Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Review Article

Bioactive Compounds from Kinnow Processing Waste and their Associated Benefits: A Review

Author(s): Adethi Pulparambil, Prasad Rasane*, Jyoti Singh, Sawinder Kaur, Manish Bakshi, Dipendra Kumar Mahato, Jaspreet Kaur, Mahendra Gunjal and Vishesh Bhadariya

Volume 15, Issue 2, 2024

Published on: 17 January, 2024

Page: [103 - 114] Pages: 12

DOI: 10.2174/012772574X271785231230174607

Price: $65

conference banner
Abstract

We have explored the expansive possibilities of kinnow peel, a frequently ignored by-product of the fruit processing industry, in this thorough analysis. The production of kinnow generates a significant amount of waste, including peel, seeds, and pulp. The disposal of this waste is a major environmental issue, as it can lead to pollution and greenhouse gas emissions. Due to the presence of bioactive substances that may be used in a variety of sectors, kinnow processing waste has the potential to provide a number of advantages. In the culinary, pharmaceutical, and cosmetic industries, the peel, seeds, and pulp from kinnow can be used as natural sources of antioxidants, aromatics, pectin, and dietary fibre. Utilizing kinnow waste promotes eco-innovation, increases sustainability, and aids in waste reduction. The development of a circular economy can be sped up with more study and commercialization of kinnow waste products. This analysis emphasises how important it is to understand and utilise the unrealized potential of agricultural byproducts, like kinnow peel.

Keywords: Kinnow, bioactive compounds, health benefits, kinnow waste, sustainable development, nutritional benefits.

Next »
Graphical Abstract
[1]
Arora, S.; Mohanpuria, P.; Sidhu, G.S.; Yadav, I.S.; Kumari, V. Cloning and characterization of limonoid glucosyltransferase from kinnow mandarin (Citrus reticulata Blanco). Food Technol. Biotechnol., 2018, 56(2), 228-237.
[http://dx.doi.org/10.17113/ftb.56.02.18.5349] [PMID: 30228797]
[2]
Kaur, S.; Panesar, P.S.; Chopra, H.K. Standardization of ultrasound-assisted extraction of bioactive compounds from kinnow mandarin peel. Biomass Convers. Biorefin., 2023, 13(10), 8853-8863.
[http://dx.doi.org/10.1007/s13399-021-01674-9]
[3]
Suri, S.; Singh, A.; Nema, P.K. Infrared drying of Kinnow (Citrus reticulata) peel waste: Kinetics and quality characterization. Biomass Convers. Biorefin., 2022, (2022), 1-12.
[http://dx.doi.org/10.1007/s13399-022-02844-z]
[4]
Nayik, G.A.; Gull, A. Antioxidants in Fruits: Properties and health benefits; Springer: Singapore, 2020, pp. 201-225.
[5]
Singla, G.; Krishania, M.; Sandhu, P.P.; Sangwan, R.S.; Panesar, P.S. Value additon of kinnow industry byproducts for the preparation of fiber enriched extruded products. J. Food Sci. Technol., 2019, 56(3), 1575-1582.
[http://dx.doi.org/10.1007/s13197-019-03670-4] [PMID: 30956338]
[6]
Rattan, C.S.; Singh, S.K.; Badhan, B.S. Influence of tree age on vegetative growth, leaf nutrient content and yield of Kinnow trees. Plant Arch., 2020, 20, 5257-5262.
[7]
Horticulture at a glance. 2023. Available from: https://nhb.gov.in/statistics/Publication/Horticulture%20At%20a%20Glance%202017%20for%20net%20uplod%20(2).pdf Assessed on April, 30 2023.
[8]
Kumar, R. Kinnow: Punjab’s king of fruit- A review. Just agriculture. 2020, 1, 294-298.
[9]
Saini, R.K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Gowda, K.G.M.; Keum, Y.S. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants, 2022, 11(2), 239.
[http://dx.doi.org/10.3390/antiox11020239] [PMID: 35204122]
[10]
Lapuente, M.; Estruch, R.; Shahbaz, M.; Casas, R. Relation of fruits and vegetables with major cardiometabolic risk factors, markers of oxidation, and inflammation. Nutrients, 2019, 11(10), 2381.
[http://dx.doi.org/10.3390/nu11102381] [PMID: 31590420]
[11]
Balta, M.; Kirit, B.D. Ağçam, E.; Akyildiz, A. Determination of the effect of different atmospheric conditions on bioactive components of various citrus juices. J. Food Compos. Anal., 2023, 115, 105006.
[http://dx.doi.org/10.1016/j.jfca.2022.105006]
[12]
Tsai, P.W.; Rogio, K.G.G.; Hsieh, C.Y.; Cruz, K.A.D.C.; Lee, C.J.; Hsueh, C.C.; Huang, T.N.; Lu, W.Z.; Xie, Z.L.; Jheng, Y.N.; Chen, B.Y. Optimal stimulation of citrus reticulate for bioenergy extraction in MFCs and antioxidant activity via traditional Chinese medicine processing methods. J. Taiwan Inst. Chem. Eng., 2023, 143, 104690.
[http://dx.doi.org/10.1016/j.jtice.2023.104690]
[13]
Malik, A.; Najda, A.; Bains, A. Nurzyńska-Wierdak, R.; Chawla, P. Characterization of citrusnobilis peel methanolic extract for antioxidant, antimicrobial, and anti-inflammatory activity. Molecules, 2021, 26(14), 4310.
[http://dx.doi.org/10.3390/molecules26144310] [PMID: 34299584]
[14]
Pruthi, S.; Kaur, K.; Singh, V.; Shri, R. Improvement of cognitive function in mice by Citrus reticulata var. Kinnow via modulation of central cholinergic system and oxidative stress. Metab. Brain Dis., 2021, 36(5), 901-910.
[http://dx.doi.org/10.1007/s11011-021-00687-7] [PMID: 33651274]
[15]
Suri, S.; Singh, A.; Nema, P.K. Current applications of citrus fruit processing waste: A scientific outlook. Applied Food Research, 2022, 2(1), 100050.
[http://dx.doi.org/10.1016/j.afres.2022.100050]
[16]
Gad, H.A.; El Hassab, M.A.; Elhady, S.S.; Fahmy, N.M. Insights on Citrus clementina essential oil as a potential antiaging candidate with a comparative chemometric study on different cultivars. Ind. Crops Prod., 2023, 194, 116349.
[http://dx.doi.org/10.1016/j.indcrop.2023.116349]
[17]
Prommaban, A.; Chaiyana, W. Microemulsion of essential oils from citrus peels and leaves with anti-aging, whitening, and irritation reducing capacity. J. Drug Deliv. Sci. Technol., 2022, 69, 103188.
[http://dx.doi.org/10.1016/j.jddst.2022.103188]
[18]
Singh, J.; Chahal, T.S.; Gill, P.S.; Grewal, S.K. Changes in phenolics and antioxidant capacities in fruit tissues of mandarin cultivars Kinnow and W. Murcott with relation to fruit development. J. Food Process. Preserv., 2021, 45(12)
[http://dx.doi.org/10.1111/jfpp.16040]
[19]
Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int., 2020, 132, 109114.
[http://dx.doi.org/10.1016/j.foodres.2020.109114] [PMID: 32331689]
[20]
Azman, N.F.I.N.; Azlan, A.; Khoo, H.E.; Razman, M.R. Antioxidant properties of fresh and frozen peels of citrus species. Curr. Res. Nutr. Food Sci., 2019, 7(2), 331-339.
[http://dx.doi.org/10.12944/CRNFSJ.7.2.03]
[21]
Kaur, S.; Sachdev, P.A.; Singh, A.; Surasani, V.K.R. Utilisation of Kinnow peel as a functional ingredient in bread: Physicochemical, functional, textural and sensory attributes. Int. J. Food Sci. Technol., 2023, 58(5), 2706-2714.
[http://dx.doi.org/10.1111/ijfs.16040]
[22]
Rafiq, S.; Singh, B.; Gat, Y. Effect of different drying techniques on chemical composition, color and antioxidant properties of kinnow (Citrus reticulata) peel. J. Food Sci. Technol., 2019, 56(5), 2458-2466.
[http://dx.doi.org/10.1007/s13197-019-03722-9] [PMID: 31168128]
[23]
Koolaji, N.; Shammugasamy, B.; Schindeler, A.; Dong, Q.; Dehghani, F.; Valtchev, P. Citrus peel flavonoids as potential cancer prevention agents. Curr. Dev. Nutr., 2020, 4(5), nzaa025.
[http://dx.doi.org/10.1093/cdn/nzaa025] [PMID: 32391511]
[24]
Boiko, Y.; Ayat, M.; Boiko, I.; Shandra, A. The study of the anti-inflammatory properties of carotenoid liquid extracts on the model of adjuvant-induced inflammation. ScienceRise Biol. sci, 2021, 2, 4-9.
[http://dx.doi.org/10.15587/2519-8025.2021.235095]
[25]
Alam, M.K.; Rana, Z.H.; Kabir, N.; Begum, P.; Kawsar, M.; Khatun, M.; Ahsan, M.; Islam, S.N. Total phenolics, total carotenoids and antioxidant activity of selected unconventional vegetables growing in Bangladesh. Curr. Nutr. Food Sci., 2020, 16(7), 1088-1097.
[http://dx.doi.org/10.2174/1573401315666191209095515]
[26]
Maslov Bandić, L.; Vlahoviček-Kahlina, K.; Sigurnjak Bureš, M.; Sopko Stracenski, K.; Jalšenjak, N.; Fruk, G.; Antolković, A.M.; Jurić, S. Fruit quality of satsuma mandarins from neretva valley and their flavonoid and carotenoid content. Horticulturae, 2023, 9(3), 383.
[http://dx.doi.org/10.3390/horticulturae9030383]
[27]
Ma, G.; Zhang, L.; Sugiura, M.; Kato, M. Citrus and health. In: The genus citrus; Woodhead Publishing, 2020; pp. 495-511.
[http://dx.doi.org/10.1016/B978-0-12-812163-4.00024-3]
[28]
Wardani, R.K.; Rhamandana, I.M.; Gono, C.M.P.; Ikawati, M. Phytochemical and bioinformatic studies of citrus flavonoids as chemopreventive agents targeting GGPS1 for liver cancer. Indones. J. Cancer Chemoprevention, 2021, 12(3), 137.
[http://dx.doi.org/10.14499/indonesianjcanchemoprev12iss3pp137-147]
[29]
Chen, Q.; Wang, D.; Tan, C.; Hu, Y.; Sundararajan, B.; Zhou, Z. Profiling of flavonoid and antioxidant activity of fruit tissues from 27 chinese local citrus cultivars. Plants, 2020, 9(2), 196.
[http://dx.doi.org/10.3390/plants9020196] [PMID: 32033423]
[30]
Russo, C.; Maugeri, A.; Lombardo, G.E.; Musumeci, L.; Barreca, D.; Rapisarda, A.; Cirmi, S.; Navarra, M. The second life of citrus fruit waste: A valuable source of bioactive compounds. Molecules, 2021, 26(19), 5991.
[http://dx.doi.org/10.3390/molecules26195991] [PMID: 34641535]
[31]
Cirmi, S.; Maugeri, A.; Lombardo, G.E.; Russo, C.; Musumeci, L.; Gangemi, S.; Calapai, G.; Barreca, D.; Navarra, M. A flavonoid-rich extract of mandarin juice counteracts 6-OHDA-induced oxidative stress in SH-SY5Y cells and modulates parkinson-related genes. Antioxidants, 2021, 10(4), 539.
[http://dx.doi.org/10.3390/antiox10040539] [PMID: 33808343]
[32]
Lubinska-Szczygeł, M.; Kuczyńska-Łażewska, A.; Rutkowska, M.; Polkowska, Ż.; Katrich, E.; Gorinstein, S. Determination of the major by-products of Citrus hystrix peel and their characteristics in the context of utilization in the industry. Molecules, 2023, 28(6), 2596.
[http://dx.doi.org/10.3390/molecules28062596] [PMID: 36985567]
[33]
Gunness, P.; Zhai, H.; Williams, B.A.; Zhang, D.; Gidley, M.J. Pectin and mango pulp both reduce plasma cholesterol in pigs but have different effects on triglycerides and bile acids. Food Hydrocoll., 2021, 112, 106369.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106369]
[34]
Ghoshal, G.; Negi, P. Isolation of pectin from kinnow peels and its characterization. Food Bioprod. Process., 2020, 124, 342-353.
[http://dx.doi.org/10.1016/j.fbp.2020.09.008]
[35]
Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods, 2019, 8(11), 523.
[http://dx.doi.org/10.3390/foods8110523] [PMID: 31652773]
[36]
Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Front. Pharmacol., 2022, 13, 806470.
[http://dx.doi.org/10.3389/fphar.2022.806470] [PMID: 35237163]
[37]
Sharma, P.; Dadwal, V.; Rahmatkar, S.N.; Gupta, M.; Singh, D. Flavonoid composition and antioxidant efficacy of citrus peels: An integrated in vitro and in silico approach toward potential neuroprotective agents. J. Sci. Ind. Res., 2022, 81, 445-454.
[38]
Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chem., 2019, 295, 289-299.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.136] [PMID: 31174761]
[39]
Purewal, S.S.; Kaur, P.; Sandhu, K.S. Valorization of bioactive profile and antioxidant properties of Kinnow peel, and pulp residue: A step towards utilization of Kinnow waste for biscuit preparation. J. Food Meas. Charact., 2023, 17(1), 787-799.
[http://dx.doi.org/10.1007/s11694-022-01665-y]
[40]
El-Readi, M.Z.; Hamdan, D.; Farrag, N.; El-Shazly, A.; Wink, M. Inhibition of P-glycoprotein activity by limonin and other secondary metabolites from Citrus species in human colon and leukaemia cell lines. Eur. J. Pharmacol., 2010, 626(2-3), 139-145.
[http://dx.doi.org/10.1016/j.ejphar.2009.09.040] [PMID: 19782062]
[41]
Luo, H.; Rankin, G.O.; Juliano, N.; Jiang, B.H.; Chen, Y.C. Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-NFκB-cMyc-p21 pathway. Food Chem., 2012, 130(2), 321-328.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.045] [PMID: 21927533]
[42]
Xu, Y.; Tang, G.; Zhang, C.; Wang, N.; Feng, Y. Gallic acid and diabetes mellitus: Its association with oxidative stress. Molecules, 2021, 26(23), 7115.
[http://dx.doi.org/10.3390/molecules26237115] [PMID: 34885698]
[43]
Samuel, K.G.; Wang, J.; Yue, H.Y.; Wu, S.G.; Zhang, H.J.; Duan, Z.Y.; Qi, G.H. Effects of dietary gallic acid supplementation on performance, antioxidant status, and jejunum intestinal morphology in broiler chicks. Poult. Sci., 2017, 96(8), 2768-2775.
[http://dx.doi.org/10.3382/ps/pex091] [PMID: 28521034]
[44]
Rezaee, R.; Sheidary, A.; Jangjoo, S.; Ekhtiary, S.; Bagheri, S.; Kohkan, Z.; Dadres, M.; Oana Docea, A.; Tsarouhas, K.; Sarigiannis, D.A.; Karakitsios, S.; Tsatsakis, A.; Kovatsi, L.; Hashemzaei, M. Cardioprotective effects of hesperidin on carbon monoxide poisoned in rats. Drug Chem. Toxicol., 2021, 44(6), 668-673.
[http://dx.doi.org/10.1080/01480545.2019.1650753] [PMID: 31412747]
[45]
Testai, L.; Da Pozzo, E.; Piano, I.; Pistelli, L.; Gargini, C.; Breschi, M.C.; Braca, A.; Martini, C.; Martelli, A.; Calderone, V. The citrus flavanone naringenin produces cardioprotective effects in hearts from 1 year old rat, through activation of mitoBK channels. Front. Pharmacol., 2017, 8, 71.
[http://dx.doi.org/10.3389/fphar.2017.00071] [PMID: 28289383]
[46]
Li, C.; Schluesener, H. Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr., 2017, 57(3), 613-631.
[http://dx.doi.org/10.1080/10408398.2014.906382] [PMID: 25675136]
[47]
Fazil, C.; Kumar, Y.; Sharma, R.; Srivastava, T.; Saxena, D.C. Valorization of banana and kinnow waste in the development of nutritional bar using extrusion and plate-molding technique. Waste Biomass Valoriz., 2023.
[http://dx.doi.org/10.1007/s12649-023-02133-4]
[48]
Costanzo, G.; Vitale, E.; Iesce, M.R.; Naviglio, D.; Amoresano, A.; Fontanarosa, C.; Spinelli, M.; Ciaravolo, M.; Arena, C. Antioxidant properties of pulp, peel and seeds of phlegrean mandarin (Citrus reticulata Blanco) at different stages of fruit ripening. Antioxidants, 2022, 11(2), 187.
[http://dx.doi.org/10.3390/antiox11020187] [PMID: 35204071]
[49]
Shafiq, M.; Firdous, S.; Irfan, Q.; Khan, S.J.; Qadir, A. Study the effect of heating process on nutritional, phytochemical and antioxidant activity of mandarin peel: Implication for waste management. Journal of Scientific Research, 2019, 11(3), 365-372.
[http://dx.doi.org/10.3329/jsr.v11i3.40493]
[50]
Duletić-Laušević, S. In vitro evaluation of antioxidant, antineurodegenerative and antidiabetic activities of ocimum basilicum L., Laurus Nobilis L. Leaves and citrus reticulata blanco peel extracts Lekovite sirovine, 2019, 39, 60-68.
[http://dx.doi.org/10.5937/leksir1939060D]
[51]
Mahawar, M.K.; Jalgaonkar, K.; Bibwe, B.; Bhushan, B.; Meena, V.S.; Sonkar, R.K. Post-harvest processing and valorization of Kinnow mandarin (Citrus reticulate L.): A review. J. Food Sci. Technol., 2020, 57(3), 799-815.
[http://dx.doi.org/10.1007/s13197-019-04083-z] [PMID: 32123400]
[52]
Ali, A.M.; Gabbar, M.A.; Abdel-Twab, S.M.; Fahmy, E.M.; Ebaid, H.; Alhazza, I.M.; Ahmed, O.M. Antidiabetic potency, antioxidant effects, and mode of actions of citrus reticulata fruit peel hydroethanolic extract, hesperidin, and quercetin in nicotinamide/streptozotocin-induced wistar diabetic rats. Oxid. Med. Cell. Longev., 2020, 2020, 1-21.
[http://dx.doi.org/10.1155/2020/1730492] [PMID: 32655759]
[53]
Khan, U.M.; Sameen, A.; Aadil, R.M.; Shahid, M.; Sezen, S.; Zarrabi, A.; Ozdemir, B.; Sevindik, M.; Kaplan, D.N.; Selamoglu, Z.; Ydyrys, A.; Anitha, T.; Kumar, M.; Sharifi-Rad, J.; Butnariu, M. Citrus genus and its waste utilization: A review on health-promoting activities and industrial application. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/2488804] [PMID: 34795782]
[54]
Yaqoob, M.; Aggarwal, P.; Aslam, R.; Rehal, J. Extraction of bioactives from citrus. In: Green sustainable process for chemical and environmental engineering and science; Elsevier, 2020; pp. 357-377.
[http://dx.doi.org/10.1016/B978-0-12-817388-6.00015-5]
[55]
Astuti, Y.; Primasari, A. Ethanolic extract of citrus reticulata peel inhibits the migration of WiDr colon cancer cells. Indones. J. Cancer Chemoprevention, 2020, 11(2), 60.
[http://dx.doi.org/10.14499/indonesianjcanchemoprev11iss2pp60-66]
[56]
Mounika, A.; Ilangovan, B.; Mandal, S.; Shraddha Yashwant, W.; Priya Gali, S.; Shanmugam, A. Prospects of ultrasonically extracted food bioactives in the field of non-invasive biomedical applications – A review. Ultrason. Sonochem., 2022, 89, 106121.
[http://dx.doi.org/10.1016/j.ultsonch.2022.106121] [PMID: 35987106]
[57]
FernándezFernández, A. M.; Dellacassa, E.; MedranoFernandez, A.; Del Castillo, M. D. Citrus waste recovery for sustainable nutrition and health. In: Food Wastes and Byproducts: Nutraceutical and Health Potential; , 2020; pp. 193-222.
[58]
El-Kersh, D.M.; Ezzat, S.M.; Salama, M.M.; Mahrous, E.A.; Attia, Y.M.; Ahmed, M.S.; Elmazar, M.M. Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer. Sci. Rep., 2021, 11(1), 7121.
[http://dx.doi.org/10.1038/s41598-021-86599-z] [PMID: 33782546]
[59]
Malleshappa, P.; Kumaran, R.C.; Venkatarangaiah, K.; Parveen, S. Peels of citrus fruits: A potential source of anti-inflammatory and anti-nociceptive agents. Pharmacogn. J., 2018, 10(6s), s172-s178.
[http://dx.doi.org/10.5530/pj.2018.6s.30]
[60]
Sakr, H.I.; Khowailed, A.A.; Gaber, S.S.; Ahmed, O.M.; Eesa, A.N. Effect of mandarin peel extract on experimentally induced arthritis in male rats. Arch. Physiol. Biochem., 2021, 127(2), 136-147.
[http://dx.doi.org/10.1080/13813455.2019.1623263] [PMID: 31172817]
[61]
Wedamulla, N.E.; Fan, M.; Choi, Y.J.; Kim, E.K. Citrus peel as a renewable bioresource: Transforming waste to food additives. J. Funct. Foods, 2022, 95, 105163.
[http://dx.doi.org/10.1016/j.jff.2022.105163]
[62]
Maqbool, Z.; Khalid, W.; Atiq, H.T.; Koraqi, H.; Javaid, Z.; Alhag, S.K.; Al-Shuraym, L.A.; Bader, D.M.D.; Almarzuq, M.; Afifi, M. AL-Farga, A. Citrus waste as source of bioactive compounds: Extraction and utilization in health and food industry. Molecules, 2023, 28(4), 1636.
[http://dx.doi.org/10.3390/molecules28041636] [PMID: 36838623]
[63]
Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crops Prod., 2015, 75, 141-149.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.063]
[64]
Siddique, M.A.B.; Tzima, K.; Rai, D.K.; Brunton, N. Conventional extraction techniques for bioactive compounds from herbs and spices. Herbs, Spices and Medicinal Plants: Processing; Health Benefits and Safety, 2020, pp. 69-93.
[65]
Saini, A.; Panesar, P.S.; Bera, M.B. Comparative study on the extraction and quantification of polyphenols from citrus peels using maceration and ultrasonic technique. Curr. Res. Nutr. Food Sci., 2019, 7(3), 678-685.
[http://dx.doi.org/10.12944/CRNFSJ.7.3.08]
[66]
Yaqoob, M.; Aggarwal, P.; Babbar, N. Extraction and screening of kinnow (Citrus reticulata L.) peel phytochemicals, grown in Punjab, India. Biomass Convers. Biorefin., 2023, 13(13), 11631-11643.
[http://dx.doi.org/10.1007/s13399-021-02085-6]
[67]
Kaur, A.; Kocher, G.S. Keshani, Extraction and characterization of essential oils from peel of kinnow (Citrus reticulata L.). Agric. Res. J., 2022, 59(5), 964-969.
[http://dx.doi.org/10.5958/2395-146X.2022.00135.1]
[68]
Kumari, M.; Singh, S.; Chauhan, A.K. A comparative study of the extraction of pectin from kinnow (Citrus reticulata) peel using different techniques. Food Bioprocess Technol., 2023, 16(10), 2272-2286.
[http://dx.doi.org/10.1007/s11947-023-03059-4]
[69]
Yaqoob, M.; Aggarwal, P.; Rasool, N.; Baba, W.N.; Ahluwalia, P.; Abdelrahman, R. Enhanced functional properties and shelf stability of cookies by fortification of kinnow derived phytochemicals and residues. J. Food Meas. Charact., 2021, 15(3), 2369-2376.
[http://dx.doi.org/10.1007/s11694-021-00827-8]
[70]
Singla, G.; Singh, U.; Sangwan, R.S.; Panesar, P.S.; Krishania, M. Comparative study of various processes used for removal of bitterness from kinnow pomace and kinnow pulp residue. Food Chem., 2021, 335, 127643.
[http://dx.doi.org/10.1016/j.foodchem.2020.127643] [PMID: 32745841]
[71]
Suri, S.; Singh, A.; Nema, P.K.; Taneja, N.K. A comparative study on the debittering of kinnow (Citrus reticulate L.) Peels: Microbial, chemical, and ultrasound-assisted microbial treatment. Fermentation, 2022, 8(8), 389.
[http://dx.doi.org/10.3390/fermentation8080389]
[72]
Shaw, D.; Tripathi, A.D.; Paul, V.; Agarwal, A.; Mishra, P.K.; Kumar, M. Valorization of essential oils from citrus peel powder using hydro-distillation. Sustain. Chem. Pharm., 2023, 32, 101036.
[http://dx.doi.org/10.1016/j.scp.2023.101036]
[73]
Zayed, A.; Badawy, M.T.; Farag, M.A. Valorization and extraction optimization of Citrus seeds for food and functional food applications. Food Chem., 2021, 355, 129609.
[http://dx.doi.org/10.1016/j.foodchem.2021.129609] [PMID: 33799261]
[74]
Huang, J.; Lu, Y.J.; Guo, C.; Zuo, S.; Zhou, J.L.; Wong, W.L.; Huang, B. The study of citrus-derived flavonoids as effective bitter taste inhibitors. J. Sci. Food Agric., 2021, 101(12), 5163-5171.
[http://dx.doi.org/10.1002/jsfa.11162] [PMID: 33608884]
[75]
Shakour, Z.T.A.; Fayek, N.M.; Farag, M.A. How do biocatalysis and biotransformation affect Citrus dietary flavonoids chemistry and bioactivity? A review. Crit. Rev. Biotechnol., 2020, 40(5), 689-714.
[http://dx.doi.org/10.1080/07388551.2020.1753648] [PMID: 32338083]
[76]
Kaushal, N.; Singh, M. Food grade hydrogels fabricated using hybrid matrices as carriers of bioflavonoids derived from ‘Kinnow’ mandarin peels. Waste Biomass Valoriz., 2023.
[http://dx.doi.org/10.1007/s12649-023-02178-5]
[77]
Gopalakrishnan, K.; Chandel, M.; Gupta, V.; Kaur, K.; Patel, A.; Kaur, K.; Kishore, A.; Prabhakar, P.K.; Singh, A.; Shankar Prasad, J.; Bodana, V.; Saxena, V.; Shanmugam, V.; Sharma, A. Valorisation of fruit peel bioactive into green synthesized silver nanoparticles to modify cellulose wrapper for shelf-life extension of packaged bread. Food Res. Int., 2023, 164, 112321.
[http://dx.doi.org/10.1016/j.foodres.2022.112321] [PMID: 36737915]
[78]
Ben Hsouna, A.; Sadaka, C. Generalić Mekinić, I.; Garzoli, S.; Švarc-Gajić, J.; Rodrigues, F.; Morais, S.; Moreira, M.M.; Ferreira, E.; Spigno, G.; Brezo-Borjan, T.; Akacha, B.B.; Saad, R.B.; Delerue-Matos, C.; Mnif, W. The chemical variability, nutraceutical value, and food-industry and cosmetic applications of citrus plants: A critical review. Antioxidants, 2023, 12(2), 481.
[http://dx.doi.org/10.3390/antiox12020481] [PMID: 36830039]
[79]
Kumar, G.; Upadhyay, S.; Yadav, D.K.; Malakar, S.; Dhurve, P.; Suri, S. Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio functional properties: A review. J. Food Process Eng., 2023, 46(6), e14238.
[http://dx.doi.org/10.1111/jfpe.14238]
[80]
Kawatra, A.; Gupta, S.; Dhankhar, R.; Singh, P.; Gulati, P. Application of phytochemicals in therapeutic, food, flavor, and cosmetic industries. In: Phytochemical Genomics: Plant Metabolomics and Medicinal Plant Genomics; Springer Nature Singapore: Singapore, 2023; pp. 85-108.
[81]
Sharma, P.; Vishvakarma, R.; Gautam, K.; Vimal, A.; Kumar Gaur, V.; Farooqui, A.; Varjani, S.; Younis, K. Valorization of citrus peel waste for the sustainable production of value-added products. Bioresour. Technol., 2022, 351, 127064.
[http://dx.doi.org/10.1016/j.biortech.2022.127064] [PMID: 35351555]
[82]
Mahato, N.; Sharma, K.; Sinha, M.; Dhyani, A.; Pathak, B.; Jang, H.; Park, S.; Pashikanti, S.; Cho, S. Biotransformation of citrus waste-I: Production of biofuel and valuable compounds by fermentation. Processes (Basel), 2021, 9(2), 220.
[http://dx.doi.org/10.3390/pr9020220]
[83]
Joshi, P.V.K. Fruit and vegetable processing waste management – An overview. Int. j. food ferment. technol, 2020, 10(2)
[http://dx.doi.org/10.30954/2277-9396.02.2020.4]
[84]
Borghi, S.M.; Pavanelli, W.R. Antioxidant compounds and health benefits of citrus fruits. Antioxidants, 2023, 12(8), 1526.
[http://dx.doi.org/10.3390/antiox12081526] [PMID: 37627521]
[85]
Ahmad, A.; Dubey, P.; Younis, K.; Yousuf, O. Mosambi (Citrus limetta) peel and Sago based biodegradable film: Development and characterization of physical, water barrier and biodegradation properties. Bioresour. Technol. Rep., 2022, 18, 101016.
[http://dx.doi.org/10.1016/j.biteb.2022.101016]
[86]
Chavan, P.; Singh, A.K.; Kaur, G. Recent progress in the utilization of industrial waste and by products of citrus fruits: A review. J. Food Process Eng., 2018, 41(8), e12895.
[http://dx.doi.org/10.1111/jfpe.12895]
[87]
Khaleel, G.; Sharanagat, V.S.; Singh, L.; Kumar, Y.; Kumar, K.; Kishore, A.; Saikumar, A.; Mani, S. Characterization of kinnow (citrus reticulate) peel and its effect on the quality of muffin. J. Food Process. Preserv., 2022, 46(12)
[http://dx.doi.org/10.1111/jfpp.16716]
[88]
Singla, G.; Panesar, P.S.; Sangwan, R.S.; Krishania, M. Enzymatic debittering of Citrus reticulata (Kinnow) pulp residue and its utilization for the preparation of vermicelli. J. Food Process. Preserv., 2021, 45(2)
[http://dx.doi.org/10.1111/jfpp.15135]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy