Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Nordihydroguaiaretic Acid Affects Undifferentiated and Differentiated Neuroblastoma Cells Differently through Mechanisms that Impact on Cell Viability

Author(s): Patricia Ferrera, César Espino De la Fuente-Muñoz and Clorinda Arias*

Volume 23, Issue 9, 2024

Published on: 26 December, 2023

Page: [1167 - 1175] Pages: 9

DOI: 10.2174/0118715273268471231013135114

Price: $65

conference banner
Abstract

Aim: We aimed to investigate the mechanisms involved in the neurotoxic effects of NDGA on differentiated and undifferentiated human neuroblastoma cells (MSN), assessing cell viability, changes in the actin cytoskeleton, cell migration and the expression of the 5-LOX enzyme and the inhibitor of cell cycle progression p21WAF1/CIP1.

Background: High expression and activity of the lipoxygenase enzyme (LOX) have been detected in several tumors, including neuroblastoma samples, suggesting the use of LOX inhibitors as potential therapy molecules. Among these, the natural compound nordihydroguaiaretic acid (NDGA) has been extensively tested as an antiproliferative drug against diverse types of cancer cells.

Objective: In this study, we analyzed the toxic effect of NDGA on neuroblastoma cells at a dose that did not affect cell survival when they differentiated to a neuron-like phenotype and the potential mechanisms involved in the anticancer properties.

Methods: We exposed human neuroblastoma cells (MSN) to different concentrations of NDGA before and after a differentiation protocol with retinoic acid and nerve growth factor and analyzed cell viability, cell migration, actin cytoskeleton morphology and the levels of the cell cycle inhibitor p21WAF1/CIP1 and 5-LOX.

Results: We found that differentiated human neuroblastoma cells are more resistant to NDGA than undifferentiated cells. The toxic effects of NDGA were accompanied by reduced cell migration, changes in actin cytoskeleton morphology, induction of p21WAF1/CIP1 and decreased levels of the 5-LOX enzyme.

Conclusion: This study provides new evidence regarding the potential use of NDGA to induce cell death in human neuroblastoma.

Keywords: Human neuroblastoma cells, 5-LOX, NDGA, actin cytoskeleton, apoptosis, cell migration, p21.

« Previous
Graphical Abstract
[1]
Brodeur GM. Spontaneous regression of neuroblastoma. Cell Tissue Res 2018; 372(2): 277-86.
[http://dx.doi.org/10.1007/s00441-017-2761-2] [PMID: 29305654]
[2]
Matthay KK, Maris JM, Schleiermacher G, et al. Neuroblastoma. Nat Rev Dis Primers 2016; 2(1): 16078.
[http://dx.doi.org/10.1038/nrdp.2016.78] [PMID: 27830764]
[3]
Ghosh J, Myers CE. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci 1998; 95(22): 13182-7.
[http://dx.doi.org/10.1073/pnas.95.22.13182] [PMID: 9789062]
[4]
Steele VE, Holmes CA, Hawk ET, et al. Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev 1999; 8(5): 467-83.
[PMID: 10350444]
[5]
Shureiqi I, Lippman SM. Lipoxygenase modulation to reverse carcinogenesis. Cancer Res 2001; 61(17): 6307-12.
[PMID: 11522616]
[6]
Honn KV, Timár J, Rozhin J, et al. A lipoxygenase metabolite, 12-(S)-HETE, stimulates protein kinase C-mediated release of cathepsin B from malignant cells. Exp Cell Res 1994; 214(1): 120-30.
[http://dx.doi.org/10.1006/excr.1994.1240] [PMID: 7521840]
[7]
Sveinbjörnsson B, Rasmuson A, Baryawno N, et al. Expression of enzymes and receptors of the leukotriene pathway in human neuroblastoma promotes tumor survival and provides a target for therapy. FASEB J 2008; 22(10): 3525-36.
[http://dx.doi.org/10.1096/fj.07-103457] [PMID: 18591367]
[8]
Chen X, Sood S, Yang C, Li N, Sun Z. Five-lipoxygenase pathway of arachidonic acid metabolism in carcino-genesis and cancer chemoprevention. Curr Cancer Drug Targets 2006; 6(7): 613-22.
[http://dx.doi.org/10.2174/156800906778742451] [PMID: 17100567]
[9]
Melstrom LG, Bentrem DJ, Salabat MR, et al. Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clin Cancer Res 2008; 14(20): 6525-30.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4631] [PMID: 18927292]
[10]
Bishayee K, Khuda-Bukhsh AR. 5-Lipoxygenase Antagonist therapy: A new approach towards targeted cancer chemotherapy. Acta Biochim Biophys Sin 2013; 45(9): 709-19.
[http://dx.doi.org/10.1093/abbs/gmt064] [PMID: 23752617]
[11]
Ding XZ, Kuszynski CA, El-Metwally TH, Adrian TE. Lipoxygenase inhibition induced apoptosis, morphological changes, and carbonic anhydrase expression in human pancreatic cancer cells. Biochem Biophys Res Commun 1999; 266(2): 392-9.
[http://dx.doi.org/10.1006/bbrc.1999.1824] [PMID: 10600514]
[12]
Avis IM, Jett M, Boyle T, et al. Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. J Clin Invest 1996; 97(3): 806-13.
[http://dx.doi.org/10.1172/JCI118480] [PMID: 8609238]
[13]
Zhao QW, Lin Y, Xu CR, et al. NDGA-P21, a novel derivative of nordihydroguaiaretic acid, inhibits glioma cell proliferation and stemness. Lab Invest 2017; 97(10): 1180-7.
[http://dx.doi.org/10.1038/labinvest.2017.46] [PMID: 28504686]
[14]
Agarwal S, Achari C, Praveen D, Roy KR, Reddy GV, Reddanna P. Inhibition of 12-LOX and COX-2 reduces the proliferation of human epidermoid carcinoma cells (A431) by modulating the ERK and PI3K-Akt signalling pathways. Exp Dermatol 2009; 18(11): 939-46.
[http://dx.doi.org/10.1111/j.1600-0625.2009.00874.x] [PMID: 19558494]
[15]
Gilbert NC, Gerstmeier J, Schexnaydre EE, et al. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat Chem Biol 2020; 16(7): 783-90.
[http://dx.doi.org/10.1038/s41589-020-0544-7] [PMID: 32393899]
[16]
Hirata M, Inamitsu T, Hashimoto T, Koga T. An inhibitor of lipoxygenase, nordihydroguaiaretic acid, shortens actin filaments. J Biochem 1984; 95(3): 891-4.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a134683] [PMID: 6427204]
[17]
Seufferlein T, Seckl MJ, Schwarz E, et al. Mechanisms of nordihydroguaiaretic acid-induced growth inhibition and apoptosis in human cancer cells. Br J Cancer 2002; 86(7): 1188-96.
[http://dx.doi.org/10.1038/sj.bjc.6600186] [PMID: 11953870]
[18]
Reynolds CP, Biedler JL, Spengler BA, et al. Characterization of human neuroblastoma cell lines established before and after therapy. J Natl Cancer Inst 1986; 76(3): 375-87.
[PMID: 3456456]
[19]
Sánchez-Alegría K, Bastián-Eugenio CE, Vaca L, Arias C. Palmitic acid induces insulin resistance by a mechanism associated with energy metabolism and calcium entry in neuronal cells. FASEB J 2021; 35(7): e21712.
[http://dx.doi.org/10.1096/fj.202100243R] [PMID: 34110637]
[20]
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[21]
Ferrera P, Zepeda A, Arias C. Nonsteroidal anti-inflammatory drugs attenuate amyloid-β protein-induced actin cytoskeletal reorganization through Rho signaling modulation. Cell Mol Neurobiol 2017; 37(7): 1311-8.
[http://dx.doi.org/10.1007/s10571-017-0467-3] [PMID: 28124209]
[22]
Valdés-Rives SA, Arcos-Montoya D, de la Fuente-Granada M, et al. LPA1 receptor promotes progesterone receptor phosphorylation through pkcα in human glioblastoma cells. Cells 2021; 10(4): 807.
[http://dx.doi.org/10.3390/cells10040807] [PMID: 33916643]
[23]
Hromadkova L, Bezdekova D, Pala J, et al. Brain-derived neurotrophic factor (BDNF) promotes molecular polarization and differentiation of immature neuroblastoma cells into definitive neurons. Biochim Biophys Acta Mol Cell Res 2020; 1867(9): 118737.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118737] [PMID: 32389647]
[24]
Shipley MM, Mangold CA, Szpara ML. Differentiation of the SH-SY5Y human neuroblastoma cell line. J Vis Exp 2016; 17(108): 53193.
[http://dx.doi.org/10.3791/53193] [PMID: 26967710]
[25]
Abbas T, Dutta A. p21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer 2009; 9(6): 400-14.
[http://dx.doi.org/10.1038/nrc2657] [PMID: 19440234]
[26]
Encinas M, Iglesias M, Liu Y, et al. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 2000; 75(3): 991-1003.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0750991.x] [PMID: 10936180]
[27]
Redova M, Chlapek P, Loja T, et al. Influence of LOX/COX inhibitors on cell differentiation induced by all-trans retinoic acid in neuroblastoma cell lines. Int J Mol Med 2010; 25(2): 271-80.
[PMID: 20043138]
[28]
Liu Y, Encinas M, Comella JX, Aldea M, Gallego C. Basic helix-loop-helix proteins bind to TrkB and p21(Cip1) promoters linking differentiation and cell cycle arrest in neuroblastoma cells. Mol Cell Biol 2004; 24(7): 2662-72.
[http://dx.doi.org/10.1128/MCB.24.7.2662-2672.2004] [PMID: 15024057]
[29]
Gao P, Zhai F, Guan L, Zheng J. Nordihydroguaiaretic acid inhibits growth of cervical cancer SiHa cells by up-regulating p21. Oncol Lett 2011; 2(1): 123-8.
[http://dx.doi.org/10.3892/ol.2010.205] [PMID: 22870140]
[30]
Gilbert B, Ahmad K, Roos J, et al. 5-Lipoxygenase is a direct p53 target gene in humans. Biochim Biophys Acta Gene Regul Mech 2015; 1849(8): 1003-16.
[http://dx.doi.org/10.1016/j.bbagrm.2015.06.004] [PMID: 26070487]
[31]
Cuendet M, Pezzuto JM. The role of cyclooxygenase and lipoxygenase in cancer chemoprevention. Drug Metabol Drug Interact 2000; 17(1-4): 109-57.
[http://dx.doi.org/10.1515/DMDI.2000.17.1-4.109]
[32]
Pidgeon GP, Lysaght J, Krishnamoorthy S, et al. Lipoxygenase metabolism: Roles in tumor progression and survival. Cancer Metastasis Rev 2007; 26(3-4): 503-24.
[http://dx.doi.org/10.1007/s10555-007-9098-3] [PMID: 17943411]
[33]
Rådmark O, Samuelsson B. 5-Lipoxygenase: Mechanisms of regulation. J Lipid Res 2009; 50: S40-5.
[http://dx.doi.org/10.1194/jlr.R800062-JLR200]
[34]
Tezil T, Chamoli M, Ng CP, et al. Lifespan-increasing drug nordihydroguaiaretic acid inhibits p300 and activates autophagy. NPJ Aging Mech Dis 2019; 2(5): 7.
[http://dx.doi.org/10.1038/s41514-019-0037-7]
[35]
Li X, Fan S, Pan X, et al. Nordihydroguaiaretic acid impairs prostate cancer cell migration and tumor metastasis by suppressing neuropilin 1. Oncotarget 2016; 7(52): 86225-38.
[http://dx.doi.org/10.18632/oncotarget.13368] [PMID: 27863391]
[36]
Ferrera P, Arias C. Differential effects of COX inhibitors against β-amyloid-induced neurotoxicity in human neuroblastoma cells. Neurochem Int 2005; 47(8): 589-96.
[http://dx.doi.org/10.1016/j.neuint.2005.06.012] [PMID: 16169124]
[37]
Goodman Y, Steiner MR, Steiner SM, Mattson MP. Nordihydroguaiaretic acid protects hippocampal neurons against amyloid β-peptide toxicity, and attenuates free radical and calcium accumulation. Brain Res 1994; 654(1): 171-6.
[http://dx.doi.org/10.1016/0006-8993(94)91586-5] [PMID: 7982093]
[38]
Manciu FS, Guerrero J, Bennet KE, et al. Assessing nordihydroguaiaretic acid therapeutic effect for glioblastoma multiforme. Sensors 2022; 22(7): 2643.
[http://dx.doi.org/10.3390/s22072643] [PMID: 35408257]
[39]
Manda G, Rojo AI, Martínez-Klimova E, Pedraza-Chaverri J, Cuadrado A. Nordihydroguaiaretic acid: From herbal medicine to clinical development for cancer and chronic diseases. Front Pharmacol 2020; 11: 151.
[http://dx.doi.org/10.3389/fphar.2020.00151] [PMID: 32184727]
[40]
Jiang SW, Qi X, Deng H, et al. Design, synthesis and anti-tumor efficacy evaluation of novel 1,3-diaryl propane-based polyphenols obtained from Claisen rearrangement reaction. Bioorg Chem 2023; 140: 106753.
[http://dx.doi.org/10.1016/j.bioorg.2023.106753] [PMID: 37595397]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy