Review Article

核成像在甲状腺癌诊断和治疗中的应用

卷 24, 期 9, 2024

发表于: 22 September, 2023

页: [1091 - 1096] 页: 6

弟呕挨: 10.2174/1566524023666230915103723

价格: $65

conference banner
摘要

在这篇综述中,我们提出了各种核成像方式用于甲状腺癌的诊断、分期和治疗。甲状腺癌是最常见的内分泌恶性肿瘤,约占所有新诊断癌症的3%。核成像在甲状腺癌的评估中起着重要作用,放射性碘成像、FDG成像和生长抑素受体成像的使用都是治疗这种疾病的有价值的工具。放射性碘成像包括使用碘123 [I-123]或碘131 [I-131]来评估甲状腺功能和检测甲状腺癌。I-123是一种伽马发射同位素,用于甲状腺成像评估甲状腺功能和检测甲状腺结节。碘-131是一种释放β的同位素,用于治疗甲状腺癌。放射性碘显像用于检测甲状腺结节的存在和评估甲状腺功能。FDG成像是一种PET成像方式,用于评估甲状腺癌细胞的代谢活性。FDG是一种葡萄糖类似物,被代谢活跃的细胞(如癌细胞)吸收。FDG PET/CT可以发现原发性甲状腺癌和转移性疾病,包括淋巴结和远处转移。FDG PET/CT也用于监测治疗反应和检测甲状腺癌的复发。生长抑素受体成像包括使用放射性标记的生长抑素类似物来检测神经内分泌肿瘤,包括甲状腺癌。对患者使用放射性标记的生长抑素类似物,如铟-111奥曲肽或镓-68 DOTATATE,并使用伽马照相机检测摄取区域。生长抑素受体成像对转移性甲状腺癌的检测具有高度的敏感性和特异性。通过PubMed、Embase和Cochrane Library在线数据库全面检索相关文献,检索关键词为“甲状腺癌”、“核成像”、“放射性碘成像”、“FDG PET/CT”和“生长抑素受体成像”,确定纳入本综述的相关研究。核成像在甲状腺癌的诊断、分期和治疗中起着重要的作用。放射性碘显像、甲状腺球蛋白显像、FDG显像和生长抑素受体显像都是评估甲状腺癌的有价值的工具。随着进一步的研究和发展,核成像技术有可能改善甲状腺癌和其他内分泌恶性肿瘤的诊断和治疗。

关键词: 甲状腺癌、核成像、放射性碘成像、氟脱氧葡萄糖成像、生长抑素受体成像、内分泌恶性肿瘤。

[1]
Cancer.Net. Thyroid Cancer - Statistics. 2012. Available from: https://www.cancer.net/cancer-types/thyroid-cancer/statistics(cited 2023 Apr 7)
[2]
Liu H, Wang X, Yang R, et al. Recent development of nuclear molecular imaging in thyroid cancer. BioMed Res Int 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/2149532] [PMID: 29951528]
[3]
Fu H, Sa R, Cheng L, et al. Updated review of nuclear molecular imaging of thyroid cancers. Endocr Pract 2021; 27(5): 494-502.
[http://dx.doi.org/10.1016/j.eprac.2020.10.001] [PMID: 33934754]
[4]
Brauckhoff K, Biermann M. Multimodal imaging of thyroid cancer. Curr Opin Endocrinol Diabetes Obes 2020; 27(5): 335-44.
[http://dx.doi.org/10.1097/MED.0000000000000574] [PMID: 32773568]
[5]
Heston TF, Wahl RL. Molecular imaging in thyroid cancer. Cancer Imaging 2010; 10(1): 1-7.
[http://dx.doi.org/10.1102/1470-7330.2010.0002] [PMID: 20159663]
[6]
Yavuz S, Puckett Y. Iodine-131 Uptake Study. Treasure Island, (FL): StatPearls 2022.
[7]
Larg M, Barbus E, Gabora K, Pestean C, Cheptea M, Piciu D. 18F-FDG PET/CT in differentiated thyroid carcinoma. Acta Endocrinol 2019; 15(2): 203-8.
[http://dx.doi.org/10.4183/aeb.2019.203] [PMID: 31508177]
[8]
Serfling SE, Zhi Y, Megerle F, et al. Somatostatin receptor-directed molecular imaging for therapeutic decision-making in patients with medullary thyroid carcinoma. Endocrine 2022; 78(1): 169-76.
[http://dx.doi.org/10.1007/s12020-022-03116-6] [PMID: 35751778]
[9]
Ambrosini V, Zanoni L, Filice A, et al. Radiolabeled somatostatin analogues for diagnosis and treatment of neuroendocrine tumors. Cancers 2022; 14(4): 1055.
[http://dx.doi.org/10.3390/cancers14041055] [PMID: 35205805]
[10]
Interventional Nuclear Medicine Scan Delhi NCR. Available from: https://www.rgcirc.org/diagnostics/department-of-nuclear-medicines/interventional-procedures/ (cited 2023 Apr 10)
[11]
Schlumberger M, Garcia C, Hadoux J, Klain M, Lamartina L. Functional imaging in thyroid cancer patients with metastases and therapeutic implications. Presse Med 1983; 51(2): 104113.
[12]
Goldsmith SJ. Radioactive iodine therapy of differentiated thyroid carcinoma: Redesigning the paradigm. Mol Imaging Radionucl Ther 2017; 26(1(S1)): 74-9.
[http://dx.doi.org/10.4274/2017.26.suppl.08] [PMID: 28117291]
[13]
Aqsa I, Anis R, Eds. Thyroid Uptake and Scan. Treasure Island, (FL): StatPearls 2022.
[14]
Grant FD, Treves ST. Thyroid. In: Treves S, Ed. Pediatric Nuclear Medicine and Molecular Imaging. New York, NY: Springer 2014; pp. 99-129.
[http://dx.doi.org/10.1007/978-1-4614-9551-2_5]
[15]
Tamhane S, Gharib H. Thyroid nodule update on diagnosis and management. Clin Diabetes Endocrinol 2016; 2(1): 17.
[http://dx.doi.org/10.1186/s40842-016-0035-7] [PMID: 28702251]
[16]
Yansong L. Internal radiation therapy: A neglected aspect of nuclear medicine in the molecular era. J Biomed Res 2015; 29(5): 345-55.
[http://dx.doi.org/10.7555/JBR.29.20140069] [PMID: 26445567]
[17]
Carballo M, Quiros RM. To treat or not to treat: The role of adjuvant radioiodine therapy in thyroid cancer patients. J Oncol 2012; 2012: 1-11.
[http://dx.doi.org/10.1155/2012/707156] [PMID: 23193402]
[18]
Van Nostrand D. Radioiodine imaging for differentiated thyroid cancer: Not all radioiodine images are performed equally. Thyroid 2019; 29(7): 901-9.
[http://dx.doi.org/10.1089/thy.2018.0690] [PMID: 31184275]
[19]
Manzil FFP, Kaur H. Radioactive Iodine for Thyroid Malignancies. Treasure Island, (FL): StatPearls 2022.
[20]
Nguyen QT, Lee EJ, Huang MG, Park YI, Khullar A, Plodkowski RA. Diagnosis and treatment of patients with thyroid cancer. Am Health Drug Benefits 2015; 8(1): 30-40.
[PMID: 25964831]
[21]
Sheikh A, Polack B, Rodriguez Y, Kuker R. Nuclear molecular and theranostic imaging for differentiated thyroid cancer. Mol Imaging Radionucl Ther 2017; 26(1(S1)): 50-65.
[http://dx.doi.org/10.4274/2017.26.suppl.06] [PMID: 28117289]
[22]
Wimmer I, Pichler R, Wimmer I, Pichler R. FDG PET in thyroid cancer. In: Thyroid Cancer - Advances in Diagnosis and Therapy. London: IntechOpen 2016.
[http://dx.doi.org/10.5772/64110]
[23]
Zhu A, Lee D, Shim H. Metabolic PET imaging in cancer detection and therapy response. Semin Oncol 2011; 38(1): 55-69.
[http://dx.doi.org/10.1053/j.seminoncol.2010.11.012] [PMID: 21362516]
[24]
Abelleira E, García Falcone MG, Bueno F, Pitoia F. Role of 18F-FDG-PET/CT in patients with differentiated thyroid cancer with biochemical incomplete or indeterminate response to treatment. Endocrinol Diabetes Nutr Engl Ed. 2020; 67: pp. (8)517-24.
[25]
Zampella E, Klain M, Pace L, Cuocolo A. PET/CT in the management of differentiated thyroid cancer. Diagn Interv Imaging 2021; 102(9): 515-23.
[http://dx.doi.org/10.1016/j.diii.2021.04.004] [PMID: 33926848]
[26]
Nanni C, Rubello D, Fanti S, et al. Role of 18F-FDG-PET and PET/CT imaging in thyroid cancer. Biomed Pharmacother 2006; 60(8): 409-13.
[http://dx.doi.org/10.1016/j.biopha.2006.07.008] [PMID: 16891093]
[27]
Araz M, Çayır D. 18F-fluorodeoxyglucose-positron emission tomography/computed tomography for other thyroid cancers: Medullary, anaplastic, lymphoma and so forth. Mol Imaging Radionucl Ther 2017; 26(1): 1-8.
[http://dx.doi.org/10.4274/mirt.60783] [PMID: 28291004]
[28]
Bal C, Chakraborty D, Khan D. Positron emission tomography/computed tomography in thyroid cancer. PET Clin 2022; 17(2): 265-83.
[http://dx.doi.org/10.1016/j.cpet.2021.12.004] [PMID: 35256297]
[29]
Hofman MS, Hicks RJ. How we read oncologic FDG PET/CT. Cancer Imaging 2016; 16(1): 35.
[http://dx.doi.org/10.1186/s40644-016-0091-3] [PMID: 27756360]
[30]
Garcia D, Singh V. Nuclear Medicine PET/CT Thyroid Cancer Assessment, Protocols, and Interpretation. Treasure Island, (FL): StatPearls 2022.
[31]
Choudhury PS, Gupta M. Differentiated thyroid cancer theranostics: Radioiodine and beyond. Br J Radiol 2018; 91(1091): 20180136.
[http://dx.doi.org/10.1259/bjr.20180136] [PMID: 30260232]
[32]
Liu Y. The role of 18F-FDG PET/CT in the follow-up of well-differentiated thyroid cancer with negative thyroglobulin but positive and/or elevated antithyroglobulin antibody. Nucl Med Commun 2016; 37(6): 577-82.
[http://dx.doi.org/10.1097/MNM.0000000000000480] [PMID: 26813991]
[33]
Kumar R, Sharma P, Singh H, Bal C. PET/CT imaging of neuroendocrine tumors with 68 Gallium-labeled somatostatin analogues: An overview and single institutional experience from India. Indian J Nucl Med 2014; 29(1): 2-12.
[http://dx.doi.org/10.4103/0972-3919.125760] [PMID: 24591775]
[34]
Lamberts SWJ, Reubi JC, Krenning EP. Somatostatin receptor imaging in the diagnosis and treatment of neuroendocrine tumors. J Steroid Biochem Mol Biol 1992; 43(1-3): 185-8.
[http://dx.doi.org/10.1016/0960-0760(92)90206-X] [PMID: 1356013]
[35]
Desai H, Borges-Neto S, Wong TZ. Molecular imaging and therapy for neuroendocrine tumors. Curr Treat Options Oncol 2019; 20(10): 78.
[http://dx.doi.org/10.1007/s11864-019-0678-6] [PMID: 31468190]
[36]
Tran K, Khan SR, Taghizadehasl M, Palazzo F, Frilling A, Todd J, et al. Gallium-68 Dotatate PET/CT is superior to other imaging modalities in the detection of medullary carcinoma of the thyroid in the presence of high serum calcitonin. Hell J Nucl Med 2015; 18(1): 19-24.
[37]
Hennrich U, Benešová M. [68Ga]Ga-DOTA-TOC: The first FDA-approved 68Ga-radiopharmaceutical for PET imaging. Pharmaceuticals 2020; 13(3): 38.
[http://dx.doi.org/10.3390/ph13030038] [PMID: 32138377]
[38]
Eychenne R, Bouvry C, Bourgeois M, Loyer P, Benoist E, Lepareur N. Overview of radiolabeled somatostatin analogs for cancer imaging and therapy. Molecules 2020; 25(17): 4012.
[http://dx.doi.org/10.3390/molecules25174012] [PMID: 32887456]
[39]
Fortunati E, Argalia G, Zanoni L, Fanti S, Ambrosini V. New PET radiotracers for the imaging of neuroendocrine neoplasms. Curr Treat Options Oncol 2022; 23(5): 703-20.
[http://dx.doi.org/10.1007/s11864-022-00967-z] [PMID: 35325412]
[40]
Quon A, Fischbein NJ, McDougall IR, et al. Clinical role of 18F-FDG PET/CT in the management of squamous cell carcinoma of the head and neck and thyroid carcinoma. J Nucl Med 2007; 48(1 (S1)): 58S-67S.
[PMID: 17204721]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy