation derived from human umbilical cord blood in a traumatic brain injury model. Cytotherapy 2018; 20(2): 245-61.
[http://dx.doi.org/10.1016/j.jcyt.2017.11.008] [PMID: 29274773]
[96]
Ma H, Yu B, Kong L, Zhang Y, Shi Y. Neural stem cells over-expressing brain-derived neurotrophic factor (BDNF) stimulate synaptic protein expression and promote functional recovery following transplantation in rat model of traumatic brain injury. Neurochem Res 2012; 37(1): 69-83.
[http://dx.doi.org/10.1007/s11064-011-0584-1]
[97]
Shi W, Huang CJ, Xu XD, et al. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Acta Biomater 2016; 45: 247-61.
[http://dx.doi.org/10.1016/j.actbio.2016.09.001] [PMID: 27592818]
[98]
Wang Z, Yao W, Deng Q, Zhang X, Zhang J. Protective effects of BDNF overexpression bone marrow stromal cell transplantation in rat models of traumatic brain injury. J Mol Neurosci 2013; 49(2): 409-16.
[http://dx.doi.org/10.1007/s12031-012-9908-0] [PMID: 23143881]
[99]
Yuan Y, Pan S, Sun Z, Dan Q, Liu J. Brain-derived neurotrophic factor-modified umbilical cord mesenchymal stem cell transplantation improves neurological deficits in rats with traumatic brain injury. Int J Neurosci 2014; 124(7): 524-31.
[http://dx.doi.org/10.3109/00207454.2013.859144] [PMID: 24200297]
[100]
Chen T, Wu Y, Wang Y, et al. Brain-derived neurotrophic factor increases synaptic protein levels via the MAPK/Erk signaling pathway and Nrf2/Trx axis following the transplantation of neural stem cells in a rat model of traumatic brain injury. Neurochem Res 2017; 42(11): 3073-83.
[http://dx.doi.org/10.1007/s11064-017-2340-7] [PMID: 28780733]
[101]
Yin L, Ma H, Chen T, et al. Neural stem cells over-expressing brain-derived neurotrophic factor promote neuronal survival and cytoskeletal protein expression in traumatic brain injury sites. Neural Regen Res 2017; 12(3): 433-9.
[http://dx.doi.org/10.4103/1673-5374.202947] [PMID: 28469658]
[102]
Xu H, Jia Z, Ma K, et al. Protective effect of BMSCs-derived exosomes mediated by BDNF on TBI via miR-216a-5p. Med Sci Monit 2020; 26: e920855.
[http://dx.doi.org/10.12659/MSM.920855] [PMID: 32150531]
[103]
Choi BY, Hong DK, Kang BS, et al. Engineered mesenchymal stem cells over-expressing BDNF protect the brain from traumatic brain injury-induced neuronal death, neurological deficits, and cognitive impairments. Pharmaceuticals 2023; 16(3): 436.
[http://dx.doi.org/10.3390/ph16030436] [PMID: 36986535]
[104]
Liu X, Zhang J, Cheng X, et al. Integrated printed BDNF-stimulated HUCMSCs-derived exosomes/collagen/chitosan biological scaffolds with 3D printing technology promoted the remodelling of neural networks after traumatic brain injury. Regen Biomater 2023; 10: rbac085.
[http://dx.doi.org/10.1093/rb/rbac085] [PMID: 36683754]
[105]
Philips MF, Mattiasson G, Wieloch T, et al. Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg 2001; 94(5): 765-74.
[http://dx.doi.org/10.3171/jns.2001.94.5.0765] [PMID: 11354408]
[106]
Longhi L, Watson DJ, Saatman KE, et al. Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma 2004; 21(12): 1723-36.
[http://dx.doi.org/10.1089/neu.2004.21.1723] [PMID: 15684764]
[107]
Wang L, Zhang D, Ren Y, et al. Injectable hyaluronic acid hydrogel loaded with BMSC and NGF for traumatic brain injury treatment. Mater Today Bio 2022; 13: 100201.
[http://dx.doi.org/10.1016/j.mtbio.2021.100201] [PMID: 35024600]
[108]
Zhu W, Chen L, Wu Z, et al. Bioorthogonal DOPA-NGF activated tissue engineering microunits for recovery from traumatic brain injury by microenvironment regulation. Acta Biomater 2022; 150: 67-82.
[http://dx.doi.org/10.1016/j.actbio.2022.07.018] [PMID: 35842032]
[109]
Wu K, Huang D, Zhu C, et al. NT3P75-2 gene-modified bone mesenchymal stem cells improve neurological function recovery in mouse TBI model. Stem Cell Res Ther 2019; 10(1): 311.
[http://dx.doi.org/10.1186/s13287-019-1428-1] [PMID: 31651375]
[110]
Bouras M, Asehnoune K, Roquilly A. Immune modulation after traumatic brain injury. Front Med 2022; 9: 995044.
[http://dx.doi.org/10.3389/fmed.2022.995044] [PMID: 36530909]
[111]
Schulte-Herbrüggen O, Braun A, Rochlitzer S, Jockers-Scherübl M, Hellweg R. Neurotrophic factors-a tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr Med Chem 2007; 14(22): 2318-29.
[http://dx.doi.org/10.2174/092986707781745578] [PMID: 17896980]
[112]
Vega JA, García-Suárez O, Hannestad J, Pérez-Pérez M, Germanà A. Neurotrophins and the immune system. J Anat 2003; 203(1): 1-19.
[http://dx.doi.org/10.1046/j.1469-7580.2003.00203.x] [PMID: 12892403]
[113]
Tabakman R, Lecht S, Sephanova S, Arien-Zakay H, Lazarovici P. Interactions between the cells of the immune and nervous system: Neurotrophins as neuroprotection mediators in CNS injury. Prog Brain Res 2004; 146: 385-401.
[http://dx.doi.org/10.1016/S0079-6123(03)46024-X] [PMID: 14699975]
[114]
Skaper SD. Nerve growth factor: A neuroimmune crosstalk mediator for all seasons. Immunology 2017; 151(1): 1-15.
[http://dx.doi.org/10.1111/imm.12717] [PMID: 28112808]
[115]
Minnone G, De Benedetti F, Bracci-Laudiero L. NGF and its receptors in the regulation of inflammatory response. Int J Mol Sci 2017; 18(5): 1028.
[http://dx.doi.org/10.3390/ijms18051028] [PMID: 28492466]
[116]
Holzmann B. Modulation of immune responses by the neuropeptide CGRP. Amino Acids 2013; 45(1): 1-7.
[http://dx.doi.org/10.1007/s00726-011-1161-2] [PMID: 22113645]
[117]
Bracci-Laudiero L, Aloe L, Buanne P, et al. NGF modulates CGRP synthesis in human B-lymphocytes: A possible anti-inflammatory action of NGF? J Neuroimmunol 2002; 123(1-2): 58-65.
[http://dx.doi.org/10.1016/S0165-5728(01)00475-1] [PMID: 11880150]
[118]
Samah B, Porcheray F, Gras G. Neurotrophins modulate monocyte chemotaxis without affecting macrophage function. Clin Exp Immunol 2008; 151(3): 476-86.
[http://dx.doi.org/10.1111/j.1365-2249.2007.03578.x] [PMID: 18190610]
[119]
Kalra S, Malik R, Singh G, et al. Pathogenesis and management of traumatic brain injury (TBI): Role of neuroinflammation and anti-inflammatory drugs. Inflammopharmacology 2022; 30(4): 1153-66.
[http://dx.doi.org/10.1007/s10787-022-01017-8] [PMID: 35802283]
[120]
Prencipe G, Minnone G, Strippoli R, et al. Nerve growth factor downregulates inflammatory response in human monocytes through TrkA. J Immunol 2014; 192(7): 3345-54.
[http://dx.doi.org/10.4049/jimmunol.1300825] [PMID: 24585880]
[121]
Concetti J, Wilson CL. NFKB1 and cancer: Friend or foe? Cells 2018; 7(9): 133.
[http://dx.doi.org/10.3390/cells7090133] [PMID: 30205516]
[122]
Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA. Possible new role for NF-κB in the resolution of inflammation. Nat Med 2001; 7(12): 1291-7.
[http://dx.doi.org/10.1038/nm1201-1291] [PMID: 11726968]
[123]
Greten FR, Arkan MC, Bollrath J, et al. NF-kappaB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 2007; 130(5): 918-31.
[http://dx.doi.org/10.1016/j.cell.2007.07.009] [PMID: 17803913]
[124]
Llorens-Martín M, Jurado J, Hernández F, Avila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 2014; 7: 46.
[http://dx.doi.org/10.3389/fnmol.2014.00046] [PMID: 24904272]
[125]
Li DW, Liu ZQ, Wei-Chen , Min-Yao , Li GR. Association of glycogen synthase kinase-3β with Parkinson’s disease (Review). Mol Med Rep 2014; 9(6): 2043-50.
[http://dx.doi.org/10.3892/mmr.2014.2080] [PMID: 24681994]
[126]
Liu JG, Zhao D, Gong Q, et al. Development of bisindole-substituted aminopyrazoles as novel GSK-3β inhibitors with suppressive effects against microglial inflammation and oxidative neurotoxicity. ACS Chem Neurosci 2020; 11(20): 3398-408.
[http://dx.doi.org/10.1021/acschemneuro.0c00520] [PMID: 32960565]
[127]
Christian F, Smith E, Carmody R. The regulation of NF-κB subunits by phosphorylation. Cells 2016; 5(1): 12.
[http://dx.doi.org/10.3390/cells5010012] [PMID: 26999213]
[128]
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013; 53(1): 401-26.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]
[129]
Hannan MA, Dash R, Sohag AAM, Haque MN, Moon IS. Neuroprotection against oxidative stress: Phytochemicals targeting TrkB aignaling and the Nrf2-ARE antioxidant system. Front Mol Neurosci 2020; 13: 116.
[http://dx.doi.org/10.3389/fnmol.2020.00116] [PMID: 32714148]
[130]
Xu M, Li L, Liu H, Lu W, Ling X, Gong M. Rutaecarpine attenuates oxidative stress-induced traumatic brain injury and reduces secondary injury via the PGK1/KEAP1/NRF2 signaling pathway. Front Pharmacol 2022; 13: 807125.
[http://dx.doi.org/10.3389/fphar.2022.807125] [PMID: 35529443]
[131]
Wu AG, Yong YY, Pan YR, et al. Targeting Nrf2-mediated oxidative stress response in traumatic brain injury: Therapeutic perspectives of phytochemicals. Oxid Med Cell Longev 2022; 2022: 1-24.
[http://dx.doi.org/10.1155/2022/1015791] [PMID: 35419162]
[132]
Bhowmick S, D’Mello V, Caruso D, Abdul-Muneer PM. Traumatic brain injury-induced downregulation of Nrf2 activates inflammatory response and apoptotic cell death. J Mol Med 2019; 97(12): 1627-41.
[http://dx.doi.org/10.1007/s00109-019-01851-4] [PMID: 31758217]
[133]
Sims SK, Wilken-Resman B, Smith CJ, Mitchell A, McGonegal L, Sims-Robinson C. Brain-derived neurotrophic factor and nerve growth factor therapeutics for brain injury: The current translational challenges in preclinical and clinical research. Neural Plast 2022; 2022: 1-15.
[http://dx.doi.org/10.1155/2022/3889300] [PMID: 35283994]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy