Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

The Impacts and Changes Related to the Cancer Drug Resistance Mechanism

Author(s): Prachi Varshney, Vishal Sharma, Devdhar Yadav, Yogesh Kumar, Amit Singh*, Naga Rani Kagithala, Pramod Kumar Sharma, Omji Porwal, Neeraj Kumar Fuloria, Pradeep Kumar Sharma, Ashok Kumar Gupta and Koteswara Rao GSN

Volume 24, Issue 12, 2023

Published on: 20 December, 2023

Page: [787 - 802] Pages: 16

DOI: 10.2174/0113892002266408231207150547

Price: $65

conference banner
Abstract

Background: Cancer drug resistance remains a difficult barrier to effective treatment, necessitating a thorough understanding of its multi-layered mechanism.

Objective: This study aims to comprehensively explore the diverse mechanisms of cancer drug resistance, assess the evolution of resistance detection methods, and identify strategies for overcoming this challenge. The evolution of resistance detection methods and identification strategies for overcoming the challenge.

Methods: A comprehensive literature review was conducted to analyze intrinsic and acquired drug resistance mechanisms, including altered drug efflux, reduced uptake, inactivation, target mutations, signaling pathway changes, apoptotic defects, and cellular plasticity. The evolution of mutation detection techniques, encompassing clinical predictions, experimental approaches, and computational methods, was investigated. Strategies to enhance drug efficacy, modify pharmacokinetics, optimizoptimizee binding modes, and explore alternate protein folding states were examined.

Results: The study comprehensively overviews the intricate mechanisms contributing to cancer drug resistance. It outlines the progression of mutation detection methods and underscores the importance of interdisciplinary approaches. Strategies to overcome drug resistance challenges, such as modulating ATP-binding cassette transporters and developing multidrug resistance inhibitors, are discussed. The study underscores the critical need for continued research to enhance cancer treatment efficacy.

Conclusion: This study provides valuable insights into the complexity of cancer drug resistance mechanisms, highlights evolving detection methods, and offers potential strategies to enhance treatment outcomes.

Keywords: Cancer drug resistance, management of cancer, failure of chemotherapy, mechanism of cancer drug resistance, ATP-binding cassette, MDR modulators.

Next »
Graphical Abstract
[1]
Ward, R.A.; Fawell, S.; Floc’h, N.; Flemington, V.; McKerrecher, D.; Smith, P.D. Challenges and opportunities in cancer drug resistance. Chem. Rev., 2021, 121(6), 3297-3351.
[http://dx.doi.org/10.1021/acs.chemrev.0c00383] [PMID: 32692162]
[2]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[3]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[4]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[5]
Davis, M. Glioblastoma: Overview of disease and treatment. Clin. J. Oncol. Nurs., 2016, 20(S5), S2-S8.
[http://dx.doi.org/10.1188/16.CJON.S1.2-8] [PMID: 27668386]
[6]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP–dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[7]
Meijer, C.; Mulder, N.H.; Timmer-Bosscha, H.; Sluiter, W.J.; Meersma, G.J.; de Vries, E.G. Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Res., 1992, 52(24), 6885-6889.
[PMID: 1458477]
[8]
Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Central nervous system multiparameter optimization desirability: Application in drug discovery. ACS Chem. Neurosci., 2016, 7(6), 767-775.
[http://dx.doi.org/10.1021/acschemneuro.6b00029] [PMID: 26991242]
[9]
Roy, S.; Kumar, A.; Islam, M.S.; Rabbi, F.A.; Paul, P.; Mia, M.M.; Islam, A.K.; Ray, A.K. Drug resistance and its future perspectives in cancer treatment. Asian Oncol. Res. J., 2020, 3, 26-46.
[10]
Sampath, D.; Cortes, J.; Estrov, Z.; Du, M.; Shi, Z.; Andreeff, M.; Gandhi, V.; Plunkett, W. Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial. Blood, 2006, 107(6), 2517-2524.
[http://dx.doi.org/10.1182/blood-2005-08-3351] [PMID: 16293603]
[11]
Momparler, R.L. Biochemical pharmacology of cytosine arabinoside. Med. Pediatr. Oncol., 1982, 10(S1), 45-48.
[http://dx.doi.org/10.1002/mpo.2950100707] [PMID: 7162466]
[12]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2(2), 141-160.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[13]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers, 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[14]
Haider, T.; Pandey, V.; Banjare, N.; Gupta, P.N.; Soni, V. Drug resistance in cancer: Mechanisms and tackling strategies. Pharmacol. Rep., 2020, 72(5), 1125-1151.
[http://dx.doi.org/10.1007/s43440-020-00138-7] [PMID: 32700248]
[15]
Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[16]
Zhu, X.; Zhu, H.; Luo, H.; Zhang, W.; Shen, Z.; Hu, X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des. Devel. Ther., 2016, 10, 1885-1895.
[http://dx.doi.org/10.2147/DDDT.S106412] [PMID: 27354763]
[17]
Kartal-Yandim, M.; Adan-Gokbulut, A.; Baran, Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit. Rev. Biotechnol., 2016, 36(4), 716-726.
[http://dx.doi.org/10.3109/07388551.2015.1015957] [PMID: 25757878]
[18]
Gupta, M.; Lee, H.J.; Barden, C.J.; Weaver, D.F. The blood–brain barrier (BBB) score. J. Med. Chem., 2019, 62(21), 9824-9836.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01220] [PMID: 31603678]
[19]
Summerfield, S.G.; Zhang, Y.; Liu, H. Examining the uptake of central nervous system drugs and candidates across the blood-brain barrier. J. Pharmacol. Exp. Ther., 2016, 358(2), 294-305.
[http://dx.doi.org/10.1124/jpet.116.232447] [PMID: 27194478]
[20]
Wang, Y.; Gallagher, E.; Jorgensen, C.; Troendle, E.P.; Hu, D.; Searson, P.C.; Ulmschneider, M.B. An experimentally validated approach to calculate the blood-brain barrier permeability of small molecules. Sci. Rep., 2019, 9(1), 6117.
[http://dx.doi.org/10.1038/s41598-019-42272-0] [PMID: 30992465]
[21]
Shelton, J.; Lu, X.; Hollenbaugh, J.A.; Cho, J.H.; Amblard, F.; Schinazi, R.F. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem. Rev., 2016, 116(23), 14379-14455.
[http://dx.doi.org/10.1021/acs.chemrev.6b00209] [PMID: 27960273]
[22]
Gruber, FX; Hjorth-Hansen, H; Mikkola, I; Stenke, L; Johansen, T A novel Bcr-Abl splice isoform is associated with the L248V mutation in CML patients with acquired resistance to imatinib. Leukemia., 2006, 20(11), 2057-2060.
[23]
Vasan, N; Baselga, J; Hyman, DM; Stenke, L; Johansen, T. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[24]
Watson, P.A.; Arora, V.K.; Sawyers, C.L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer, 2015, 15(12), 701-711.
[http://dx.doi.org/10.1038/nrc4016] [PMID: 26563462]
[25]
Joyce, H.; McCann, A.; Clynes, M.; Larkin, A. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism. Expert Opin. Drug Metab. Toxicol., 2015, 11(5), 795-809.
[http://dx.doi.org/10.1517/17425255.2015.1028356] [PMID: 25836015]
[26]
Zahreddine, H.; Borden, K.L.B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol., 2013, 4, 28.
[http://dx.doi.org/10.3389/fphar.2013.00028] [PMID: 23504227]
[27]
Chandrasekar, T.; Yang, J.C.; Gao, A.C.; Evans, C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol., 2015, 4(3), 365-380.
[PMID: 26814148]
[28]
Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets, 2018, 19(1), 38-54.
[PMID: 28124606]
[29]
Binkhathlan, Z.; Lavasanifar, A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: Current status and future perspectives. Curr. Cancer Drug Targets, 2013, 13(3), 326-346.
[http://dx.doi.org/10.2174/15680096113139990076] [PMID: 23369096]
[30]
Saidijam, M.; Mahjub, H.; Shabab, N.; Yadegarazari, R. Simultaneous analysis of multidrug resistance 1(MDR1) C3435T, G2677T/A, and C1236T genotypes in Hamadan City population, West of Iran. West of Iran. Iranian Biomed. J., 2015, 19(1), 57-62.
[PMID: 25605491]
[31]
Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[32]
Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in Enterococci. Expert Rev. Anti Infect. Ther., 2014, 12(10), 1221-1236.
[http://dx.doi.org/10.1586/14787210.2014.956092] [PMID: 25199988]
[33]
Gottesman, M.M.; Pastan, I.H. The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. J. Natl. Cancer Inst., 2015, 107(9), djv222.
[http://dx.doi.org/10.1093/jnci/djv222] [PMID: 26286731]
[34]
Grubbé, E.H. Priority in the therapeutic use of X-rays. Radiology, 1933, 21(2), 156-162.
[http://dx.doi.org/10.1148/21.2.156]
[35]
Ni, W.; Chen, W.; Lu, Y. Emerging findings into molecular mechanism of brain metastasis. Cancer Med., 2018, 7(8), 3820-3833.
[http://dx.doi.org/10.1002/cam4.1667] [PMID: 29992751]
[36]
Kelley, S.L.; Basu, A.; Teicher, B.A.; Hacker, M.P.; Hamer, D.H.; Lazo, J.S. Overexpression of metallothionein confers resistance to anticancer drugs. Science, 1988, 241(4874), 1813-1815.
[http://dx.doi.org/10.1126/science.3175622] [PMID: 3175622]
[37]
Wood, K.C. Mapping the pathways of resistance to targeted therapies. Cancer Res., 2015, 75(20), 4247-4251.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1248] [PMID: 26392071]
[38]
Kandoth, C.; McLellan, M.D.; Vandin, F.; Ye, K.; Niu, B.; Lu, C.; Xie, M.; Zhang, Q.; McMichael, J.F.; Wyczalkowski, M.A.; Leiserson, M.D.M.; Miller, C.A.; Welch, J.S.; Walter, M.J.; Wendl, M.C.; Ley, T.J.; Wilson, R.K.; Raphael, B.J.; Ding, L. Mutational landscape and significance across 12 major cancer types. Nature, 2013, 502(7471), 333-339.
[http://dx.doi.org/10.1038/nature12634] [PMID: 24132290]
[39]
Luo, J.; Solimini, N.L.; Elledge, S.J. Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell, 2009, 136(5), 823-837.
[http://dx.doi.org/10.1016/j.cell.2009.02.024] [PMID: 19269363]
[40]
Bischoff, R.; Schlüter, H. Amino acids: Chemistry, functionality and selected non-enzymatic post-translational modifications. J. Proteomics, 2012, 75(8), 2275-2296.
[http://dx.doi.org/10.1016/j.jprot.2012.01.041] [PMID: 22387128]
[41]
Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem., 2010, 53(14), 5061-5084.
[http://dx.doi.org/10.1021/jm100112j] [PMID: 20345171]
[42]
Balak, M.N.; Gong, Y.; Riely, G.J.; Somwar, R.; Li, A.R.; Zakowski, M.F.; Chiang, A.; Yang, G.; Ouerfelli, O.; Kris, M.G.; Ladanyi, M.; Miller, V.A.; Pao, W. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin. Cancer Res., 2006, 12(21), 6494-6501.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1570] [PMID: 17085664]
[43]
Barouch-Bentov, R.; Sauer, K. Mechanisms of drug resistance in kinases. Expert Opin. Investig. Drugs, 2011, 20(2), 153-208.
[http://dx.doi.org/10.1517/13543784.2011.546344] [PMID: 21235428]
[44]
Pagliarini, R.; Shao, W.; Sellers, W.R. Oncogene addiction: Pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep., 2015, 16(3), 280-296.
[http://dx.doi.org/10.15252/embr.201439949] [PMID: 25680965]
[45]
Chandarlapaty, S.; Sakr, R.A.; Giri, D.; Patil, S.; Heguy, A.; Morrow, M.; Modi, S.; Norton, L.; Rosen, N.; Hudis, C.; King, T.A. Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer. Clin. Cancer Res., 2012, 18(24), 6784-6791.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1785] [PMID: 23092874]
[46]
Green, D.R.; Evan, G.I. A matter of life and death. Cancer Cell, 2002, 1(1), 19-30.
[http://dx.doi.org/10.1016/S1535-6108(02)00024-7] [PMID: 12086884]
[47]
Pommier, Y.; Sordet, O.; Antony, S.; Hayward, R.L.; Kohn, K.W. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene, 2004, 23(16), 2934-2949.
[http://dx.doi.org/10.1038/sj.onc.1207515] [PMID: 15077155]
[48]
Zhivotovsky, B; Orrenius, S. Defects in the apoptotic machinery of cancer cells: Role in drug resistance. In: Seminars in cancer biology; Academic Press, 2003; 13, pp. (2)125-134.
[http://dx.doi.org/10.1016/S1044-579X(02)00130-X]
[49]
Boumahdi, S.; de Sauvage, F.J. The great escape: Tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov., 2020, 19(1), 39-56.
[http://dx.doi.org/10.1038/s41573-019-0044-1] [PMID: 31601994]
[50]
Nurwidya, F; Takahashi, F; Murakami, A; Takahashi, K Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treat, 2012, 44(3), 151-156.
[http://dx.doi.org/10.4143/crt.2012.44.3.151]
[51]
Du, B.; Shim, J. Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules, 2016, 21(7), 965.
[http://dx.doi.org/10.3390/molecules21070965] [PMID: 27455225]
[52]
Shibue, T.; Weinberg, R.A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol., 2017, 14(10), 611-629.
[http://dx.doi.org/10.1038/nrclinonc.2017.44] [PMID: 28397828]
[53]
Sun, X.; Hu, B. Mathematical modeling and computational prediction of cancer drug resistance. Brief. Bioinform., 2018, 19(6), 1382-1399.
[http://dx.doi.org/10.1093/bib/bbx065] [PMID: 28981626]
[54]
Sun, X.; Bao, J.; Shao, Y. Mathematical modeling of therapy-induced cancer drug resistance: connecting cancer mechanisms to population survival rates. Sci. Rep., 2016, 6(1), 22498.
[http://dx.doi.org/10.1038/srep22498] [PMID: 26928089]
[55]
Kamps, R.; Brandão, R.; Bosch, B.; Paulussen, A.; Xanthoulea, S.; Blok, M.; Romano, A. Next-generation sequencing in oncology: Genetic diagnosis, risk prediction and cancer classification. Int. J. Mol. Sci., 2017, 18(2), 308.
[http://dx.doi.org/10.3390/ijms18020308] [PMID: 28146134]
[56]
Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; Antonarakis, E.S.; Azad, N.S.; Bardelli, A.; Brem, H.; Cameron, J.L.; Lee, C.C.; Fecher, L.A.; Gallia, G.L.; Gibbs, P.; Le, D.; Giuntoli, R.L.; Goggins, M.; Hogarty, M.D.; Holdhoff, M.; Hong, S.M.; Jiao, Y.; Juhl, H.H.; Kim, J.J.; Siravegna, G.; Laheru, D.A.; Lauricella, C.; Lim, M.; Lipson, E.J.; Marie, S.K.N.; Netto, G.J.; Oliner, K.S.; Olivi, A.; Olsson, L.; Riggins, G.J.; Sartore-Bianchi, A.; Schmidt, K.; Shih, M.; Oba-Shinjo, S.M.; Siena, S.; Theodorescu, D.; Tie, J.; Harkins, T.T.; Veronese, S.; Wang, T.L.; Weingart, J.D.; Wolfgang, C.L.; Wood, L.D.; Xing, D.; Hruban, R.H.; Wu, J.; Allen, P.J.; Schmidt, C.M.; Choti, M.A.; Velculescu, V.E.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N.; Diaz, L.A., Jr Detection of circulating tumor DNA in early and late-stage human malignancies. Sci. Transl. Med., 2014, 6(224), 224ra24.
[http://dx.doi.org/10.1126/scitranslmed.3007094] [PMID: 24553385]
[57]
Volm, M.; Efferth, T. Prediction of cancer drug resistance and implications for personalized medicine. Front. Oncol., 2015, 5, 282.
[http://dx.doi.org/10.3389/fonc.2015.00282] [PMID: 26734568]
[58]
Heydt, C.; Kumm, N.; Fassunke, J.; Künstlinger, H.; Ihle, M.A.; Scheel, A.; Schildhaus, H.U.; Haller, F.; Büttner, R.; Odenthal, M.; Wardelmann, E.; Merkelbach-Bruse, S. Massively parallel sequencing fails to detect minor resistant subclones in tissue samples prior to tyrosine kinase inhibitor therapy. BMC Cancer, 2015, 15(1), 291.
[http://dx.doi.org/10.1186/s12885-015-1311-0] [PMID: 25886408]
[59]
Vallette, F.M.; Olivier, C.; Lézot, F.; Oliver, L.; Cochonneau, D.; Lalier, L.; Cartron, P.F.; Heymann, D. Dormant, quiescent, tolerant and persister cells: Four synonyms for the same target in cancer. Biochem. Pharmacol., 2019, 162, 169-176.
[http://dx.doi.org/10.1016/j.bcp.2018.11.004] [PMID: 30414937]
[60]
Kochanowski, K.; Morinishi, L.; Altschuler, S.J.; Wu, L.F. Drug persistence – From antibiotics to cancer therapies. Curr. Opin. Syst. Biol., 2018, 10, 1-8.
[http://dx.doi.org/10.1016/j.coisb.2018.03.003] [PMID: 30740553]
[61]
Rosa, R.; Monteleone, F.; Zambrano, N.; Bianco, R. In vitro and in vivo models for analysis of resistance to anticancer molecular therapies. Curr. Med. Chem., 2014, 21(14), 1595-1606.
[http://dx.doi.org/10.2174/09298673113209990226] [PMID: 23992330]
[62]
Callegari, D.; Ranaghan, K.E.; Woods, C.J.; Minari, R.; Tiseo, M.; Mor, M.; Mulholland, A.J.; Lodola, A. L718Q mutant EGFR escapes covalent inhibition by stabilizing a non-reactive conformation of the lung cancer drug osimertinib. Chem. Sci., 2018, 9(10), 2740-2749.
[http://dx.doi.org/10.1039/C7SC04761D] [PMID: 29732058]
[63]
Wojtuszkiewicz, A.; Assaraf, Y.G.; Hoekstra, M.; Jansen, G.; Peters, G.J.; Sonneveld, E.; Kaspers, G.L.; Cloos, J. Abstract 4437: The relevance of aberrant FPGS splicing for ex vivo MTX resistance and clinical outcome in childhood acute lymphoblastic leukemia. Cancer Res., 2015, 75(15_Supplement)(Suppl.), 4437.
[http://dx.doi.org/10.1158/1538-7445.AM2015-4437]
[64]
Smith, C.E.; Bowen, N.; Graham, W.J., V; Goellner, E.M.; Srivatsan, A.; Kolodner, R.D. Activation of Saccharomyces cerevisiae Mlh1-Pms1 endonuclease in a reconstituted mismatch repair system. J. Biol. Chem., 2015, 290(35), 21580-21590.
[http://dx.doi.org/10.1074/jbc.M115.662189] [PMID: 26170454]
[65]
Mian, A.A.; Schüll, M.; Zhao, Z.; Oancea, C.; Hundertmark, A.; Beissert, T.; Ottmann, O.G.; Ruthardt, M. The gatekeeper mutation T315I confers resistance against small molecules by increasing or restoring the ABL-kinase activity accompanied by aberrant transphosphorylation of endogenous BCR, even in loss-of-function mutants of BCR/ABL. Leukemia, 2009, 23(9), 1614-1621.
[http://dx.doi.org/10.1038/leu.2009.69] [PMID: 19369965]
[66]
Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M. Through the “gatekeeper door”: Exploiting the active kinase conformation. J. Med. Chem., 2010, 53(7), 2681-2694.
[http://dx.doi.org/10.1021/jm901443h] [PMID: 20000735]
[67]
Benner, S.E.; Wahl, G.M.; Von Hoff, D.D. Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines. Anticancer Drugs, 1991, 2(1), 11-26.
[http://dx.doi.org/10.1097/00001813-199102000-00002] [PMID: 1720337]
[68]
Nathanson, D.A.; Gini, B.; Mottahedeh, J.; Visnyei, K.; Koga, T.; Gomez, G.; Eskin, A.; Hwang, K.; Wang, J.; Masui, K.; Paucar, A.; Yang, H.; Ohashi, M.; Zhu, S.; Wykosky, J.; Reed, R.; Nelson, S.F.; Cloughesy, T.F.; James, C.D.; Rao, P.N.; Kornblum, H.I.; Heath, J.R.; Cavenee, W.K.; Furnari, F.B.; Mischel, P.S. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science, 2014, 343(6166), 72-76.
[http://dx.doi.org/10.1126/science.1241328] [PMID: 24310612]
[69]
Junttila, M.R.; de Sauvage, F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 2013, 501(7467), 346-354.
[http://dx.doi.org/10.1038/nature12626] [PMID: 24048067]
[70]
Li, Z.W.; Dalton, W.S. Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev., 2006, 20(6), 333-342.
[http://dx.doi.org/10.1016/j.blre.2005.08.003] [PMID: 16920238]
[71]
Parkin, B.; Ouillette, P.; Li, Y.; Keller, J.; Lam, C.; Roulston, D.; Li, C.; Shedden, K.; Malek, S.N. Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia. Blood, 2013, 121(2), 369-377.
[http://dx.doi.org/10.1182/blood-2012-04-427039] [PMID: 23175688]
[72]
Pal, B.; Bayat-Mokhtari, R.; Li, H.; Bhuyan, R.; Talukdar, J.; Sandhya, S.; Sarma, A.; Tasabehji, W.; Bhuyan, S.; Gayan, S.; Kataki, A.C. Abstract 251: Stem cell altruism may serve as a novel drug resistance mechanism in oral cancer. Cancer Res, 2016, 76(S14), 251.
[73]
Settleman, J. Bet on drug resistance. Nature, 2016, 529(7586), 289-290.
[http://dx.doi.org/10.1038/nature16863] [PMID: 26735017]
[74]
Ou, Y.; Guo, X.L. Tumor stem cells and drug resistance. Sheng Li Ke Xue Jin Zhan, 2007, 38(2), 115-119.
[PMID: 17633223]
[75]
Druker, B.J.; Sawyers, C.L.; Kantarjian, H.; Resta, D.J.; Reese, S.F.; Ford, J.M.; Capdeville, R.; Talpaz, M. Activity of a specific inhibitor of the BCRABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med., 2001, 344(14), 1038-1042.
[http://dx.doi.org/10.1056/NEJM200104053441402] [PMID: 11287973]
[76]
Freeman, M.; Nüsslein-Volhard, C.; Glover, D.M. The dissociation of nuclear and centrosomal division in gnu, a mutation causing giant nuclei in Drosophila. Cell, 1986, 46(3), 457-468.
[http://dx.doi.org/10.1016/0092-8674(86)90666-5] [PMID: 3089628]
[77]
Manolitsas, T.P.; Englefield, P.; Eccles, D.M.; Campbell, I.G. No association of a 306-bp insertion polymorphism in the progesterone receptor gene with ovarian and breast cancer. Br. J. Cancer, 1997, 75(9), 1398-1399.
[http://dx.doi.org/10.1038/bjc.1997.238] [PMID: 9155067]
[78]
Cumming, R.C.; Lightfoot, J.; Beard, K.; Youssoufian, H.; O’Brien, P.J.; Buchwald, M. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nat. Med., 2001, 7(7), 814-820.
[http://dx.doi.org/10.1038/89937] [PMID: 11433346]
[79]
Juliano, R.L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta Biomembr., 1976, 455(1), 152-162.
[http://dx.doi.org/10.1016/0005-2736(76)90160-7] [PMID: 990323]
[80]
Croop, J.M.; Raymond, M.; Haber, D.; Devault, A.; Arceci, R.J.; Gros, P.; Housman, D.E. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol. Cell. Biol., 1989, 9(3), 1346-1350.
[PMID: 2471060]
[81]
Wilson, G.D. Courage, imagination and flow cytometry. Introduction to flow cytometry (1991); JV Watson. Cambridge University Press., 1991.
[82]
Lothstein, L.; Hsu, S.I.; Horwitz, S.B.; Greenberger, L.M. Alternate overexpression of two P-glycoprotein genes is associated with changes in multidrug resistance in a J774.2 cell line. J. Biol. Chem., 1989, 264(27), 16054-16058.
[http://dx.doi.org/10.1016/S0021-9258(18)71586-X] [PMID: 2570778]
[83]
Wang, F.; Ren, G.; Li, F.; Wang, B.; Yang, Y.; Ma, X.; Niu, Y.; Ye, Y.; Chen, X.; Fan, S.; Wang, T.; Zhou, Q. Overexpression of GmSnRK1, a soybean sucrose non-fermenting-1 related protein kinase 1 gene, results in directional alteration of carbohydrate metabolism in transgenic Arabidopsis. Biotechnol. Biotechnol. Equip., 2018, 32(4), 835-845.
[http://dx.doi.org/10.1080/13102818.2018.1469431]
[84]
Saleem, K.; Cui, Q.; Zaib, T.; Zhu, S.; Qin, Q.; Wang, Y.; Dam, J.; Ji, W.; Liu, P.; Jia, X.; Wu, J.; Bai, J.; Fu, S.; Sun, W. Evaluation of a novel missense mutation in ABCB4 gene causing progressive familial intrahepatic cholestasis type 3. Dis. Markers, 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/6292818] [PMID: 32626542]
[85]
Longo-Sorbello, GS Current understanding of methotrexate pharmacology and efficacy in acute leukemias. Use of newer antifolates in clinical trials. Haematologica, 2001, 86(2), 121-127.
[86]
Inaba, H.; Greaves, M.; Mullighan, C.G. Acute lymphoblastic leukaemia. Lancet, 2013, 381(9881), 1943-1955.
[http://dx.doi.org/10.1016/S0140-6736(12)62187-4] [PMID: 23523389]
[87]
Hassan, A.F.; Al-Shawi, N.N.; Salih, M.K.; Ali, P.R.; Hasan, B.O. Cancer cells resistance strategies. Indian J. Forensic Med. Toxicol., 2021, 15(1), 791-797.
[88]
Borst, P.; Evers, R.; Kool, M.; Wijnholds, J. A family of drug transporters: The multidrug resistance-associated proteins. J. Natl. Cancer Inst., 2000, 92(16), 1295-1302.
[http://dx.doi.org/10.1093/jnci/92.16.1295] [PMID: 10944550]
[89]
Matsui, A.; Ihara, T.; Suda, H.; Mikami, H.; Semba, K. Gene amplification: Mechanisms and involvement in cancer. Biomol. Concepts, 2013, 4(6), 567-582.
[http://dx.doi.org/10.1515/bmc-2013-0026] [PMID: 25436757]
[90]
Dimude, J.U.; Stockum, A.; Midgley-Smith, S.L.; Upton, A.L.; Foster, H.A.; Khan, A.; Saunders, N.J.; Retkute, R.; Rudolph, C.J. The consequences of replicating in the wrong orientation: Bacterial chromosome duplication without an active replication origin. MBio, 2015, 6(6), e01294-15.
[http://dx.doi.org/10.1128/mBio.01294-15] [PMID: 26530381]
[91]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53(1), 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[92]
Mechanisms of Drug Resistance in Neoplastic Cells: Bristol-Myers Cancer Symposia; Woolley, P.V.; Tew, K.D., Eds.; Elsevier, 2013, Vol. 9, .
[93]
Munoz, J.L.; Rodriguez-Cruz, V.; Ramkissoon, S.H.; Ligon, K.L.; Greco, S.J.; Rameshwar, P. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget, 2015, 6(2), 1190-1201.
[http://dx.doi.org/10.18632/oncotarget.2778] [PMID: 25595896]
[94]
De Mattos-Arruda, L.; Bottai, G.; Nuciforo, P.G.; Di Tommaso, L.; Giovannetti, E.; Peg, V.; Losurdo, A.; Pérez-Garcia, J.; Masci, G.; Corsi, F.; Cortés, J.; Seoane, J.; Calin, G.A.; Santarpia, L. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget, 2015, 6(35), 37269-37280.
[http://dx.doi.org/10.18632/oncotarget.5495] [PMID: 26452030]
[95]
Fang, Y.; Xu, C.; Fu, Y. MicroRNA-17-5p induces drug resistance and invasion of ovarian carcinoma cells by targeting PTEN signaling. J. Biol. Res., 2015, 22(1), 12.
[http://dx.doi.org/10.1186/s40709-015-0035-2] [PMID: 26500892]
[96]
Liu, H.; Wu, X.; Huang, J.; Peng, J.; Guo, L. miR-7 modulates chemoresistance of small cell lung cancer by repressing MRP 1/ ABCC 1. Int. J. Exp. Pathol., 2015, 96(4), 240-247.
[http://dx.doi.org/10.1111/iep.12131] [PMID: 26108539]
[97]
Wang, Z.; Wang, N.; Liu, P.; Chen, Q.; Situ, H.; Xie, T.; Zhang, J.; Peng, C.; Lin, Y.; Chen, J. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget, 2014, 5(16), 7013-7026.
[http://dx.doi.org/10.18632/oncotarget.2192] [PMID: 25026296]
[98]
Lu, L.; Ju, F.; Zhao, H.; Ma, X. MicroRNA-134 modulates resistance to doxorubicin in human breast cancer cells by downregulating ABCC1. Biotechnol. Lett., 2015, 37(12), 2387-2394.
[http://dx.doi.org/10.1007/s10529-015-1941-y] [PMID: 26318721]
[99]
Wu, Q.; Yang, Z.; Xia, L.; Nie, Y.; Wu, K.; Shi, Y.; Fan, D. Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters. Oncotarget, 2014, 5(22), 11552-11563.
[http://dx.doi.org/10.18632/oncotarget.2594] [PMID: 25344911]
[100]
Feng, R.; Dong, L. Knockdown of microRNA-127 reverses adriamycin resistance via cell cycle arrest and apoptosis sensitization in adriamycin-resistant human glioma cells. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6107-6116.
[PMID: 26261488]
[101]
Zhang, Y.; Qu, X.; Li, C.; Fan, Y.; Che, X.; Wang, X.; Cai, Y.; Hu, X.; Liu, Y. miR-103/107 modulates multidrug resistance in human gastric carcinoma by downregulating Cav-1. Tumour Biol., 2015, 36(4), 2277-2285.
[http://dx.doi.org/10.1007/s13277-014-2835-7] [PMID: 25407491]
[102]
Li, J.H.; Luo, N.; Zhong, M.Z.; Xiao, Z.Q.; Wang, J.X.; Yao, X.Y.; Peng, Y.; Cao, J. Inhibition of microRNA-196a might reverse cisplatin resistance of A549/DDP non-small-cell lung cancer cell line. Tumour Biol., 2016, 37(2), 2387-2394.
[http://dx.doi.org/10.1007/s13277-015-4017-7] [PMID: 26376998]
[103]
Zhu, X.; Li, Y.; Xie, C.; Yin, X.; Liu, Y.; Cao, Y.; Fang, Y.; Lin, X.; Xu, Y.; Xu, W.; Shen, H.; Wen, J. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int. J. Cancer, 2014, 135(6), 1286-1296.
[http://dx.doi.org/10.1002/ijc.28774] [PMID: 24510775]
[104]
Zhang, A; Lu, F; Yang, Y; Ren, X; Li, Z; Zhang, W. MicroRNA-217 overexpression induces drug resistance and invasion of breast cancer cells by targeting PTEN signaling. Cell Biol Int, 2015, 42(10), 1455.
[105]
Shen, X.; Guo, Y.; Qi, J.; Shi, W.; Wu, X.; Ni, H.; Ju, S. Study on the association between miRNA-202 expression and drug sensitivity in multiple myeloma cells. Pathol. Oncol. Res., 2016, 22(3), 531-539.
[http://dx.doi.org/10.1007/s12253-015-0035-4] [PMID: 26689580]
[106]
Sui, H.; Cai, G.X.; Pan, S.F.; Deng, W.L.; Wang, Y.W.; Chen, Z.S.; Cai, S.J.; Zhu, H.R.; Li, Q. miR200c attenuates P-gp-mediated MDR and metastasis by targeting JNK2/c-Jun signaling pathway in colorectal cancer. Mol. Cancer Ther., 2014, 13(12), 3137-3151.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0167] [PMID: 25205654]
[107]
Gullà, A.; Di Martino, M.T.; Gallo Cantafio, M.E.; Morelli, E.; Amodio, N.; Botta, C.; Pitari, M.R.; Lio, S.G.; Britti, D.; Stamato, M.A.; Hideshima, T.; Munshi, N.C.; Anderson, K.C.; Tagliaferri, P.; Tassone, P. A 13 mer LNA-i-miR-221 inhibitor restores drug sensitivity in melphalan-refractory multiple myeloma cells. Clin. Cancer Res., 2016, 22(5), 1222-1233.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0489] [PMID: 26527748]
[108]
To, K.K.W.; Leung, W.W.; Ng, S.S.M. Exploiting a novel miR-519c–HuR–ABCG2 regulatory pathway to overcome chemoresistance in colorectal cancer. Exp. Cell Res., 2015, 338(2), 222-231.
[http://dx.doi.org/10.1016/j.yexcr.2015.09.011] [PMID: 26386386]
[109]
Shang, Y.; Zhang, Z.; Liu, Z.; Feng, B.; Ren, G.; Li, K.; Zhou, L.; Sun, Y.; Li, M.; Zhou, J.; An, Y.; Wu, K.; Nie, Y.; Fan, D. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene, 2014, 33(25), 3267-3276.
[http://dx.doi.org/10.1038/onc.2013.297] [PMID: 23893241]
[110]
van Jaarsveld, M.T.M.; van Kuijk, P.F.; Boersma, A.W.M.; Helleman, J.; van IJcken, W.F.; Mathijssen, R.H.J.; Pothof, J.; Berns, E.M.J.J.; Verweij, J.; Wiemer, E.A.C. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol. Cancer, 2015, 14(1), 196.
[http://dx.doi.org/10.1186/s12943-015-0464-4] [PMID: 26576679]
[111]
Hiraki, M.; Nishimura, J.; Takahashi, H.; Wu, X.; Takahashi, Y.; Miyo, M.; Nishida, N.; Uemura, M.; Hata, T.; Takemasa, I.; Mizushima, T.; Soh, J.W.; Doki, Y.; Mori, M.; Yamamoto, H. Concurrent targeting of KRAS and AKT by MiR-4689 is a novel treatment against mutant KRAS colorectal cancer. Mol. Ther. Nucleic Acids, 2015, 4(3), e231.
[http://dx.doi.org/10.1038/mtna.2015.5] [PMID: 25756961]
[112]
Dalton, W. The tumor microenvironment: Focus on myeloma. Cancer Treat. Rev., 2003, 29(S1), 11-19.
[http://dx.doi.org/10.1016/S0305-7372(03)00077-X] [PMID: 12738239]
[113]
Hazlehurst, L.A.; Landowski, T.H.; Dalton, W.S. Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene, 2003, 22(47), 7396-7402.
[http://dx.doi.org/10.1038/sj.onc.1206943] [PMID: 14576847]
[114]
Whatcott, C.J.; Han, H.; Posner, R.G.; Hostetter, G.; Von Hoff, D.D. Targeting the tumor microenvironment in cancer: Why hyaluronidase deserves a second look. Cancer Discov., 2011, 1(4), 291-296.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0136] [PMID: 22053288]
[115]
Michael, M.; Doherty, M.M. Tumoral drug metabolism: Overview and its implications for cancer therapy. J. Clin. Oncol., 2005, 23(1), 205-229.
[http://dx.doi.org/10.1200/JCO.2005.02.120] [PMID: 15625375]
[116]
Subrot, S. Cell biological basis of tumor relapse and recurrence – A help from yeast quiescent biology and neuronal quiescent cell biology. IJMIO, 2020, 5(1), 27-34.
[http://dx.doi.org/10.25259/IJMIO_18_2019]
[117]
Akan, I.; Akan, S.; Akca, H.; Savas, B.; Ozben, T. Multidrug resistance-associated protein 1 (MRP1) mediated vincristine resistance: Effects of Nacetylcysteine and Buthionine Sulfoximine. Cancer Cell Int., 2005, 5(1), 22.
[http://dx.doi.org/10.1186/1475-2867-5-22] [PMID: 16042792]
[118]
Thomas, H.; Coley, H.M. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Contr., 2003, 10(2), 159-165.
[http://dx.doi.org/10.1177/107327480301000207] [PMID: 12712010]
[119]
Ambudkar, S.V.; Dey, S.; Hrycyna, C.A.; Ramachandra, M.; Pastan, I.; Gottesman, M.M. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol., 1999, 39(1), 361-398.
[http://dx.doi.org/10.1146/annurev.pharmtox.39.1.361] [PMID: 10331089]
[120]
Choi, C.H. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int., 2005, 5(1), 30.
[http://dx.doi.org/10.1186/1475-2867-5-30] [PMID: 16202168]
[121]
Leonard, G.D.; Fojo, T.; Bates, S.E. The role of ABC transporters in clinical practice. Oncologist, 2003, 8(5), 411-424.
[http://dx.doi.org/10.1634/theoncologist.8-5-411] [PMID: 14530494]
[122]
Liscovitch, M; Lavie, Y. Cancer multidrug resistance: A review of recent drug discovery research. IDrugs., 2002, 5(4), 349-355.
[123]
Ferry, D.R.; Traunecker, H.; Kerr, D.J. Clinical trials of p-glycoprotein reversal in solid tumours. Eur. J. Cancer, 1996, 32(6), 1070-1081.
[http://dx.doi.org/10.1016/0959-8049(96)00091-3] [PMID: 8763349]
[124]
Ford, J.M.; Hait, W.N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev., 1990, 42(3), 155-199.
[PMID: 2217530]
[125]
Krishna, R.; Mayer, L.D. Multidrug resistance (MDR) in cancer. Eur. J. Pharm. Sci., 2000, 11(4), 265-283.
[http://dx.doi.org/10.1016/S0928-0987(00)00114-7] [PMID: 11033070]
[126]
Theis, JG; Chan, HS; Greenberg, ML; Malkin, D; Karaskov, V; Moncica, I; Koren, G; Doyle, J Assessment of systemic toxicity in children receiving chemotherapy with cyclosporine for sarcoma. Med Pediatr Oncol., 2000, 34(4), 242-249.
[http://dx.doi.org/10.1002/(SICI)1096-911X(200004)34:4<242::AID-MPO2>3.0.CO;2-U]
[127]
Fischer, V.; Rodríguez-Gascón, A.; Heitz, F.; Tynes, R.; Hauck, C.; Cohen, D.; Vickers, A.E. The multidrug resistance modulator valspodar (PSC 833) is metabolized by human cytochrome P450 3A. Implications for drug-drug interactions and pharmacological activity of the main metabolite. Drug Metab. Dispos., 1998, 26(8), 802-811.
[PMID: 9698296]
[128]
van Zuylen, L.; Nooter, K.; Sparreboom, A.; Verweij, J. Development of multidrug-resistance convertors: Sense or nonsense? Invest. New Drugs, 2000, 18(3), 205-220.
[http://dx.doi.org/10.1023/A:1006487003814] [PMID: 10958589]
[129]
Tranchand, B.; Catimel, G.; Lucas, C.; Sarkany, M.; Bastian, G.; Evene, E.; Guastalla, J.P.; Négrier, S.; Rebattu, P.; Dumortier, A.; Foy, M.; Grossin, F.; Mazier, B.; Froudarakis, M.; Barbet, N.; Clavel, M.; Ardiet, C. Phase I clinical and pharmacokinetic study of S9788, a new multidrug-resistance reversal agent given alone and in combination with doxorubicin to patients with advanced solid tumors. Cancer Chemother. Pharmacol., 1998, 41(4), 281-291.
[http://dx.doi.org/10.1007/s002800050741] [PMID: 9488597]
[130]
Berruti, A.; Terzolo, M.; Sperone, P.; Pia, A.; Della Casa, S.; Gross, D.J.; Carnaghi, C.; Casali, P.; Porpiglia, F.; Mantero, F.; Reimondo, G.; Angeli, A.; Dogliotti, L. Etoposide, doxorubicin and cisplatin plus mitotane in the treatment of advanced adrenocortical carcinoma: A large prospective phase II trial. Endocr. Relat. Cancer, 2005, 12(3), 657-666.
[http://dx.doi.org/10.1677/erc.1.01025] [PMID: 16172198]
[131]
Andreeff, M.G.; Kornblau, S.; Konopleva, M. Phase I study of annamycin, a novel liposomal anthracycline, in patients with relapsed/refractory acute myeloid and lymphoid leukemias; American Society of Clinical Oncology, 2001, Vol. 20, .
[132]
Mistry, P; Folkes, A. Current opinion in investigational drugs. ONT-093, 2002, 3(11), 1666-1671.
[133]
O’ Leary, M.; O’ Connor, R.; Roy, S.; Ballot, J.; Ooi, W.; Fennelly, D.; Sheehan, L.; Collins, C.; Clynes, M.; Crown, J. Phase I trial of the multi-drug resistance (MDR) Protein-1 (MRP-1) modulating agent sulindac (S) plus epirubicin (E) in patients (pts) with advanced cancer. J. Clin. Oncol., 2004, 22(14_suppl)(Suppl.), 2129.
[http://dx.doi.org/10.1200/jco.2004.22.90140.2129]
[134]
O’Connor, R.; O’Leary, M.; Ballot, J.; Collins, C.D.; Kinsella, P.; Mager, D.E.; Arnold, R.D.; O’Driscoll, L.; Larkin, A.; Kennedy, S.; Fennelly, D.; Clynes, M.; Crown, J. A phase I clinical and pharmacokinetic study of the multi-drug resistance protein-1 (MRP-1) inhibitor sulindac, in combination with epirubicin in patients with advanced cancer. Cancer Chemother. Pharmacol., 2006, 59(1), 79-87.
[http://dx.doi.org/10.1007/s00280-006-0240-7] [PMID: 16642371]
[135]
Kuppens, I.E.L.M.; Witteveen, E.O.; Jewell, R.C.; Radema, S.A.; Paul, E.M.; Mangum, S.G.; Beijnen, J.H.; Voest, E.E.; Schellens, J.H.M. A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin. Cancer Res., 2007, 13(11), 3276-3285.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2414] [PMID: 17545533]
[136]
Fox, E.; Bates, S.E. Tariquidar (XR9576): A P-glycoprotein drug efflux pump inhibitor. Expert Rev. Anticancer Ther., 2007, 7(4), 447-459.
[http://dx.doi.org/10.1586/14737140.7.4.447] [PMID: 17428165]
[137]
Rowinsky, E.K.; Smith, L.; Wang, Y.M.; Chaturvedi, P.; Villalona, M.; Campbell, E.; Aylesworth, C.; Eckhardt, S.G.; Hammond, L.; Kraynak, M.; Drengler, R.; Stephenson, J., Jr; Harding, M.W.; Von Hoff, D.D. Phase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP. J. Clin. Oncol., 1998, 16(9), 2964-2976.
[http://dx.doi.org/10.1200/JCO.1998.16.9.2964] [PMID: 9738565]
[138]
Agrawal, M.; Abraham, J.; Balis, F.M.; Edgerly, M.; Stein, W.D.; Bates, S.; Fojo, T.; Chen, C.C. Increased 99mTc-sestamibi accumulation in normal liver and drug-resistant tumors after the administration of the glycoprotein inhibitor, XR9576. Clin. Cancer Res., 2003, 9(2), 650-656.
[PMID: 12576431]
[139]
van Zuylen, L.; Sparreboom, A.; van der Gaast, A.; van der Burg, M.E.; van Beurden, V.; Bol, C.J.; Woestenborghs, R.; Palmer, P.A.; Verweij, J. The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of docetaxel. Clin. Cancer Res., 2000, 6(4), 1365-1371.
[PMID: 10778964]
[140]
Morschhauser, F.; Zinzani, P.L.; Burgess, M.; Sloots, L.; Bouafia, F.; Dumontet, C. Phase I/II trial of a P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin’s lymphoma. Leuk. Lymphoma, 2007, 48(4), 708-715.
[http://dx.doi.org/10.1080/10428190701190169] [PMID: 17454628]
[141]
Saeki, T.; Nomizu, T.; Toi, M.; Ito, Y.; Noguchi, S.; Kobayashi, T.; Asaga, T.; Minami, H.; Yamamoto, N.; Aogi, K.; Ikeda, T.; Ohashi, Y.; Sato, W.; Tsuruo, T. Dofequidar fumarate (MS-209) in combination with cyclophosphamide, doxorubicin, and fluorouracil for patients with advanced or recurrent breast cancer. J. Clin. Oncol., 2007, 25(4), 411-417.
[http://dx.doi.org/10.1200/JCO.2006.08.1646] [PMID: 17179098]
[142]
Oldham, R. Safety and efficacy study of CBT-1 and paclitaxel with carboplatin in patients with advanced inoperable non-small cell lung cancer. 2007.
[143]
Reyno, L.; Seymour, L.; Tu, D.; Dent, S.; Gelmon, K.; Walley, B.; Pluzanska, A.; Gorbunova, V.; Garin, A.; Jassem, J.; Pienkowski, T.; Dancey, J.; Pearce, L.; MacNeil, M.; Marlin, S.; Lebwohl, D.; Voi, M.; Pritchard, K. Phase III study of N,N-diethyl-2-[4-(phenylmethyl) phenoxy]ethanamine (BMS-217380-01) combined with doxorubicin versus doxorubicin alone in metastatic/recurrent breast cancer: National cancer institute of canada clinical trials group study MA.19. J. Clin. Oncol., 2004, 22(2), 269-276.
[http://dx.doi.org/10.1200/JCO.2003.04.075] [PMID: 14722035]
[144]
Friedenberg, W.R.; Rue, M.; Blood, E.A.; Dalton, W.S.; Shustik, C.; Larson, R.A.; Sonneveld, P.; Greipp, P.R. Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95). Cancer, 2006, 106(4), 830-838.
[http://dx.doi.org/10.1002/cncr.21666] [PMID: 16419071]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy