Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Trends in Nanoparticulate Delivery System for Amygdalin as Potential Therapeutic Herbal Bioactive Agent for Cancer Treatment

Author(s): Mahendra Prajapati, Rohitas Deshmukh* and Ranjit K. Harwansh

Volume 22, Issue 1, 2025

Published on: 27 November, 2023

Page: [63 - 79] Pages: 17

DOI: 10.2174/0115672018280381231119150732

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer is the deadliest and most serious health problem. The mortality rate of cancer patients has increased significantly worldwide in recent years. There are several treatments available, but these treatments have many limitations, such as non-specific targeting, toxicity, bioavailability, solubility, permeability problems, serious side effects, and a higher dose. Many people prefer phytomedicine because it has fewer side effects. However, amygdalin is a naturally occurring phytoconstituent. It has many harmful effects due to the cyanide group present in the chemical structure. Many scientists and researchers have given their thoughts associated with amygdalin and its toxicities. However, there is a need for a more advanced, effective, and newer delivery system with reduced toxicity effects of amygdalin. Nanotechnology has become a more refined and emerging medical approach, offering innovative research areas to treat cancer. This review focuses on the use of amygdaline as herbal medicine encapsulating into several nanoparticulate delivery systems such as silver nanoparticles, graphene oxide nanoparticles, gold nanoparticles, nanofibers, nanocomposites, niosomes, and magnetic nanoparticles in the treatment of cancer. In addition, this article provides information on amygdalin structure and physical properties, pharmacokinetics, toxicity, and challenges with amygdalin.

Keywords: Amygdalin, cancer, cyanide, nanoparticles, toxicity, mandelonitrile.

Graphical Abstract
[1]
Fathi-karkan, S.; Arshad, R.; Rahdar, A.; Ramezani, A.; Behzadmehr, R.; Ghotekar, S.; Pandey, S. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review. Eur. J. Med. Chem., 2023, 259, 115676.
[http://dx.doi.org/10.1016/j.ejmech.2023.115676] [PMID: 37499287]
[2]
Hassan, F.; El-Hiti, G.A.; Abd-Allateef, M.; Yousif, E. Cytotoxicity anticancer activities of anastrozole against breast, liver hepatocellular, and prostate cancer cells. Saudi Med. J., 2017, 38(4), 359-365.
[http://dx.doi.org/10.15537/smj.2017.4.17061] [PMID: 28397941]
[3]
Zhang, L.; Tian, L.; Dai, X.; Yu, H.; Wang, J.; Lei, A.; Zhu, M.; Xu, J.; Zhao, W.; Zhu, Y.; Sun, Z.; Zhang, H.; Hu, Y.; Wang, Y.; Xu, Y.; Church, G.M.; Huang, H.; Weng, Q.; Zhang, J. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J. Hematol. Oncol., 2020, 13(1), 153.
[http://dx.doi.org/10.1186/s13045-020-00983-2] [PMID: 33176869]
[4]
Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[5]
Hulvat, M.C. Cancer incidence and trends. Surg. Clin. North Am., 2020, 100(3), 469-481.
[http://dx.doi.org/10.1016/j.suc.2020.01.002] [PMID: 32402294]
[6]
Schiller, J.T.; Lowy, D.R. An introduction to virus infections and human cancer. Recent Results Cancer Res., 2021, 217, 1-11.
[http://dx.doi.org/10.1007/978-3-030-57362-1_1] [PMID: 33200359]
[7]
Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9.
[http://dx.doi.org/10.1177/20503121211034366] [PMID: 34408877]
[8]
Safarzadeh, E.; Sandoghchian Shotorbani, S.; Baradaran, B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv. Pharm. Bull., 2014, 4(S1), 421-427.
[PMID: 25364657]
[9]
Shi, J.; Chen, Q.; Xu, M.; Xia, Q.; Zheng, T.; Teng, J.; Li, M.; Fan, L. Recent updates and future perspectives about amygdalin as a potential anticancer agent: A review. Cancer Med., 2019, 8(6), 3004-3011.
[http://dx.doi.org/10.1002/cam4.2197] [PMID: 31066207]
[10]
Murti, Y.; Agrawal, K.K.; Semwal, B.C.; Gupta, J.; Gupta, R. A review on novel herbal drug delivery system and its application. Curr. Tradit. Med., 2023, 9(2), e280422204154.
[http://dx.doi.org/10.2174/2215083808666220428092638]
[11]
Gupta, J.; Ahuja, A.; Gupta, R. Green approaches for cancers management: An effective tool for health care. Anticancer. Agents Med. Chem., 2021, 22(1), 101-114.
[http://dx.doi.org/10.2174/1871520621666210119091826] [PMID: 33463475]
[12]
El-Desouky, M.A.; Fahmi, A.A.; Abdelkader, I.Y.; Nasraldin, K.M. Anticancer effect of amygdalin (Vitamin B-17) on hepatocellular carcinoma cell line (HepG2) in the presence and absence of zinc. Anticancer. Agents Med. Chem., 2020, 20(4), 486-494.
[http://dx.doi.org/10.2174/1871520620666200120095525] [PMID: 31958042]
[13]
Alwan, A.M.; Rokaya, D.; Kathayat, G.; Afshari, J.T. Onco-immunity and therapeutic application of amygdalin: A review. J. Oral Biol. Craniofac. Res., 2023, 13(2), 155-163.
[http://dx.doi.org/10.1016/j.jobcr.2022.12.010] [PMID: 36618007]
[14]
Ramachandran, V.; Rapindra Hosalli, K.; Vijayakumar, I.; Mani, L.; Tiwari, R.; Tiwari, G. A review on antitumor action of amygdalin on various types of cancers. Res J Pharm Technol, 2022, 15(11), 5373-5380.
[http://dx.doi.org/10.52711/0974-360X.2022.00906]
[15]
Wahab, M.F.; Breitbach, Z.S.; Armstrong, D.W.; Strattan, R.; Berthod, A. Problems and Pitfalls in the Analysis of Amygdalin and Its Epimer. J. Agric. Food Chem., 2015, 63(40), 8966-8973.
[http://dx.doi.org/10.1021/acs.jafc.5b03120] [PMID: 26431391]
[16]
Zhang, T.; Yang, S.; Zhang, B.; Yang, D.; Lu, Y.; Du, G. Insights into the properties of amygdalin solvatomorphs: X-ray structures, intermolecular interactions, and transformations. ACS Omega, 2022, 7(10), 8906-8918.
[http://dx.doi.org/10.1021/acsomega.1c07314] [PMID: 35309495]
[17]
Liang, N.; Sang, Y.; Liu, W.; Yu, W.; Wang, X. Anti-inflammatory effects of gingerol on lipopolysaccharide-stimulated RAW 264.7 cells by inhibiting NF-κB signaling pathway. Inflammation, 2018, 41(3), 835-845.
[http://dx.doi.org/10.1007/s10753-018-0737-3] [PMID: 29508185]
[18]
Lv, J.; Deng, J. Research progress in pharmacological effects of amygdalin. Drugs Clinic, 2012, 27(5), 530-535.
[19]
Jiagang, D.; Li, C.; Wang, H.; Hao, E.; Du, Z.; Bao, C.; Lv, J.; Wang, Y. Amygdalin mediates relieved atherosclerosis in apolipoprotein E deficient mice through the induction of regulatory T cells. Biochem. Biophys. Res. Commun., 2011, 411(3), 523-529.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.162] [PMID: 21756879]
[20]
Cai, Y.; Li, Y.M.; Zhong, L. Effect of amygdalin on gastric ulcer in experimental models. Zhongguo Yaoke Daxue Xuebao, 2003, 34, 254-256.
[21]
Baroni, A.; Paoletti, I.; Greco, R.; Satriano, R.A.; Ruocco, E.; Tufano, M.A.; Perez, J.J. Immunomodulatory effects of a set of amygdalin analogues on human keratinocyte cells. Exp. Dermatol., 2005, 14(11), 854-859.
[http://dx.doi.org/10.1111/j.1600-0625.2005.00368.x] [PMID: 16232308]
[22]
Zhang, X.; Hu, J.; Zhuo, Y.; Cui, L.; Li, C.; Cui, N.; Zhang, S. Amygdalin improves microcirculatory disturbance and attenuates pancreatic fibrosis by regulating the expression of endothelin-1 and calcitonin gene-related peptide in rats. J. Chin. Med. Assoc., 2018, 81(5), 437-443.
[http://dx.doi.org/10.1016/j.jcma.2017.09.005] [PMID: 29129515]
[23]
Barakat, H.; Aljutaily, T.; Almujaydil, M.S.; Algheshairy, R.M.; Alhomaid, R.M.; Almutairi, A.S.; Alshimali, S.I.; Abdellatif, A.A.H. Amygdalin: A review on its characteristics, antioxidant potential, gastrointestinal microbiota intervention, anticancer therapeutic and mechanisms, toxicity, and encapsulation. Biomolecules, 2022, 12(10), 1514.
[http://dx.doi.org/10.3390/biom12101514] [PMID: 36291723]
[24]
El Desouky, A.M.; Ali Fahmi, A. The postulated mechanism of action of amygdalin (vitamin B17) on cancer cells. Anticancer. Agents Med. Chem., 2022, 23(8), 894-899.
[25]
Erfan, A.; Yousif, E.; Alshanon, A.N.; Ahmed, D.S.; Bufaroosha, M. Organotin(IV) complexes as promising potential drug candidates in the field of cancer chemotherapy: A narrative review. AJMS, 2023, 5, 48-56.
[26]
Zaki, N.H. Cytotoxic potential of amygdaline zinc nano particles on PC3 and MCF7 cell lines. Biosci. Biotechnol. Res. Commun., 2021, 14(7), 235-239.
[http://dx.doi.org/10.21786/bbrc/14.7.53]
[27]
Liczbiński, P.; Bukowska, B. Molecular mechanism of amygdalin action in vitro: review of the latest research. Immunopharmacol. Immunotoxicol., 2018, 40(3), 212-218.
[http://dx.doi.org/10.1080/08923973.2018.1441301] [PMID: 29486614]
[28]
Blaheta, R.A.; Nelson, K.; Haferkamp, A.; Juengel, E. Amygdalin, quackery or cure? Phytomedicine, 2016, 23(4), 367-376.
[http://dx.doi.org/10.1016/j.phymed.2016.02.004] [PMID: 27002407]
[29]
Jaszczak-Wilke, E.; Polkowska, Ż.; Koprowski, M.; Owsianik, K.; Mitchell, A.E.; Bałczewski, P. Amygdalin: Toxicity, anticancer activity and analytical procedures for its determination in plant seeds. Molecules, 2021, 26(8), 2253.
[http://dx.doi.org/10.3390/molecules26082253] [PMID: 33924691]
[30]
Salama, R.H.; Ramadan, A.E.R.G.; Alsanory, T.A.; Herdan, M.O.; Fathallah, O.M.; Alsanory, A.A. Experimental and therapeutic trials of amygdalin. Int. J. Biochem. Phar., 2019, 1(1), 21-26.
[http://dx.doi.org/10.18689/ijbp-1000105]
[31]
Omelka, R.; Kovacova, V.; Mondockova, V.; Grosskopf, B.; Kolesarova, A.; Martiniakova, M. Cyanogenic glycoside amygdalin influences functions of human osteoblasts in vitro. J. Environ. Sci. Health B, 2021, 56(2), 109-116.
[http://dx.doi.org/10.1080/03601234.2020.1852054] [PMID: 33504261]
[32]
Shalayel, M.H.F. Beyond laetrile (Vitamin B-17) controversy-antitumor illusion or revolution. Br. Biomed. Bull., 2013.
[33]
Chang, J.; Zhang, Y. Catalytic degradation of amygdalin by extracellular enzymes from Aspergillus niger. Process Biochem., 2012, 47(2), 195-200.
[http://dx.doi.org/10.1016/j.procbio.2011.10.030]
[34]
Li, X.; Shi, F.; Gu, P.; Liu, L.; He, H.; Ding, L. A sensitive LC–MS/MS method for simultaneous determination of amygdalin and paeoniflorin in human plasma and its application. J. Pharm. Biomed. Anal., 2014, 92, 160-164.
[http://dx.doi.org/10.1016/j.jpba.2014.01.020] [PMID: 24525563]
[35]
Li, X.; Shi, F.; Zhang, R.; Sun, C.; Gong, C.; Jian, L.; Ding, L. Pharmacokinetics, safety, and tolerability of amygdalin and paeoniflorin after single and multiple intravenous infusions of huoxue-tongluo lyophilized powder for injection in healthy chinese volunteers. Clin. Ther., 2016, 38(2), 327-337.
[http://dx.doi.org/10.1016/j.clinthera.2015.12.005] [PMID: 26749220]
[36]
Bajpai, M.; Shafi, H. Nanoparticles: Importance and need for regulations. In: Nanoformulations in Human Health: Challenges and Approaches; Talegaonkar, S.; Rai, M., Eds.; Springer International Publishing: Cham, 2020; pp. 93-107.
[http://dx.doi.org/10.1007/978-3-030-41858-8_5]
[37]
Kenchegowda, M.; Rahamathulla, M.; Hani, U.; Begum, M.Y.; Guruswamy, S.; Osmani, R.A.M.; Gowrav, M.P.; Alshehri, S.; Ghoneim, M.M.; Alshlowi, A.; Gowda, D.V. Smart nanocarriers as an emerging platform for cancer therapy: A review. Molecules, 2021, 27(1), 146.
[http://dx.doi.org/10.3390/molecules27010146] [PMID: 35011376]
[38]
Edis, Z.; Wang, J.; Waqas, M.K.; Ijaz, M.; Ijaz, M. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives. Int. J. Nanomedicine, 2021, 16, 1313-1330.
[http://dx.doi.org/10.2147/IJN.S289443] [PMID: 33628022]
[39]
Kaushik, N.; Borkar, S.B.; Nandanwar, S.K.; Panda, P.K.; Choi, E.H.; Kaushik, N.K. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J. Nanobiotechnology, 2022, 20(1), 152.
[http://dx.doi.org/10.1186/s12951-022-01364-2] [PMID: 35331246]
[40]
Harwansh, R.K.; Deshmukh, R. Breast cancer: An insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs. Crit. Rev. Oncol. Hematol., 2020, 154, 103070.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103070] [PMID: 32871325]
[41]
Askar, M.A.; El-Sayyad, G.S.; Guida, M.S.; Khalifa, E.; Shabana, E.S.; Abdelrahman, I.Y. Amygdalin-folic acid-nanoparticles inhibit the proliferation of breast cancer and enhance the effect of radiotherapy through the modulation of tumor-promoting factors/immunosuppressive modulators in vitro. BMC Complement. Med. Ther., 2023, 23(1), 162.
[http://dx.doi.org/10.1186/s12906-023-03986-x] [PMID: 37210478]
[42]
Seyhan, S.A.; Alkaya, D.B.; Cesur, S.; Sahin, A. Investigation of the antitumor effect on breast cancer cells of the electrospun amygdalin-loaded poly(l-lactic acid)/poly(ethylene glycol) nanofibers. Int. J. Biol. Macromol., 2023, 239, 124201.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124201] [PMID: 37001771]
[43]
Thabet, N.M.; Abdel-Rafei, M.K.; El-Sayyad, G.S.; Elkodous, M.A.; Shaaban, A.; Du, Y.C.; Rashed, L.A.; Askar, M.A. Multifunctional nanocomposites DDMplusAF inhibit the proliferation and enhance the radiotherapy of breast cancer cells via modulating tumor-promoting factors and metabolic reprogramming. Cancer Nanotechnol., 2022, 13(1), 16.
[http://dx.doi.org/10.1186/s12645-022-00122-1]
[44]
Mosayyebi, B.; Imani, M.; Mohammadi, L.; Akbarzadeh, A.; Zarghami, N.; Alizadeh, E.; Rahmati, M. Comparison between β-cyclodextrin-amygdalin nanoparticle and amygdalin effects on migration and apoptosis of MCF-7 breast cancer cell line. J. Cluster Sci., 2022, 33(3), 935-947.
[http://dx.doi.org/10.1007/s10876-021-02019-2]
[45]
Pandey, A. Sauraj; Ali, A.; Negi, Y. Synthesis of polygonal chitosan microcapsules for the delivery of amygdalin loaded silver nanoparticles in breast cancer therapy. Mater. Today Proc., 2021, 43, 3744-3748.
[http://dx.doi.org/10.1016/j.matpr.2020.10.988]
[46]
Hu, D.; Shilatifard, A. Epigenetics of hematopoiesis and hematological malignancies. Genes Dev., 2016, 30(18), 2021-2041.
[http://dx.doi.org/10.1101/gad.284109.116] [PMID: 27798847]
[47]
Elderdery, A.Y.; Alzahrani, B.; Hamza, S.M.A.; Mostafa-Hedeab, G.; Mok, P.L.; Subbiah, S.K. Synthesis of Zinc Oxide (ZnO)-Titanium Dioxide (TiO2)-chitosan-farnesol nanocomposites and assessment of their anticancer potential in human leukemic MOLT-4 cell line. Bioinorg. Chem. Appl., 2022, 2022, 1-11.
[http://dx.doi.org/10.1155/2022/5949086] [PMID: 36212987]
[48]
Elderdery, A.Y.; Alzahrani, B.; Alanazi, F.; Hamza, S.M.A.; Elkhalifa, A.M.E.; Alhamidi, A.H.; Alabdulsalam, A.A.; Mohamedain, A.; Kumar, S.S.; Mok, P.L. Amelioration of human acute lymphoblastic leukemia (ALL) cells by ZnO-TiO2-Chitosan-Amygdalin nanocomposites. Arab. J. Chem., 2022, 15(8), 103999.
[http://dx.doi.org/10.1016/j.arabjc.2022.103999]
[49]
Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules, 2022, 27(17), 5730.
[http://dx.doi.org/10.3390/molecules27175730] [PMID: 36080493]
[50]
Zhou, J.; Hou, J.; Rao, J.; Zhou, C.; Liu, Y.; Gao, W. Magnetically directed enzyme/prodrug prostate cancer therapy based on β-glucosidase/amygdalin. Int. J. Nanomedicine, 2020, 15, 4639-4657.
[http://dx.doi.org/10.2147/IJN.S242359] [PMID: 32636623]
[51]
Saleem, H.M.; Ramaiah, P.; Gupta, J.; Jalil, A.T.; Kadhim, N.A.; Alsaikhan, F.; Ramírez-Coronel, A.A.; Tayyib, N.A.; Guo, Q. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. Environ. Res., 2023, 232, 115942.
[http://dx.doi.org/10.1016/j.envres.2023.115942] [PMID: 37080268]
[52]
Deshmukh, R.; Prajapati, M.; Harwansh, R.K. A review on emerging targeted therapies for the management of metastatic colorectal cancers. Med. Oncol., 2023, 40(6), 159.
[http://dx.doi.org/10.1007/s12032-023-02020-x] [PMID: 37097307]
[53]
Sohail, R.; Abbas, S.R. Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy. Int. J. Biol. Macromol., 2020, 153, 36-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.191] [PMID: 32097740]
[54]
El-Ela, F.I.A.; Gamal, A.; Elbanna, H.A.; ElBanna, A.H.; Salem, H.F.; Tulbah, A.S. In vitro and in vivo evaluation of the effectiveness and safety of amygdalin as a cancer therapy. Pharmaceuticals, 2022, 15(11), 1306.
[http://dx.doi.org/10.3390/ph15111306] [PMID: 36355478]
[55]
Elderdery, A.Y.; Alzahrani, B.; Hamza, S.M.A.; Mostafa-Hedeab, G.; Mok, P.L.; Subbiah, S.K. Synthesis, characterization, and antiproliferative effect of CuO-TiO2-chitosan-amygdalin nanocomposites in human leukemic MOLT4 cells. Bioinorg. Chem. Appl., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/1473922] [PMID: 36199748]
[56]
Saleem, M.; Asif, J.; Asif, M.; Saleem, U. Amygdalin from apricot kernels induces apoptosis and causes cell cycle arrest in cancer cells: An updated review. Anticancer. Agents Med. Chem., 2019, 18(12), 1650-1655.
[http://dx.doi.org/10.2174/1871520618666180105161136] [PMID: 29308747]
[57]
Kolesarova, A.; Baldovska, S.; Roychoudhury, S. The multiple actions of amygdalin on cellular processes with an emphasis on female reproduction. Pharmaceuticals, 2021, 14(9), 881.
[http://dx.doi.org/10.3390/ph14090881] [PMID: 34577581]
[58]
He, X.Y.; Wu, L.J.; Wang, W.X.; Xie, P.J.; Chen, Y.H.; Wang, F. Amygdalin - A pharmacological and toxicological review. J. Ethnopharmacol., 2020, 254, 112717.
[http://dx.doi.org/10.1016/j.jep.2020.112717] [PMID: 32114166]
[59]
Go, M.R.; Kim, H.J.; Yu, J.; Choi, S.J. Toxicity and toxicokinetics of amygdalin in maesil (Prunus mume) syrup: Protective effect of maesil against amygdalin toxicity. J. Agric. Food Chem., 2018, 66(43), 11432-11440.
[http://dx.doi.org/10.1021/acs.jafc.8b03686] [PMID: 30284447]
[60]
Shim, S.M.; Kwon, H. Metabolites of amygdalin under simulated human digestive fluids. Int. J. Food Sci. Nutr., 2010, 61(8), 770-779.
[http://dx.doi.org/10.3109/09637481003796314] [PMID: 20528582]
[61]
Makarević, J.; Tsaur, I.; Juengel, E.; Borgmann, H.; Nelson, K.; Thomas, C.; Bartsch, G.; Haferkamp, A.; Blaheta, R.A. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro. Life Sci., 2016, 147, 137-142.
[http://dx.doi.org/10.1016/j.lfs.2016.01.039] [PMID: 26827990]
[62]
Sauer, H.; Wollny, C.; Oster, I.; Tutdibi, E.; Gortner, L.; Gottschling, S.; Meyer, S. Severe cyanide poisoning from an alternative medicine treatment with amygdalin and apricot kernels in a 4-year-old child. Wien. Med. Wochenschr., 2015, 165(9-10), 185-188.
[http://dx.doi.org/10.1007/s10354-014-0340-7] [PMID: 25605411]
[63]
Figurová, D.; Tokárová, K.; Greifová, H.; Knížatová, N.; Kolesárová, A.; Lukáč, N. Inflammation, it’s regulation and antiphlogistic effect of the cyanogenic glycoside amygdalin. Molecules, 2021, 26(19), 5972.
[http://dx.doi.org/10.3390/molecules26195972] [PMID: 34641516]
[64]
Bolarinwa, I.F.; Orfila, C.; Morgan, M.R.A. Determination of amygdalin in apple seeds, fresh apples and processed apple juices. Food Chem., 2015, 170, 437-442.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.083] [PMID: 25306368]
[65]
Sahin, S.; Kırel, B.; Carman, K. Fatal cyanide poisoning in a child, caused by eating apricot seeds. Am. J. Case Rep., 2011, 12, 70-72.
[http://dx.doi.org/10.12659/AJCR.881827]
[66]
Drankowska, J.; Kos, M.; Kościuk, A.; Tchórz, M. Cyanide poisoning from an alternative medicine treatment with apricot kernels in a 80-year-old female. J. Educ. Health Sport, 2018, 8(12), 19-26.
[67]
Tatli, M.; Eyüpoğlu, G.; Hocagil, H. Acute cyanide poisoning due to apricot kernel ingestion. J. Acute Dis., 2017, 6(2), 87-88.
[http://dx.doi.org/10.12980/jad.6.2017JADWEB-2016-0075]
[68]
Kapoor, S. Safety of studies analysing clinical benefit of amygdalin. Immunopharmacol. Immunotoxicol., 2014, 36(1), 87.
[http://dx.doi.org/10.3109/08923973.2013.861846] [PMID: 24397550]
[69]
Chan, T.Y.K. A probable case of amygdalin-induced peripheral neuropathy in a vegetarian with vitamin B12 deficiency. Ther. Drug Monit., 2006, 28(1), 140-141.
[http://dx.doi.org/10.1097/01.ftd.0000179419.40584.15] [PMID: 16418710]
[70]
Zhou, C.; Qian, L.; Ma, H.; Yu, X.; Zhang, Y.; Qu, W.; Zhang, X.; Xia, W. Enhancement of amygdalin activated with β-d-glucosidase on HepG2 cells proliferation and apoptosis. Carbohydr. Polym., 2012, 90(1), 516-523.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.073] [PMID: 24751072]
[71]
Jaswal, V.; Palanivelu, J. C, R. Effects of the Gut microbiota on Amygdalin and its use as an anti-cancer therapy: Substantial review on the key components involved in altering dose efficacy and toxicity. Biochem. Biophys. Rep., 2018, 14, 125-132.
[http://dx.doi.org/10.1016/j.bbrep.2018.04.008] [PMID: 29872744]
[72]
O’Brien, B.; Quigg, C.; Leong, T. Severe cyanide toxicity from ‘vitamin supplements’. Eur. J. Emerg. Med., 2005, 12(5), 257-258.
[PMID: 16175068]
[73]
Cigolini, D.; Ricci, G.; Zannoni, M.; Codogni, R.; De Luca, M.; Perfetti, P.; Rocca, G. Hydroxocobalamin treatment of acute cyanide poisoning from apricot kernels. Emerg. Med. J., 2011, 28(9), 804-805.
[http://dx.doi.org/10.1136/emj.03.2011.3932rep] [PMID: 21856998]
[74]
Konstantatos, A.; Shiv Kumar, M.; Burrell, A. An unusual presentation of chronic cyanide toxicity from self-prescribed apricot kernel extract. BMJ Case Rep., 2017, 2017, bcr2017220814.
[75]
Dang, T.; Nguyen, C.; Tran, P.N. Physician beware: Severe cyanide toxicity from amygdalin tablets ingestion. Case Rep. Emerg. Med., 2017, 2017, 1-3.
[http://dx.doi.org/10.1155/2017/4289527] [PMID: 28912981]
[76]
Akyildiz, B.N.; Kurtoğlu, S.; Kondolot, M.; Tunç, A. Cyanide poisoning caused by ingestion of apricot seeds. Ann. Trop. Paediatr., 2010, 30(1), 39-43.
[http://dx.doi.org/10.1179/146532810X12637745451951] [PMID: 20196932]
[77]
Nader, R.; Mathieu-Daudé, J.C.; Deveaux, M.; Faure, K.; Hayek-Lanthois, M.; de Haro, L. Child cyanide poisoning after ingestion of bitter almonds. Clin. Toxicol., 2010, 48(6), 574-575.
[http://dx.doi.org/10.3109/15563650.2010.492351] [PMID: 20560788]
[78]
Boutbaoucht, M.; Najib, M.; El Adib, A.G.; Sbihi, M.; Younous, S.; Mouaffak, Y.; Zegzouti, F. Cyanide poisoning after bitter almond ingestion. Ann. Trop. Med. Public Health, 2013, 6(6), 679.
[http://dx.doi.org/10.4103/1755-6783.140262]
[79]
Sanchez-Verlaan, P.; Geeraerts, T.; Buys, S.; Riu-Poulenc, B.; Cabot, C.; Fourcade, O.; Mégarbane, B.; Genestal, M. An unusual cause of severe lactic acidosis: Cyanide poisoning after bitter almond ingestion. Intensive Care Med., 2011, 37(1), 168-169.
[http://dx.doi.org/10.1007/s00134-010-2029-8] [PMID: 20845029]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy