Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Predicting Factors of Worse Prognosis in COVID-19: Results from a Cross-sectional Study on 52 Inpatients Admitted to the Internal Medicine Department

Author(s): Giuseppe Lisco*, Antonio Giovanni Solimando, Assunta Stragapede, Anna De Tullio, Cristiana Laraspata, Carola Laudadio, Vito Angelo Giagulli, Marcella Prete, Emilio Jirillo, Annalisa Saracino, Vito Racanelli and Vincenzo Triggiani*

Volume 24, Issue 10, 2024

Published on: 18 January, 2024

Page: [1224 - 1236] Pages: 13

DOI: 10.2174/0118715303288042240111070057

open access plus

Open Access Journals Promotions 2
Abstract

Background: The initial phases of the COVID-19 pandemic posed a real need for clinicians to identify patients at risk of poor prognosis as soon as possible after hospital admission.

Aims: The study aimed to assess the role of baseline anamnestic information, clinical parameters, instrumental examination, and serum biomarkers in predicting adverse outcomes of COVID-19 in a hospital setting of Internal Medicine.

Methods: Fifty-two inpatients consecutively admitted to the Unit of Internal Medicine “Baccelli,” Azienda Ospedaliero – Universitaria Policlinico of Bari (February 1 - May 31, 2021) due to confirmed COVID-19 were grouped into two categories based on the specific outcome: good prognosis (n=44), patients discharged at home after the acute phase of the infection; poor prognosis, a composite outcome of deaths and intensive care requirements (n=8). Data were extracted from medical records of patients who provided written informed consent to participate.

Results: The two study groups had similar demographic, anthropometric, clinical, and radiological characteristics. Higher interleukin 6 (IL-6) levels and leucocyte count, and lower free triiodothyronine (fT3) levels were found in patients with poor than those with good prognosis. Higher IL-6 levels and leucocyte count, lower fT3 concentration, and pre-existing hypercholesterolemia were independent risk factors of poor outcomes in our study population. A predicting risk score, built by assigning one point if fT3 < 2 pg/mL, IL-6 >25 pg/mL, and leucocyte count >7,000 n/mm3, revealed that patients totalizing at least 2 points by applying the predicting score had a considerably higher risk of poor prognosis than those scoring <2 points (OR 24.35 (1.32; 448), p = 0.03). The weight of pre-existing hypercholesterolemia did not change the risk estimation.

Conclusion: Four specific baseline variables, one anamnestic (pre-existing hypercholesterolemia) and three laboratory parameters (leucocyte count, IL-6, and fT3), were significantly associated with poor prognosis as independent risk factors. To prevent adverse outcomes, the updated 4-point score could be useful in identifying at-risk patients, highlighting the need for specific trials to estimate the safety and efficacy of targeted treatments.

Keywords: SARS-CoV-2, COVID-19, hypercholesterolemia, free triiodothyronine, interleukin-6, leukocytosis, predicting factors.

Graphical Abstract
[1]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[2]
COVID-19 Dashboard. Available from: https://coronavirus.jhu.edu/map.html (Accessed on May 24 2023).
[3]
Wise, J. COVID-19: WHO declares end of global health emergency. BMJ, 2023, 381, 1041.
[http://dx.doi.org/10.1136/bmj.p1041] [PMID: 37160309]
[4]
Harris, E. WHO declares end of COVID-19 global health emergency. JAMA, 2023, 329(21), 1817.
[http://dx.doi.org/10.1001/jama.2023.8656] [PMID: 37195734]
[5]
Long, B.; Carius, B.M.; Chavez, S.; Liang, S.Y.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation. Am. J. Emerg. Med., 2022, 54, 46-57.
[http://dx.doi.org/10.1016/j.ajem.2022.01.028] [PMID: 35121478]
[6]
Weaver, A.K.; Head, J.R.; Gould, C.F.; Carlton, E.J.; Remais, J.V. Environmental factors influencing COVID-19 incidence and severity. Annu. Rev. Public Health, 2022, 43(1), 271-291.
[http://dx.doi.org/10.1146/annurev-publhealth-052120-101420] [PMID: 34982587]
[7]
Dessie, Z.G.; Zewotir, T. Mortality-related risk factors of COVID-19: A systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect. Dis., 2021, 21(1), 855.
[http://dx.doi.org/10.1186/s12879-021-06536-3] [PMID: 34418980]
[8]
Bartleson, J.M.; Radenkovic, D.; Covarrubias, A.J.; Furman, D.; Winer, D.A.; Verdin, E. SARS-CoV-2, COVID-19 and the aging immune system. Nature Aging, 2021, 1(9), 769-782.
[http://dx.doi.org/10.1038/s43587-021-00114-7] [PMID: 34746804]
[9]
Chang, D.; Chang, X.; He, Y.; Tan, K.J.K. The determinants of COVID-19 morbidity and mortality across countries. Sci. Rep., 2022, 12(1), 5888.
[http://dx.doi.org/10.1038/s41598-022-09783-9] [PMID: 35393471]
[10]
World Health Organization. COVID-19 MONTHLY UPDATE. 2022. Available from: https://applications.emro.who.int/docs/WHOEMCSR500E-eng.pdf?ua=1
[11]
WHO. WHO R&D blueprint—novel coronavirus, COVID-19 therapeutic trial synopsis. 2020. Available from: https://cdn.who.int/media/docs/default-source/blue-print/covid-19-therapeutic-trial-synopsis.pdf (Accessed December 24, 2022).
[12]
Jin, J.M.; Bai, P.; He, W.; Wu, F.; Liu, X.F.; Han, D.M.; Liu, S.; Yang, J.K. Gender differences in patients with COVID-19: Focus on severity and mortality. Front. Public Health, 2020, 8, 152.
[http://dx.doi.org/10.3389/fpubh.2020.00152] [PMID: 32411652]
[13]
Giagulli, V.A.; Guastamacchia, E.; Magrone, T.; Jirillo, E.; Lisco, G.; De Pergola, G.; Triggiani, V. Worse progression of COVID‐19 in men: Is testosterone a key factor? Andrology, 2021, 9(1), 53-64.
[http://dx.doi.org/10.1111/andr.12836] [PMID: 32524732]
[14]
Onder, G.; Rezza, G.; Brusaferro, S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA, 2020, 323(18), 1775-1776.
[http://dx.doi.org/10.1001/jama.2020.4683] [PMID: 32203977]
[15]
Palmieri, L.; Vanacore, N.; Donfrancesco, C.; Lo Noce, C.; Canevelli, M.; Punzo, O.; Raparelli, V.; Pezzotti, P.; Riccardo, F.; Bella, A.; Fabiani, M.; D’Ancona, F.P.; Vaianella, L.; Tiple, D.; Colaizzo, E.; Palmer, K.; Rezza, G.; Piccioli, A.; Brusaferro, S.; Onder, G.; Palmieri, L.; Andrianou, X.; Barbariol, P.; Bella, A.; Bellino, S.; Benelli, E.; Bertinato, L.; Boros, S.; Brambilla, G.; Calcagnini, G.; Canevelli, M.; Rita Castrucci, M.; Censi, F.; Ciervo, A.; Colaizzo, E.; D’Ancona, F.; Del Manso, M.; Donfrancesco, C.; Fabiani, M.; Facchiano, F.; Filia, A.; Floridia, M.; Galati, F.; Giuliano, M.; Grisetti, T.; Kodra, Y.; Langer, M.; Lega, I.; Lo Noce, C.; Maiozzi, P.; Malchiodi Albedi, F.; Manno, V.; Martini, M.; Mateo Urdiales, A.; Mattei, E.; Meduri, C.; Meli, P.; Minelli, G.; Nebuloni, M.; Nisticò, L.; Nonis, M.; Onder, G.; Palmisano, L.; Petrosillo, N.; Pezzotti, P.; Pricci, F.; Punzo, O.; Puro, V.; Raparelli, V.; Rezza, G.; Riccardo, F.; Cristina Rota, M.; Salerno, P.; Serra, D.; Siddu, A.; Stefanelli, P.; De Bella, M.T.; Tiple, D.; Unim, B.; Vaianella, L.; Vanacore, N.; Vichi, M.; Rocco, V.E.; Zona, A.; Brusaferro, S. Clinical characteristics of hospitalized individuals dying with COVID-19 by age group in Italy. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(9), 1796-1800.
[http://dx.doi.org/10.1093/gerona/glaa146] [PMID: 32506122]
[16]
Zuin, M.; Rigatelli, G.; Bilato, C.; Cervellati, C.; Zuliani, G.; Roncon, L. Dyslipidaemia and mortality in COVID-19 patients: A meta-analysis. QJM, 2021, 114(6), 390-397.
[http://dx.doi.org/10.1093/qjmed/hcab071] [PMID: 33822215]
[17]
Sonnweber, T.; Grubwieser, P.; Pizzini, A.; Boehm, A.; Sahanic, S.; Luger, A.; Schwabl, C.; Widmann, G.; Egger, A.; Hoermann, G.; Wöll, E.; Puchner, B.; Kaser, S.; Theurl, I.; Nairz, M.; Tymoszuk, P.; Weiss, G.; Joannidis, M.; Löffler-Ragg, J.; Tancevski, I. Pulmonary recovery from COVID-19 in patients with metabolic diseases: A longitudinal prospective cohort study. Sci. Rep., 2023, 13(1), 2599.
[http://dx.doi.org/10.1038/s41598-023-29654-1] [PMID: 36788324]
[18]
Ponsford, M.J.; Gkatzionis, A.; Walker, V.M.; Grant, A.J.; Wootton, R.E.; Moore, L.S.P.; Fatumo, S.; Mason, A.M.; Zuber, V.; Willer, C.; Rasheed, H.; Brumpton, B.; Hveem, K.; Kristian Damås, J.; Davies, N.; Olav Åsvold, B.; Solligård, E.; Jones, S.; Burgess, S.; Rogne, T.; Gill, D. Cardiometabolic traits, sepsis, and severe COVID-19. Circulation, 2020, 142(18), 1791-1793.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050753] [PMID: 32966752]
[19]
Liu, Y.; Pan, Y.; Yin, Y.; Chen, W.; Li, X. Association of dyslipidemia with the severity and mortality of coronavirus disease 2019 (COVID-19): A meta-analysis. Virol. J., 2021, 18(1), 157.
[http://dx.doi.org/10.1186/s12985-021-01604-1] [PMID: 34315474]
[20]
Feingold, K.R. The bidirectional interaction of COVID-19 infections and lipoproteins. Best Pract. Res. Clin. Endocrinol. Metab., 2023, 37(4), 101751.
[http://dx.doi.org/10.1016/j.beem.2023.101751] [PMID: 36894344]
[21]
Vuorio, A.; Raal, F.; Kovanen, P.T. Familial hypercholesterolemia: The nexus of endothelial dysfunction and lipoprotein metabolism in COVID-19. Curr. Opin. Lipidol., 2023, 34(3), 119-125.
[http://dx.doi.org/10.1097/MOL.0000000000000876] [PMID: 36924390]
[22]
Kollias, A.; Kyriakoulis, K.G.; Kyriakoulis, I.G.; Nitsotolis, T.; Poulakou, G.; Stergiou, G.S.; Syrigos, K. Statin use and mortality in COVID-19 patients: Updated systematic review and meta-analysis. Atherosclerosis, 2021, 330, 114-121.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.06.911] [PMID: 34243953]
[23]
Vahedian-Azimi, A.; Mohammadi, S.M.; Banach, M.; Beni, F.H.; Guest, P.C.; Al-Rasadi, K.; Jamialahmadi, T.; Sahebkar, A. Improved COVID-19 outcomes following statin therapy: An updated systematic review and meta-analysis. BioMed Res. Int., 2021, 2021, 1-20.
[http://dx.doi.org/10.1155/2021/1901772] [PMID: 34568488]
[24]
Lisco, G.; De Tullio, A.; Giagulli, V.A.; Guastamacchia, E.; De Pergola, G.; Triggiani, V. Hypothesized mechanisms explaining poor prognosis in type 2 diabetes patients with COVID-19: A review. Endocrine, 2020, 70(3), 441-453.
[http://dx.doi.org/10.1007/s12020-020-02444-9] [PMID: 32779091]
[25]
Li, R.; Shen, M.; Yang, Q.; Fairley, C.K.; Chai, Z.; McIntyre, R.; Ong, J.J.; Liu, H.; Lu, P.; Hu, W.; Zou, Z.; Li, Z.; He, S.; Zhuang, G.; Zhang, L. Global diabetes prevalence in COVID-19 patients and contribution to COVID-19- related severity and mortality: A systematic review and meta-analysis. Diabetes Care, 2023, 46(4), 890-897.
[http://dx.doi.org/10.2337/dc22-1943] [PMID: 36826982]
[26]
Pham, T.T.; Zu, Y.; Ghamsari, F.; Oh, J.; Mauvais-Jarvis, F.; Zheng, H.; Filbin, M.; Denson, J.L. Association between metabolic syndrome inflammatory biomarkers and COVID-19 severity. J. Endocr. Soc., 2023, 7(5), bvad029.
[http://dx.doi.org/10.1210/jendso/bvad029] [PMID: 36911320]
[27]
Bogler, O.; Raissi, A.; Colacci, M.; Beaman, A.; Biering-Sørensen, T.; Cressman, A.; Detsky, A.; Gosset, A.; Lassen, M.H.; Kandel, C.; Khaykin, Y.; Barbosa, D.; Lapointe-Shaw, L.; MacFadden, D.R.; Pearson, A.; Perkins, B.A.; Rothman, K.J.; Skaarup, K.G.; Weagle, R.; Yarnell, C.; Sholzberg, M.; Hodzic-Santor, B.; Lovblom, E.; Zipursky, J.; Quinn, K.L.; Fralick, M. Association between diabetes and mortality among adult patients hospitalized with COVID-19: A cohort study of hospitalized adults in ontario, canada, and copenhagen, denmark. Can. J. Diabetes, 2023, 47(4), 352-358.
[http://dx.doi.org/10.1016/j.jcjd.2023.02.005] [PMID: 37074240]
[28]
Nassar, M.; Abosheaishaa, H.; Singh, A.K.; Misra, A.; Bloomgarden, Z. Noninsulin‐based antihyperglycemic medications in patients with diabetes and COVID ‐19: A systematic review and meta‐analysis. J. Diabetes, 2023, 15(2), 86-96.
[http://dx.doi.org/10.1111/1753-0407.13359] [PMID: 36690377]
[29]
Nguyen, N.N.; Ho, D.S.; Nguyen, H.S.; Ho, D.K.N.; Li, H.Y.; Lin, C.Y.; Chiu, H.Y.; Chen, Y.C. Preadmission use of antidiabetic medications and mortality among patients with COVID-19 having type 2 diabetes: A meta-analysis. Metabolism, 2022, 131, 155196.
[http://dx.doi.org/10.1016/j.metabol.2022.155196] [PMID: 35367460]
[30]
Zhu, Z.; Zeng, Q.; Liu, Q.; Wen, J.; Chen, G. Association of glucose-lowering drugs with outcomes in patients with diabetes before hospitalization for COVID-19. JAMA Netw. Open, 2022, 5(12), e2244652.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.44652] [PMID: 36472874]
[31]
Patoulias, D.; Doumas, M. Dipeptidyl peptidase-4 inhibitors and COVID-19-related deaths among patients with type 2 diabetes mellitus: A meta-analysis of observational studies. Endocrinol. Metab., 2021, 36(4), 904-908.
[http://dx.doi.org/10.3803/EnM.2021.1048] [PMID: 34311543]
[32]
Hariyanto, T.I.; Lugito, N.P.H.; Yanto, T.A.; Siregar, J.I.; Kurniawan, A. Insulin therapy and outcome of coronavirus disease 2019 (COVID-19): A systematic review, meta-analysis, and meta-regression. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(5), 481-489.
[http://dx.doi.org/10.2174/1871530321666210709164925] [PMID: 34250875]
[33]
Yang, Y.; Cai, Z.; Zhang, J. Insulin treatment may increase adverse outcomes in patients with COVID-19 and diabetes: A systematic review and meta-analysis. Front. Endocrinol., 2021, 12, 696087.
[http://dx.doi.org/10.3389/fendo.2021.696087] [PMID: 34367067]
[34]
Izcovich, A.; Ragusa, M.A.; Tortosa, F.; Lavena Marzio, M.A.; Agnoletti, C.; Bengolea, A.; Ceirano, A.; Espinosa, F.; Saavedra, E.; Sanguine, V.; Tassara, A.; Cid, C.; Catalano, H.N.; Agarwal, A.; Foroutan, F.; Rada, G. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS One, 2020, 15(11), e0241955.
[http://dx.doi.org/10.1371/journal.pone.0241955] [PMID: 33201896]
[35]
Wei, S.; Zhang, Y.; Zhai, K.; Li, J.; Li, M.; Yang, J.; Zhang, R.; Li, Y.; Li, Z. CytoSorb in patients with coronavirus disease 2019: A rapid evidence review and meta-analysis. Front. Immunol., 2023, 14, 1067214.
[http://dx.doi.org/10.3389/fimmu.2023.1067214] [PMID: 36798138]
[36]
Solimando, A.G.; Susca, N.; Borrelli, P.; Prete, M.; Lauletta, G.; Pappagallo, F.; Buono, R.; Inglese, G.; Forina, B.M.; Bochicchio, D.; Capobianco, M.; Carrieri, V.; Cicco, S.; Leone, P.; Silvestris, N.; Saracino, A.; Ria, R.; Procacci, V.; Migliore, G.; Vacca, A.; Racanelli, V. Short-term variations in neutrophil-to-lymphocyte and urea-to-creatinine ratios anticipate intensive care unit admission of COVID-19 patients in the emergency department. Front. Med., 2021, 7, 625176.
[http://dx.doi.org/10.3389/fmed.2020.625176] [PMID: 33553217]
[37]
Yong, S.J.; Halim, A.; Halim, M.; Liu, S.; Aljeldah, M.; Al Shammari, B.R.; Alwarthan, S.; Alhajri, M.; Alawfi, A.; Alshengeti, A.; Khamis, F.; Alsalman, J.; Alshukairi, A.N.; Abukhamis, N.A.; Almaghrabi, F.S.; Almuthree, S.A.; Alsulaiman, A.M.; Alshehail, B.M.; Alfaraj, A.H.; Alhawaj, S.A.; Mohapatra, R.K.; Rabaan, A.A. Inflammatory and vascular biomarkers in post‐COVID‐19 syndrome: A systematic review and meta‐analysis of over 20 biomarkers. Rev. Med. Virol., 2023, 33(2), e2424.
[http://dx.doi.org/10.1002/rmv.2424] [PMID: 36708022]
[38]
Yin, J.X.; Agbana, Y.L.; Sun, Z.S.; Fei, S.W.; Zhao, H.Q.; Zhou, X.N.; Chen, J.H.; Kassegne, K. Increased interleukin-6 is associated with long COVID-19: A systematic review and meta-analysis. Infect. Dis. Poverty, 2023, 12(1), 43.
[http://dx.doi.org/10.1186/s40249-023-01086-z] [PMID: 37095536]
[39]
Song, H.J.J.M.D.; Chia, A.Z.Q.; Tan, B.K.J.; Teo, C.B.; Lim, V.; Chua, H.R.; Samuel, M.; Kee, A. Electrolyte imbalances as poor prognostic markers in COVID-19: A systemic review and meta-analysis. J. Endocrinol. Invest., 2022, 46(2), 235-259.
[http://dx.doi.org/10.1007/s40618-022-01877-5] [PMID: 36070177]
[40]
Bassatne, A.; Basbous, M.; Chakhtoura, M.; El Zein, O.; Rahme, M.; El-Hajj Fuleihan, G. The link between COVID-19 and vitamin D (VIVID): A systematic review and meta-analysis. Metabolism, 2021, 119, 154753.
[http://dx.doi.org/10.1016/j.metabol.2021.154753] [PMID: 33774074]
[41]
Guerrero-Romero, F.; Mercado, M.; Rodriguez-Moran, M.; Ramírez-Renteria, C.; Martínez-Aguilar, G.; Marrero-Rodríguez, D.; Ferreira-Hermosillo, A.; Simental-Mendía, L.E.; Remba-Shapiro, I.; Gamboa-Gómez, C.I.; Albarrán-Sánchez, A.; Sanchez-García, M.L. Magnesium-to-calcium ratio and mortality from COVID-19. Nutrients, 2022, 14(9), 1686.
[http://dx.doi.org/10.3390/nu14091686] [PMID: 35565654]
[42]
Bennouar, S.; Cherif, A.B.; Kessira, A.; Bennouar, D.E.; Abdi, S.; Vitamin, D. Vitamin D deficiency and low serum calcium as predictors of poor prognosis in patients with severe COVID-19. J. Am. Coll. Nutr., 2021, 40(2), 104-110.
[http://dx.doi.org/10.1080/07315724.2020.1856013] [PMID: 33434117]
[43]
Lisco, G.; De Tullio, A.; Stragapede, A.; Solimando, A.G.; Albanese, F.; Capobianco, M.; Giagulli, V.A.; Guastamacchia, E.; De Pergola, G.; Vacca, A.; Racanelli, V.; Triggiani, V. COVID-19 and the endocrine system: A comprehensive review on the theme. J. Clin. Med., 2021, 10(13), 2920.
[http://dx.doi.org/10.3390/jcm10132920] [PMID: 34209964]
[44]
Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 3-20.
[http://dx.doi.org/10.1038/s41580-021-00418-x] [PMID: 34611326]
[45]
Lisco, G.; De Tullio, A.; Jirillo, E.; Giagulli, V.A.; De Pergola, G.; Guastamacchia, E.; Triggiani, V. Thyroid and COVID-19: A review on pathophysiological, clinical and organizational aspects. J. Endocrinol. Invest., 2021, 44(9), 1801-1814.
[http://dx.doi.org/10.1007/s40618-021-01554-z] [PMID: 33765288]
[46]
Lui, D.T.W.; Lee, C.H.; Chow, W.S.; Lee, A.C.H.; Tam, A.R.; Fong, C.H.Y.; Law, C.Y.; Leung, E.K.H.; To, K.K.W.; Tan, K.C.B.; Woo, Y.C.; Lam, C.W.; Hung, I.F.N.; Lam, K.S.L. Thyroid dysfunction in relation to immune profile, disease status, and outcome in 191 patients with COVID-19. J. Clin. Endocrinol. Metab., 2021, 106(2), e926-e935.
[http://dx.doi.org/10.1210/clinem/dgaa813] [PMID: 33141191]
[47]
Zou, R.; Wu, C.; Zhang, S.; Wang, G.; Zhang, Q.; Yu, B.; Wu, Y.; Dong, H.; Wu, G.; Wu, S.; Zhong, Y. Euthyroid sick syndrome in patients with COVID-19. Front. Endocrinol., 2020, 11, 566439.
[http://dx.doi.org/10.3389/fendo.2020.566439] [PMID: 33117282]
[48]
Deng, J.; Zhang, S.; Peng, F.; Zhang, Q.; Li, Y.; Zhong, Y. The association between FT3 with the outcome and inflammation/coagulopathy/fibrinolysis of COVID-19. Front. Endocrinol., 2022, 13, 877010.
[http://dx.doi.org/10.3389/fendo.2022.877010] [PMID: 35721727]
[49]
Chen, Y.; Li, X.; Dai, Y.; Zhang, J. The association between COVID-19 and thyroxine levels: A meta-analysis. Front. Endocrinol., 2022, 12, 779692.
[http://dx.doi.org/10.3389/fendo.2021.779692] [PMID: 35058879]
[50]
Weidemann, A.; Johnson, R.S. Biology of HIF-1α. Cell Death Differ., 2008, 15(4), 621-627.
[http://dx.doi.org/10.1038/cdd.2008.12] [PMID: 18259201]
[51]
Iervasi, G.; Pingitore, A.; Landi, P.; Raciti, M.; Ripoli, A.; Scarlattini, M.; L’Abbate, A.; Donato, L. Low-T3 syndrome. Circulation, 2003, 107(5), 708-713.
[http://dx.doi.org/10.1161/01.CIR.0000048124.64204.3F] [PMID: 12578873]
[52]
Kim, J.G.; Shin, H.; Kim, W.; Lim, T.H.; Jang, B.; Cho, Y.; Choi, K.S.; Ahn, C.; Lee, J.; Na, M.K. The value of decreased thyroid hormone for predicting mortality in adult septic patients: A systematic review and meta-analysis. Sci. Rep., 2018, 8(1), 14137.
[http://dx.doi.org/10.1038/s41598-018-32543-7] [PMID: 30237537]
[53]
Wajner, S.M.; Maia, A.L. New insights toward the acute non-thyroidal illness syndrome. Front. Endocrinol., 2012, 3, 8.
[http://dx.doi.org/10.3389/fendo.2012.00008] [PMID: 22654851]
[54]
Contreras-Jurado, C.; Alonso-Merino, E.; Saiz-Ladera, C.; Valiño, A.J.; Regadera, J.; Alemany, S.; Aranda, A. The thyroid hormone receptors inhibit hepatic interleukin-6 signaling during endotoxemia. Sci. Rep., 2016, 6(1), 30990.
[http://dx.doi.org/10.1038/srep30990] [PMID: 27484112]
[55]
Chen, M.; Zhou, W.; Xu, W. Thyroid function analysis in 50 patients with COVID-19: A retrospective study. Thyroid, 2021, 31(1), 8-11.
[http://dx.doi.org/10.1089/thy.2020.0363] [PMID: 32600165]
[56]
Tajar, A.; Huhtaniemi, I.T.; O’Neill, T.W.; Finn, J.D.; Pye, S.R.; Lee, D.M.; Bartfai, G.; Boonen, S.; Casanueva, F.F.F.; Forti, G.; Giwercman, A.; Han, T.S.; Kula, K.; Labrie, F.; Lean, M.E.J.; Pendleton, N.; Punab, M.; Vanderschueren, D.; Wu, F.C.W. Characteristics of androgen deficiency in late-onset hypogonadism: Results from the European Male Aging Study (EMAS). J. Clin. Endocrinol. Metab., 2012, 97(5), 1508-1516.
[http://dx.doi.org/10.1210/jc.2011-2513] [PMID: 22419720]
[57]
Lisco, G.; Giagulli, V.A.; De Pergola, G.; De Tullio, A.; Guastamacchia, E.; Triggiani, V. COVID-19 in man: A very dangerous affair. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(9), 1544-1554.
[http://dx.doi.org/10.2174/22123873MTEyAOTQiz] [PMID: 33388025]
[58]
Yassin, A.; Sabsigh, R.; Al-Zoubi, R.M.; Aboumarzouk, O.M.; Alwani, M.; Nettleship, J.; Kelly, D. Testosterone and COVID‐19: An update. Rev. Med. Virol., 2023, 33(1), e2395.
[http://dx.doi.org/10.1002/rmv.2395] [PMID: 36056748]
[59]
Auerbach, J.M.; Khera, M. Testosterone’s role in COVID-19. J. Sex. Med., 2021, 18(5), 843-848.
[http://dx.doi.org/10.1016/j.jsxm.2021.03.004] [PMID: 33903045]
[60]
Enikeev, D.; Taratkin, M.; Morozov, A.; Petov, V.; Korolev, D.; Shpikina, A.; Spivak, L.; Kharlamova, S.; Shchedrina, I.; Mestnikov, O.; Fiev, D.; Ganzha, T.; Geladze, M.; Mambetova, A.; Kogan, E.; Zharkov, N.; Demyashkin, G.; Shariat, S.F.; Glybochko, P. Prospective two‐arm study of the testicular function in patients with COVID‐19. Andrology, 2022, 10(6), 1047-1056.
[http://dx.doi.org/10.1111/andr.13159] [PMID: 35124885]
[61]
Rastrelli, G.; Di Stasi, V.; Inglese, F.; Beccaria, M.; Garuti, M.; Di Costanzo, D.; Spreafico, F.; Greco, G.F.; Cervi, G.; Pecoriello, A.; Magini, A.; Todisco, T.; Cipriani, S.; Maseroli, E.; Corona, G.; Salonia, A.; Lenzi, A.; Maggi, M.; De Donno, G.; Vignozzi, L. Low testosterone levels predict clinical adverse outcomes in SARS‐CoV‐2 pneumonia patients. Andrology, 2021, 9(1), 88-98.
[http://dx.doi.org/10.1111/andr.12821] [PMID: 32436355]
[62]
Zhou, J.; He, W.; Liang, J.; Wang, L.; Yu, X.; Bao, M.; Liu, H. Association of interleukin-6 levels with morbidity and mortality in patients with coronavirus disease 2019 (COVID-19). Jpn. J. Infect. Dis., 2021, 74(4), 293-298.
[http://dx.doi.org/10.7883/yoken.JJID.2020.463] [PMID: 33250487]
[63]
Dharra, R.; Kumar, S.A.; Datta, S. Emerging aspects of cytokine storm in COVID-19: The role of proinflammatory cytokines and therapeutic prospects. Cytokine, 2023, 169, 156287.
[http://dx.doi.org/10.1016/j.cyto.2023.156287] [PMID: 37402337]
[64]
Utrero-Rico, A.; Ruiz-Hornillos, J.; González-Cuadrado, C.; Rita, C.G.; Almoguera, B.; Minguez, P.; Herrero-González, A.; Fernández-Ruiz, M.; Carretero, O.; Taracido-Fernández, J.C.; López-Rodriguez, R.; Corton, M.; Aguado, J.M.; Villar, L.M.; Ayuso-García, C.; Paz-Artal, E.; Laguna-Goya, R. IL-6–based mortality prediction model for COVID-19: Validation and update in multicenter and second wave cohorts. J. Allergy Clin. Immunol., 2021, 147(5), 1652-1661.e1.
[http://dx.doi.org/10.1016/j.jaci.2021.02.021] [PMID: 33662370]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy