Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Fluorescent Coumarin-based Probe for Detection of Biological Thiols

Author(s): Katarzyna Szwaczko*

Volume 27, Issue 15, 2023

Published on: 10 October, 2023

Page: [1329 - 1335] Pages: 7

DOI: 10.2174/0113852728247683231006064932

Price: $65

conference banner
Abstract

Nature-derived thiols such as cysteine, homocysteine, and reduced glutathione play diverse and important roles in both plant and animal cells. In plants, they maintain redox homeostasis and affect photosynthesis and signal transduction processes. In animals, changes in the levels of biothiols have been linked to cardiovascular disease, Alzheimer's disease, neuropsychiatric disorders, or stroke. The detection of biothiols in biological samples is, therefore, very important. For this purpose, rapid, sensitive, and non-invasive methods for their sensing in living cells are highly desirable.

This perspective reviews the past five years of advances in coumarin fluorescent probes for biothiol detection. The design of the probes, the mechanisms of thiol detection, and the applications in live cell imaging are presented. The classification of probes based on the coumarin backbone was made on the basis of the mode of their interactions with the analyte.

Keywords: Coumarin, probe, cysteine, glutathione, Michael addition, thiol detection, fluorescence.

Graphical Abstract
[1]
Hu, X.L.; Gan, H.Q.; Meng, F.D.; Han, H.H.; Shi, D.T.; Zhang, S.; Zou, L.; He, X.P.; James, T.D. Fluorescent probes and functional materials for biomedical applications. Front. Chem. Sci. Eng., 2022, 16(10), 1425-1437.
[http://dx.doi.org/10.1007/s11705-022-2163-1]
[2]
Alvarez, B.; Comini, M.; Salinas, G. The Redox Chemistry and Biology of Thiols, 1st ed; Elsevier Inc., 2022.
[3]
Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med., 2015, 80, 148-157.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.11.013] [PMID: 25433365]
[4]
Pfaff, A.R.; Beltz, J.; King, E.; Ercal, N. Medicinal thiols: Current status and new perspectives. Mini Rev. Med. Chem., 2020, 20(6), 513-529.
[http://dx.doi.org/10.2174/1389557519666191119144100] [PMID: 31746294]
[5]
Künstler, A.; Gullner, G.; Ádám, A.L.; Kolozsváriné Nagy, J.K.; Király, L. The versatile roles of sulfur-containing biomolecules in plant defense. A road to disease resistance. Plants, 2020, 9(12), 1705.
[http://dx.doi.org/10.3390/plants9121705] [PMID: 33287437]
[6]
Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med., 2009, 30(1-2), 1-12.
[http://dx.doi.org/10.1016/j.mam.2008.08.006] [PMID: 18796312]
[7]
Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[8]
Balendiran, G.K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct., 2004, 22(6), 343-352.
[http://dx.doi.org/10.1002/cbf.1149] [PMID: 15386533]
[9]
Rashdan, N.A.; Shrestha, B.; Pattillo, C.B. S-glutathionylation, friend or foe in cardiovascular health and disease. Redox Biol., 2020, 37, 101693.
[http://dx.doi.org/10.1016/j.redox.2020.101693] [PMID: 32912836]
[10]
Matuz-Mares, D.; Riveros-Rosas, H.; Vilchis-Landeros, M.M.; Vázquez-Meza, H. Glutathione participation in the prevention of cardiovascular diseases. Antioxidants, 2021, 10(8), 1220.
[http://dx.doi.org/10.3390/antiox10081220] [PMID: 34439468]
[11]
Stipanuk, M.H.; Coloso, R.M.; García, R.A.G.; Banks, M.F. Cysteine concentration regulates cysteine metabolism to glutathione, sulfate and taurine in rat hepatocytes. J. Nutr., 1992, 122(3), 420-427.
[http://dx.doi.org/10.1093/jn/122.3.420] [PMID: 1542000]
[12]
Clemente Plaza, N.; Reig García-Galbis, M.; Martínez-Espinosa, R. Effects of the usage of l-cysteine (l-Cys) on human health. Molecules, 2018, 23(3), 575.
[http://dx.doi.org/10.3390/molecules23030575] [PMID: 29510494]
[13]
Rehman, T.; Shabbir, M.A.; Inam-Ur-Raheem, M.; Manzoor, M.F.; Ahmad, N.; Liu, Z.W.; Ahmad, M.H.; Siddeeg, A.; Abid, M.; Aadil, R.M. Cysteine and homocysteine as biomarker of various diseases. Food Sci. Nutr., 2020, 8(9), 4696-4707.
[http://dx.doi.org/10.1002/fsn3.1818] [PMID: 32994931]
[14]
Smith, A.D.; Refsum, H.; Bottiglieri, T.; Fenech, M.; Hooshmand, B.; McCaddon, A.; Miller, J.W.; Rosenberg, I.H.; Obeid, R. Homocysteine and dementia: An international consensus statement. J. Alzheimers Dis., 2018, 62(2), 561-570.
[http://dx.doi.org/10.3233/JAD-171042] [PMID: 29480200]
[15]
Wang, Q.; Zhao, J.; Chang, H.; Liu, X.; Zhu, R. Homocysteine and folic acid: Risk factors for Alzheimer’s disease-an updated meta-analysis. Front. Aging Neurosci., 2021, 13, 665114.
[http://dx.doi.org/10.3389/fnagi.2021.665114] [PMID: 34122042]
[16]
Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J., 2015, 14(1), 6.
[http://dx.doi.org/10.1186/1475-2891-14-6] [PMID: 25577237]
[17]
Toyo’oka, T. Recent advances in separation and detection methods for thiol compounds in biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(28), 3318-3330.
[http://dx.doi.org/10.1016/j.jchromb.2009.03.034] [PMID: 19357000]
[18]
Monostori, P.; Wittmann, G.; Karg, E.; Túri, S. Determination of glutathione and glutathione disulfide in biological samples: An in-depth review. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(28), 3331-3346.
[http://dx.doi.org/10.1016/j.jchromb.2009.06.016] [PMID: 19560987]
[19]
Sastre Toraño, J.; Ramautar, R.; de Jong, G. Advances in capillary electrophoresis for the life sciences. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1118-1119(15), 116-136.
[http://dx.doi.org/10.1016/j.jchromb.2019.04.020] [PMID: 31035134]
[20]
Lačná, J.; Foret, F.; Kubáň, P. Capillary electrophoresis in the analysis of biologically important thiols. Electrophoresis, 2017, 38(1), 203-222.
[http://dx.doi.org/10.1002/elps.201600354] [PMID: 27611491]
[21]
Sun, Y.; Yao, T.; Guo, X.; Peng, Y.; Zheng, J. Simultaneous assessment of endogenous thiol compounds by LC–MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1029-1030, 213-221.
[http://dx.doi.org/10.1016/j.jchromb.2016.06.024] [PMID: 27442797]
[22]
Liu, Y.; Xiang, K.; Tian, B.; Zhang, J. A fluorescein-based fluorescence probe for the fast detection of thiol. Tetrahedron Lett., 2016, 57(23), 2478-2483.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.068]
[23]
Huo, F.; Kang, J.; Yin, C.; Zhang, Y.; Chao, J. A turn-on green fluorescent thiol probe based on the 1,2-addition reaction and its application for bioimaging. Sens. Actuators B Chem., 2015, 207, 139-143.
[http://dx.doi.org/10.1016/j.snb.2014.10.023]
[24]
Li, Z.; Xiong, W.; He, X.; Qi, X.; Ding, F.; Shen, J. A novel strategy for rhodamine B-based fluorescent probes with a selective glutathione response for bioimaging in living cells. Analyst (Lond.), 2020, 145(12), 4239-4244.
[http://dx.doi.org/10.1039/D0AN00582G] [PMID: 32436498]
[25]
Shibata, A.; Furukawa, K.; Abe, H.; Tsuneda, S.; Ito, Y. Rhodamine-based fluorogenic probe for imaging biological thiol. Bioorg. Med. Chem. Lett., 2008, 18(7), 2246-2249.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.014] [PMID: 18358719]
[26]
Tang, B.; Xing, Y.; Li, P.; Zhang, N.; Yu, F.; Yang, G. A rhodamine-based fluorescent probe containing a Se-N bond for detecting thiols and its application in living cells. J. Am. Chem. Soc., 2007, 129(38), 11666-11667.
[http://dx.doi.org/10.1021/ja072572q] [PMID: 17803273]
[27]
Chio, T.I.; Grimaldi, A.J.; Radford, T.I.; Bane, S.L. A BODIPY-based probe enables fluorogenicity via thiol-dependent modulation of fluorophore aggregation. Molecules, 2022, 27(8), 2455.
[http://dx.doi.org/10.3390/molecules27082455] [PMID: 35458654]
[28]
Zhang, J.; Wang, N.; Ji, X.; Tao, Y.; Wang, J.; Zhao, W. BODIPY‐based fluorescent probes for biothiols. Chemistry, 2020, 26(19), 4172-4192.
[http://dx.doi.org/10.1002/chem.201904470] [PMID: 31769552]
[29]
Cheng, G.J.S.; Qin, J.M.; Li, X.; Cao, Q.Y. A naphthalimide-based fluorescent probe with mitochondria targeting for GSH sensing and cancer cell recognition. Dyes Pigments, 2023, 211, 111089.
[http://dx.doi.org/10.1016/j.dyepig.2023.111089]
[30]
Zhou, P.; Yao, J.; Hu, G.; Fang, J. Naphthalimide scaffold provides versatile platform for selective thiol sensing and protein labeling. ACS Chem. Biol., 2016, 11(4), 1098-1105.
[http://dx.doi.org/10.1021/acschembio.5b00856] [PMID: 26813105]
[31]
Lazarus, L.S.; Esquer, H.J.; Benninghoff, A.D.; Berreau, L.M. Sense and release: A thiol-responsive flavonol-based photonically driven carbon monoxide-releasing molecule that operates via a multiple-input AND logic gate. J. Am. Chem. Soc., 2017, 139(28), 9435-9438.
[http://dx.doi.org/10.1021/jacs.7b04077] [PMID: 28677975]
[32]
Zhang, X.; Shi, C.; Ji, P.; Jin, X.; Liu, J.; Zhu, H. A red-emitting fluorescent probe based on flavone for hydrazine detection and its application in aqueous solution. Anal. Methods, 2016, 8(10), 2267-2273.
[http://dx.doi.org/10.1039/C5AY03313F]
[33]
Wu, L.; Tian, X.; Groleau, R.R.; Wang, J.; Han, H.H.; Reeksting, S.B.; Sedgwick, A.C.; He, X.P.; Bull, S.D.; James, T.D. Coumarin-based fluorescent probe for the rapid detection of peroxynitrite ‘AND’ biological thiols. RSC Advances, 2020, 10(23), 13496-13499.
[http://dx.doi.org/10.1039/D0RA02234A] [PMID: 35493005]
[34]
Katritzky, A.; Ibrahim, T.; Tala, S.; Abo-Dya, N.; Abdel-Samii, Z.; El-Feky, S. Synthesis of coumarin conjugates of biological thiols for fluorescent detection and estimation. Synthesis, 2011, 2011(9), 1494-1500.
[http://dx.doi.org/10.1055/s-0030-1259991]
[35]
Hong, V.; Kislukhin, A.A.; Finn, M.G. Thiol-selective fluorogenic probes for labeling and release. J. Am. Chem. Soc., 2009, 131(29), 9986-9994.
[http://dx.doi.org/10.1021/ja809345d] [PMID: 19621956]
[36]
Zeng, Y.; Zhang, G.; Zhang, D. A selective colorimetric chemosensor for thiols based on intramolecular charge transfer mechanism. Anal. Chim. Acta, 2008, 627(2), 254-257.
[http://dx.doi.org/10.1016/j.aca.2008.08.028] [PMID: 18809081]
[37]
Shu, H.; Wu, X.; Zhou, B.; Han, Y.; Jin, M.; Zhu, J.; Bao, X. Synthesis and evaluation of a novel fluorescent chemosensor for glutathione based on a rhodamine B and N-[4-(carbonyl) phenyl]maleimide conjugate and its application in living cell imaging. Dyes Pigments, 2017, 136, 535-542.
[http://dx.doi.org/10.1016/j.dyepig.2016.08.063]
[38]
Wang, L.; Wu, S.; Tang, H.; Meier, H.; Cao, D. An efficient probe for sensing different concentration ranges of glutathione based on AIE-active Schiff base nanoaggregates with distinct reaction mechanism. Sens. Actuators B Chem., 2018, 273, 1085-1090.
[http://dx.doi.org/10.1016/j.snb.2018.07.035]
[39]
Li, M.; Wu, X.; Wang, Y.; Li, Y.; Zhu, W.; James, T.D. A near-infrared colorimetric fluorescent chemodosimeter for the detection of glutathione in living cells. Chem. Commun., 2014, 50(14), 1751-1753.
[http://dx.doi.org/10.1039/c3cc48128j] [PMID: 24400318]
[40]
Huang, L.; Duan, R.; Li, Z.; Zhang, Y.; Zhao, J.; Han, G. BODIPY-based nanomicelles as near-infrared fluorescent “turn-on” sensors for biogenic thiols. ChemNanoMat, 2016, 2(5), 396-399.
[http://dx.doi.org/10.1002/cnma.201600019]
[41]
Ye, M.; Wang, X.; Tang, J.; Guo, Z.; Shen, Y.; Tian, H.; Zhu, W.H. Dual-channel NIR activatable theranostic prodrug for in vivo spatiotemporal tracking thiol-triggered chemotherapy. Chem. Sci., 2016, 7(8), 4958-4965.
[http://dx.doi.org/10.1039/C6SC00970K] [PMID: 30155145]
[42]
Yin, C.; Tang, Y.; Li, X.; Yang, Z.; Li, J.; Li, X.; Huang, W.; Fan, Q. A single composition architecture-based nanoprobe for ratiometric photoacoustic imaging of glutathione (GSH) in living mice. Small, 2018, 14(11), 1703400.
[http://dx.doi.org/10.1002/smll.201703400] [PMID: 29318766]
[43]
Niu, L.Y.; Guan, Y.S.; Chen, Y.Z.; Wu, L.Z.; Tung, C.H.; Yang, Q.Z. BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. J. Am. Chem. Soc., 2012, 134(46), 18928-18931.
[http://dx.doi.org/10.1021/ja309079f] [PMID: 23121092]
[44]
Gao, X.; Li, X.; Li, L.; Zhou, J.; Ma, H. A simple fluorescent off–on probe for the discrimination of cysteine from glutathione. Chem. Commun., 2015, 51(45), 9388-9390.
[http://dx.doi.org/10.1039/C5CC02788H] [PMID: 25968242]
[45]
Lee, H.Y.; Choi, Y.P.; Kim, S.; Yoon, T.; Guo, Z.; Lee, S.; Swamy, K.M.K.; Kim, G.; Lee, J.Y.; Shin, I.; Yoon, J. Selective homocysteine turn-on fluorescent probes and their bioimaging applications. Chem. Commun., 2014, 50(53), 6967-6969.
[http://dx.doi.org/10.1039/c4cc00243a] [PMID: 24643707]
[46]
Dai, X.; Wu, Q.H.; Wang, P.C.; Tian, J.; Xu, Y.; Wang, S.Q.; Miao, J.Y.; Zhao, B.X. A simple and effective coumarin-based fluorescent probe for cysteine. Biosens. Bioelectron., 2014, 59, 35-39.
[http://dx.doi.org/10.1016/j.bios.2014.03.018] [PMID: 24690559]
[47]
Lee, S.; Li, J.; Zhou, X.; Yin, J.; Yoon, J. Recent progress on the development of glutathione (GSH) selective fluorescent and colorimetric probes. Coord. Chem. Rev., 2018, 366, 29-68.
[http://dx.doi.org/10.1016/j.ccr.2018.03.021]
[48]
Kaushik, R.; Nehra, N.; Novakova, V.; Zimcik, P. Near-infrared probes for biothiols (cysteine, homocysteine, and glutathione): A comprehensive review. ACS Omega, 2023, 8(1), 98-126.
[http://dx.doi.org/10.1021/acsomega.2c06218] [PMID: 36643462]
[49]
Xie, J.; Wang, L.; Su, X.; Rodrigues, J. Coumarin-based fluorescent probes for bioimaging: Recent applications and developments. Curr. Org. Chem., 2021, 25(18), 2142-2154.
[http://dx.doi.org/10.2174/1385272825666210728101823]
[50]
Wang, S.; Huang, Y.; Guan, X. Fluorescent probes for live cell thiol detection. Molecules, 2021, 26(12), 3575.
[http://dx.doi.org/10.3390/molecules26123575] [PMID: 34208153]
[51]
Zeng, X.; Chen, W.; Liu, C.; Yin, J.; Yang, G.F. Fluorescence probes for reactive sulfur species in agricultural chemistry. J. Agric. Food Chem., 2021, 69(46), 13700-13712.
[http://dx.doi.org/10.1021/acs.jafc.1c05249] [PMID: 34752105]
[52]
Sun, X.; Liu, T.; Sun, J.; Wang, X. Synthesis and application of coumarin fluorescence probes. RSC Adv., 2020, 10(18), 10826-10847.
[http://dx.doi.org/10.1039/C9RA10290F] [PMID: 35492912]
[53]
Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J.S.; Lin, W. Coumarin-based small-molecule fluorescent chemosensors. Chem. Rev., 2019, 119(18), 10403-10519.
[http://dx.doi.org/10.1021/acs.chemrev.9b00145] [PMID: 31314507]
[54]
Bugaenko, D.I.; Karchava, A.V.; Yunusova, Z.A.; Yurovskaya, M.A. Fluorescent probes on the basis of coumarin derivatives for determining biogenic thiols and thio-phenols. Chem. Heterocycl. Compd., 2019, 55(6), 483-489.
[http://dx.doi.org/10.1007/s10593-019-02486-6]
[55]
Review and analysis of statistics from the Scopus database using the keywords "coumarin” and “probe” since 1986. Raport dated 26-01-2023. Available from: www.scopus.com
[56]
Bouhaoui, A.; Eddahmi, M.; Dib, M.; Khouili, M.; Aires, A.; Catto, M.; Bouissane, L. Synthesis and biological properties of coumarin derivatives. A review. ChemistrySelect, 2021, 6(24), 5848-5870.
[http://dx.doi.org/10.1002/slct.202101346]
[57]
Srikrishna, D.; Godugu, C.; Dubey, P.K. A Review on pharmacological properties of coumarins. Mini Rev. Med. Chem., 2018, 18(2), 113-141.
[PMID: 27488585]
[58]
Balewski, Ł.; Szulta, S.; Jalińska, A.; Kornicka, A. Mini-review: Recent advances in coumarin-metal complexes with biological properties. Front Chem., 2021, 9, 781779.
[http://dx.doi.org/10.3389/fchem.2021.781779] [PMID: 34926402]
[59]
Anamika; Utreja, D.; Ekta; Jain, N.; Sharma, S.; Utreja, D.; Jain, N. Advances in synthesis and potentially bioactive of coumarin derivatives. Curr. Org. Chem., 2019, 22(26), 2509-2536.
[http://dx.doi.org/10.2174/1385272822666181029102140]
[60]
Ansary, I.; Taher, A. One-pot synthesis of coumarin derivatives. In: Phytochemicals in Human Health; IntechOpen: London, UK, 2020.
[http://dx.doi.org/10.5772/intechopen.89013]
[61]
Molnar, M.; Lončarić, M.; Kovač, M. Green chemistry approaches to the synthesis of coumarin derivatives. Curr. Org. Chem., 2020, 24(1), 4-43.
[http://dx.doi.org/10.2174/1385272824666200120144305]
[62]
Calcio Gaudino, E.; Tagliapietra, S.; Martina, K.; Palmisano, G.; Cravotto, G. Recent advances and perspectives in the synthesis of bioactive coumarins. RSC Advances, 2016, 6(52), 46394-46405.
[http://dx.doi.org/10.1039/C6RA07071J]
[63]
Sarmah, M.; Chutia, K.; Dutta, D.; Gogoi, P. Overview of coumarin-fused-coumarins: Synthesis, photophysical properties and their applications. Org. Biomol. Chem., 2021, 20(1), 55-72.
[http://dx.doi.org/10.1039/D1OB01876K] [PMID: 34854447]
[64]
Szwaczko, K. Coumarins synthesis and transformation via C–H bond activation. A review. Inorganics, 2022, 10(2), 23.
[http://dx.doi.org/10.3390/inorganics10020023]
[65]
Tasior, M.; Kim, D.; Singha, S.; Krzeszewski, M.; Ahn, K.H.; Gryko, D.T. π-Expanded coumarins: Synthesis, optical properties and applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3(7), 1421-1446.
[http://dx.doi.org/10.1039/C4TC02665A]
[66]
Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev., 2013, 42(2), 622-661.
[http://dx.doi.org/10.1039/C2CS35313J] [PMID: 23093107]
[67]
Górski, K.; Deperasińska, I.; Baryshnikov, G.V.; Ozaki, S.; Kamada, K.; Ågren, H.; Gryko, D.T. Quadrupolar dyes based on highly polarized coumarins. Org. Lett., 2021, 23(17), 6770-6774.
[http://dx.doi.org/10.1021/acs.orglett.1c02349] [PMID: 34474569]
[68]
Kielesiński, Ł.; Morawski, O.; Dobrzycki, Ł.; Sobolewski, A.L.; Gryko, D.T. The coumarin-dimer spring-the struggle between charge transfer and steric interactions. Chemistry, 2017, 23(38), 9174-9184.
[http://dx.doi.org/10.1002/chem.201701387] [PMID: 28500858]
[69]
Krystkowiak, E.; Dobek, K.; Maciejewski, A. An intermolecular hydrogen-bonding effect on spectral and photophysical properties of 6-aminocoumarin in protic solvents. Photochem. Photobiol. Sci., 2013, 12(3), 446-455.
[http://dx.doi.org/10.1039/c2pp25288k] [PMID: 23178802]
[70]
Grandberg, I.I.; Denisov, L.K.; Popova, O.A. 7-Aminocoumarins. Chem. Heterocycl. Compd., 1987, 23(2), 117-142.
[http://dx.doi.org/10.1007/BF00663848]
[71]
Tian, M.; Yang, M.; Liu, Y.; Jiang, F.L. Rapid and reversible reaction-based ratiometric fluorescent probe for imaging of different glutathione levels in living cells. ACS Appl. Bio Mater., 2019, 2(10), 4503-4514.
[http://dx.doi.org/10.1021/acsabm.9b00642] [PMID: 35021410]
[72]
Tian, M.; Liu, X.Y.; He, H.; Ma, X.Z.; Liang, C.; Liu, Y.; Jiang, F.L. Real-time imaging of intracellular glutathione levels based on a ratiometric fluorescent probe with extremely fast response. Anal. Chem., 2020, 92(14), 10068-10075.
[http://dx.doi.org/10.1021/acs.analchem.0c01881] [PMID: 32538069]
[73]
Yan, H.; Huo, F.; Yue, Y.; Chao, J.; Yin, C. Rapid reaction, slow dissociation aggregation, and synergetic multicolor emission for imaging the restriction and regulation of biosynthesis of Cys and GSH. J. Am. Chem. Soc., 2021, 143(1), 318-325.
[http://dx.doi.org/10.1021/jacs.0c10840] [PMID: 33356184]
[74]
Xie, X.; Huo, F.; Yue, Y.; Chao, J.; Yin, C. NEM assisted real-time fluorescence detection of Cys in cytoplasm and mice imaging by a Coumarin probe containing carboxyl group. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 225, 117517.
[http://dx.doi.org/10.1016/j.saa.2019.117517] [PMID: 31521001]
[75]
Umezawa, K.; Yoshida, M.; Kamiya, M.; Yamasoba, T.; Urano, Y. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics. Nat. Chem., 2017, 9(3), 279-286.
[http://dx.doi.org/10.1038/nchem.2648] [PMID: 28221345]
[76]
Jiang, X.; Yu, Y.; Chen, J.; Zhao, M.; Chen, H.; Song, X.; Matzuk, A.J.; Carroll, S.L.; Tan, X.; Sizovs, A.; Cheng, N.; Wang, M.C.; Wang, J. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe. ACS Chem. Biol., 2015, 10(3), 864-874.
[http://dx.doi.org/10.1021/cb500986w] [PMID: 25531746]
[77]
Jiang, X.; Chen, J.; Bajić, A.; Zhang, C.; Song, X.; Carroll, S.L.; Cai, Z.L.; Tang, M.; Xue, M.; Cheng, N.; Schaaf, C.P.; Li, F.; MacKenzie, K.R.; Ferreon, A.C.M.; Xia, F.; Wang, M.C.; Maletić-Savatić, M.; Wang, J. Quantitative real-time imaging of glutathione. Nat. Commun., 2017, 8(1), 16087.
[http://dx.doi.org/10.1038/ncomms16087] [PMID: 28703127]
[78]
Chen, J.; Jiang, X.; Zhang, C.; MacKenzie, K.R.; Stossi, F.; Palzkill, T.; Wang, M.C.; Wang, J. Reversible reaction-based fluorescent probe for real-time imaging of glutathione dynamics in mitochondria. ACS Sens., 2017, 2(9), 1257-1261.
[http://dx.doi.org/10.1021/acssensors.7b00425] [PMID: 28809477]
[79]
Smith, R.A.J.; Porteous, C.M.; Gane, A.M.; Murphy, M.P. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl. Acad. Sci. USA, 2003, 100(9), 5407-5412.
[http://dx.doi.org/10.1073/pnas.0931245100] [PMID: 12697897]
[80]
An, S.; Lin, Y.; Wang, J.; Ye, T.; Mao, Y.; Zhang, J. Near-infrared mitochondria-targeted fluorescent probe with a large Stokes shift for rapid and sensitive detection of cysteine/homocysteine and its bioimaging application. Sens. Actuators B Chem., 2023, 374, 132799.
[http://dx.doi.org/10.1016/j.snb.2022.132799]
[81]
Chen, X.G.; Mei, Y.; Song, Q-H.A. 3-(2′-nitro vinyl)-4-phenylselenyl coumarin as a fluorescent probe for distinguishing detection of Cys/Hcy and GSH. Dyes Pigments, 2022, 203, 110312.
[http://dx.doi.org/10.1016/j.dyepig.2022.110312]
[82]
Ma, J.; Xu, Y.; Wang, Y.; Li, J.; Liu, L.; Si, W.; Hou, J. Piperazine-Coumarin based fluorescence probe with enhanced brightness and solubility for bio-thiol detection and esophageal carcinoma diagnosis. Bioorg. Chem., 2021, 116, 105391.
[http://dx.doi.org/10.1016/j.bioorg.2021.105391] [PMID: 34607279]
[83]
Li, S.; Feng, S.; Song, X.; Zheng, Q.; Feng, G.; Song, Z. A benzotriazole-coumarin derivative as a turn-on fluorescent probe for highly efficient and selective detection of homocysteine and its bioimaging application. Microchem. J., 2023, 185, 108293.
[http://dx.doi.org/10.1016/j.microc.2022.108293]
[84]
Ding, G.; Wang, X.; Luo, D.; Meng, S.; Zhou, L.; Fan, Y.; Ling-hu, C.; Meng, J.; Si, W.; Chen, Q.; Bi, R. A simple ESIPT combines AIE character “turn on” fluorescent probe for Hcy/Cys/GSH detection and cell imaging based on coumarin unit. Dyes Pigments, 2023, 208, 110762.
[http://dx.doi.org/10.1016/j.dyepig.2022.110762]
[85]
Zhang, M.; Zhang, Y.; Huo, F.; Chao, J.; Shuang, S. A two-site fluorescent probe for Cys/Hcy and SO2 detection and its application in cells and zebrafish. J. Photochem. Photobiol. Chem., 2022, 430, 113959.
[http://dx.doi.org/10.1016/j.jphotochem.2022.113959]
[86]
Lin, X.; Hu, Y.; Yang, D.; Chen, B. Cyanine-coumarin composite NIR dye based instantaneous-response probe for biothiols detection and oxidative stress assessment of mitochondria. Dyes Pigments, 2020, 174, 107956.
[http://dx.doi.org/10.1016/j.dyepig.2019.107956]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy