Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

GDF-10 Induces an Inhibitory Effect on Epithelial-Mesenchymal Transition of Laryngeal Cancer via LPR4

Author(s): Xuan Kan, Li Ai, Ruidi Guan, Jianwei Hao, Yanan Sun and Wei Xiu*

Volume 29, Issue 43, 2023

Published on: 18 December, 2023

Page: [3467 - 3477] Pages: 11

DOI: 10.2174/0113816128261029231206035206

Price: $65

conference banner
Abstract

Background: Growth differentiation factor-10 (GDF-10), a member of the TGF-β superfamily, plays a crucial role in cell proliferation and differentiation. In some tumors, GDF-10 can act as a tumor suppressor to inhibit tumor progression, but its role in posterior squamous cell carcinoma has not been reported yet.

Methods: The aim of this study was to investigate the effect of GDF-10 on the epithelial-mesenchymal transition of laryngeal squamous cell carcinoma, and to provide new ideas for future targets in the treatment of laryngeal squamous carcinoma.

Results: The effect of GDF-10 on tumor growth was detected; bioinformatics analysis was performed to predict the downstream targets of GDF-10, and RT-PCR and western blot were performed to detect the expression levels of target genes and proteins, respectively.

Conclusion: Our findings support that GDF-10 can inhibit the proliferation, migration, and invasion, and promote apoptosis of laryngeal carcinoma AMC-HN-8 cells. GDF-10 inhibits the EMT of laryngeal carcinoma through LRP4 and thus inhibits the progression of laryngeal carcinoma.

Keywords: Laryngeal cancer, EMT, GDF-10, LRP4, TGF-β, tumor progression.

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Ebrahimi H, Aryan Z, Saeedi Moghaddam S, et al. Global, regional, and national burden of respiratory tract cancers and associated risk factors from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Respir Med 2021; 9(9): 1030-49.
[http://dx.doi.org/10.1016/S2213-2600(21)00164-8] [PMID: 34411511]
[3]
McCabe EM, Rasmussen TP. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol 2021; 75: 38-48.
[http://dx.doi.org/10.1016/j.semcancer.2020.12.012] [PMID: 33346133]
[4]
Tang X, Sun Y, Wan G, Sun J, Sun J, Pan C. Knockdown of YAP inhibits growth in Hep-2 laryngeal cancer cells via epithelial-mesenchymal transition and the Wnt/β-catenin pathway. BMC Cancer 2019; 19(1): 654.
[http://dx.doi.org/10.1186/s12885-019-5832-9] [PMID: 31269911]
[5]
Gundamaraju R, Lu W, Paul MK, et al. Autophagy and EMT in cancer and metastasis: Who controls whom? Biochim Biophys Acta Mol Basis Dis 2022; 1868(9): 166431.
[http://dx.doi.org/10.1016/j.bbadis.2022.166431] [PMID: 35533903]
[6]
Ye XC, Hu JX, Li L, et al. Astrocytic Lrp4 (low-density lipoprotein receptor-related protein 4) contributes to ischemia-induced brain injury by regulating ATP release and adenosine-A2A R (Adenosine A2A Receptor) signaling. Stroke 2018; 49(1): 165-74.
[http://dx.doi.org/10.1161/STROKEAHA.117.018115] [PMID: 29212737]
[7]
Gilhus NE, Verschuuren JJ. Myasthenia gravis: Subgroup classification and therapeutic strategies. Lancet Neurol 2015; 14(10): 1023-36.
[http://dx.doi.org/10.1016/S1474-4422(15)00145-3] [PMID: 26376969]
[8]
Feldker N, Ferrazzi F, Schuhwerk H, et al. Genome-wide cooperation of EMT transcription factor ZEB 1 with YAP and AP-1 in breast cancer. EMBO J 2020; 39(17): e103209.
[http://dx.doi.org/10.15252/embj.2019103209] [PMID: 32692442]
[9]
Teeuwssen M, Fodde R. Wnt signaling in ovarian cancer stemness, EMT, and therapy resistance. J Clin Med 2019; 8(10): 1658.
[http://dx.doi.org/10.3390/jcm8101658] [PMID: 31614568]
[10]
Ohno K, Ohkawara B, Ito M. Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders. Expert Opin Ther Targets 2017; 21(10): 949-58.
[http://dx.doi.org/10.1080/14728222.2017.1369960] [PMID: 28825343]
[11]
Ramesh V, Brabletz T, Ceppi P. Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer 2020; 6(11): 942-50.
[http://dx.doi.org/10.1016/j.trecan.2020.06.005] [PMID: 32680650]
[12]
Frei E III. Clinical cancer research: An embattled species. Cancer 1982; 50(10): 1979-92.
[http://dx.doi.org/10.1002/1097-0142(19821115)50:10<1979::AID-CNCR2820501002>3.0.CO;2-D] [PMID: 7127245]
[13]
Zhou T, Yu L, Huang J, et al. GDF10 inhibits proliferation and epithelial-mesenchymal transition in triple-negative breast cancer via upregulation of Smad7. Aging 2019; 11(10): 3298-314.
[http://dx.doi.org/10.18632/aging.101983] [PMID: 31147529]
[14]
Du L, Gao Y. PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer. J Transl Med 2021; 19(1): 12.
[http://dx.doi.org/10.1186/s12967-020-02572-w] [PMID: 33407592]
[15]
Tandon M, Gokul K, Ali SA, et al. Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells. Mol Cancer 2012; 11(1): 27.
[http://dx.doi.org/10.1186/1476-4598-11-27] [PMID: 22537242]
[16]
Datta A, Deng S, Gopal V, et al. Cytoskeletal dynamics in epithelial-mesenchymal transition: Insights into therapeutic targets for cancer metastasis. Cancers 2021; 13(8): 1882.
[http://dx.doi.org/10.3390/cancers13081882] [PMID: 33919917]
[17]
Babaei G, Aziz SGG, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother 2021; 133: 110909.
[http://dx.doi.org/10.1016/j.biopha.2020.110909] [PMID: 33227701]
[18]
Mao Z, Wang Z, Zhang S, et al. LRP4 promotes migration and invasion of gastric cancer under the regulation of microRNA-140-5p. Cancer Biomark 2020; 29(2): 245-53.
[http://dx.doi.org/10.3233/CBM-190571] [PMID: 32675391]
[19]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[20]
Chakraborty S, Lakshmanan M, Swa HLF, et al. An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma. Nat Commun 2015; 6(1): 6184.
[http://dx.doi.org/10.1038/ncomms7184] [PMID: 25630468]
[21]
Zhou X, Xia E, Bhandari A, et al. LRP4 promotes proliferation, migration, and invasion in papillary thyroid cancer. Biochem Biophys Res Commun 2018; 503(1): 257-63.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.012] [PMID: 29885843]
[22]
Cheng CW, Hsiao JR, Fan CC, et al. Loss of GDF10/BMP3b as a prognostic marker collaborates with TGFBR3 to enhance chemotherapy resistance and epithelial-mesenchymal transition in oral squamous cell carcinoma. Mol Carcinog 2016; 55(5): 499-513.
[http://dx.doi.org/10.1002/mc.22297] [PMID: 25728212]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy