Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

Exploring the Potential of Nanocarriers for Targeted Delivery of Anti-acne Agents: A Review

Author(s): Prabhat Dhingra, Unnati Garg, Neha Jain*, Shreya Kaul and Upendra Nagaich*

Volume 13, Issue 5, 2023

Published on: 08 September, 2023

Article ID: e300823220515 Pages: 8

DOI: 10.2174/2210681213666230830125348

Price: $65

Abstract

Acne is one of the most prevalent skin conditions among adolescents, which can often continue to adulthood. It is characterized by the appearance of comedones along with blackheads, whiteheads, papules, pimples, and pinheads on the neck, face, and back. The most common cause of acne is the bacteria Propionibacterium acnes, but factors like hormonal imbalance, anxiety, and genetic makeup can often be responsible. Despite the availability of numerous anti-acne agents, their efficacy is often limited due to poor skin penetration and adverse effects. Nanocarriers have emerged as a promising approach for the targeted delivery of anti-acne agents to the skin. This review discusses the potential of nanocarriers, including vesicular systems, biphasic systems, polymeric systems, fullerenes, and carbon nanoparticles, for enhanced skin penetration and controlled release of anti-acne agents. Various studies have reported using nanocarriers to successfully deliver agents such as benzoyl peroxide, salicylic acid, and retinoids, resulting in improved efficacy and reduced side effects. Using nanocarriers has shown promise for developing combination therapies targeting multiple aspects of acne pathogenesis. However, further research is needed to optimize the formulation and assess the safety and efficacy of nanocarrier-based anti-acne therapies.

Keywords: Acne vulgaris, liposomes, fullerenes, carbon nanoparticles, polymeric nanocarriers, microemulsions.

Graphical Abstract
[1]
Sparavigna, A.; Tenconi, B.; De Ponti, I.; La Penna, L. An innovative approach to the topical treatment of acne. Clin. Cosmet. Investig. Dermatol., 2015, 8(Apr), 179-185.
[http://dx.doi.org/10.2147/CCID.S82859] [PMID: 25914552]
[2]
Verma, S.; Utreja, P.; Kumar, L. Nanotechnological carriers for treatment of acne. Recent Pat. Antiinfect. Drug Discov., 2018, 13(2), 105-126.
[http://dx.doi.org/10.2174/1574891X13666180918114349] [PMID: 30227825]
[3]
Patel, R.; Prabhu, P. Nanocarriers as versatile delivery systems for effective management of acne. Int. J. Pharm., 2020, 579, 119140.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119140] [PMID: 32061843]
[4]
Meixiong, J.; Ricco, C.; Vasavda, C.; Ho, B.K. Diet and acne: A systematic review. JAAD Int., 2022, 7, 95-112.
[http://dx.doi.org/10.1016/j.jdin.2022.02.012]
[5]
Baldwin, H.; Tan, J. Effects of diet on acne and its response to treatment. Am. J. Clin. Dermatol., 2021, 22(1), 55.
[6]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[7]
Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic nanoparticles and their targeted delivery applications. Molecules, 2020, 25(9), 2193.
[http://dx.doi.org/10.3390/molecules25092193]
[8]
Yu, Y.Q.; Yang, X.; Wu, X.F.; Fan, Y.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol., 2021, 9, 646554.
[http://dx.doi.org/10.3389/fbioe.2021.646554]
[9]
Goyal, R.; Macri, L.K.; Kaplan, H.M.; Kohn, J. Nanoparticles and nanofibers for topical drug delivery. J. Control. Release, 2016, 240, 77.
[10]
Simonart, T.; Dramaix, M. Treatment of acne with topical antibiotics: Lessons from clinical studies. Br. J. Dermatol., 2005, 153(2), 395-403.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06614.x] [PMID: 16086756]
[11]
Leccia, M.T.; Auffret, N.; Poli, F.; Claudel, J.P.; Corvec, S.; Dreno, B. Topical acne treatments in Europe and the issue of antimicrobial resistance. J. Eur. Acad. Dermatol. Venereol., 2015, 29(8), 1485-1492.
[http://dx.doi.org/10.1111/jdv.12989] [PMID: 25677763]
[12]
Lazic Mosler, E.; Leitner, C.; Gouda, M.A.; Carter, B.; Layton, A.M.; Khalafallah, M.T. Topical antibiotics for acne. Cochrane Database Syst. Rev., 2018, 1, CD012263.
[http://dx.doi.org/10.1002/14651858.CD012263.pub2]
[13]
Zaenglein, A.L.; Pathy, A.L.; Schlosser, B.J.; Alikhan, A.; Baldwin, H.E.; Berson, D.S.; Bowe, W.P.; Graber, E.M.; Harper, J.C.; Kang, S.; Keri, J.E.; Leyden, J.J.; Reynolds, R.V.; Silverberg, N.B.; Stein Gold, L.F.; Tollefson, M.M.; Weiss, J.S.; Dolan, N.C.; Sagan, A.A.; Stern, M.; Boyer, K.M.; Bhushan, R. Guidelines of care for the management of acne vulgaris. J. Am. Acad. Dermatol., 2016, 74(5), 945-973.e33.
[http://dx.doi.org/10.1016/j.jaad.2015.12.037] [PMID: 26897386]
[14]
Arsenie, L.V.; Lacatusu, I.; Oprea, O.; Bordei, N.; Bacalum, M.; Badea, N. Azelaic acid-willow bark extract-panthenol - Loaded lipid nanocarriers improve the hydration effect and antioxidant action of cosmetic formulations. Ind. Crops Prod., 2020, 154, 112658.
[http://dx.doi.org/10.1016/j.indcrop.2020.112658]
[15]
Thielitz, A. AbdeL-Naser, M.B.; Fluhr, J.W.; Zouboulis, C.C.; Gollnick, H. Topische Retinoide bei Akne - eine evidenzbasierte Übersicht. J. Dtsch. Dermatol. Ges., 2010, 8(Suppl. 1), S15-S23.
[http://dx.doi.org/10.1111/j.1610-0387.2008.06741_suppx.x] [PMID: 20482688]
[16]
Waugh, J.; Noble, S.; Scott, L.J. Adapalene. Drugs, 2004, 64(13), 1465-1478.
[http://dx.doi.org/10.2165/00003495-200464130-00005] [PMID: 15212561]
[17]
Ahmed, S.; Mahmood, S. Danish Ansari, M.; Gull, A.; Sharma, N.; Sultana, Y. Nanostructured lipid carrier to overcome stratum corneum barrier for the delivery of agomelatine in rat brain; formula optimization, characterization and brain distribution study. Int. J. Pharm., 2021, 607, 121006.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121006] [PMID: 34391848]
[18]
Gorzelanny, C.; Mess, C.; Schneider, S.W.; Huck, V.; Brandner, J.M. Skin barriers in dermal drug delivery: Which barriers have to be overcome and how can we measure them? Pharmaceutics, 2020, 12(7), 1-31.
[19]
Folle, C.; Marqués, A.M.; Díaz-Garrido, N.; Espina, M.; Sánchez-López, E.; Badia, J.; Baldoma, L.; Calpena, A.C.; García, M.L. Thymol-loaded PLGA nanoparticles: An efficient approach for acne treatment. J. Nanobiotechnology, 2021, 19(1), 359.
[http://dx.doi.org/10.1186/s12951-021-01092-z] [PMID: 34749747]
[20]
Ray Jalian, H.; Tam, J.; Vuong, L.N.; Fisher, J.; Garibyan, L.; Mihm, M.C.; Zurakowski, D.; Evans, C.L.; Rox Anderson, R. Selective cryolysis of sebaceous glands. J. Invest. Dermatol., 2015, 135(9), 2173-2180.
[http://dx.doi.org/10.1038/jid.2015.148] [PMID: 25860384]
[21]
Paiva-Santos, A.C.; Mascarenhas-Melo, F.; Coimbra, S.C.; Pawar, K.D.; Peixoto, D.; Chá-Chá, R. Nanotechnology-based formulations toward the improved topical delivery of anti-acne active ingredients. Expert Opin. Drug Deliv., 2021, 18(10), 1435-1454.
[http://dx.doi.org/10.1080/17425247.2021.1951218]
[22]
Garg, T. Current nanotechnological approaches for an effective delivery of bio-active drug molecules in the treatment of acne. Artif. Cells Nanomed. Biotechnol., 2014, 44(1), 98-105.
[23]
Singh, D.; Pradhan, M.; Nag, M.; Singh, M.R. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif. Cells Nanomed. Biotechnol., 2015, 43(4), 282-290.
[24]
Witika, B.A.; Mweetwa, L.L.; Tshiamo, K.O.; Edler, K.; Matafwali, S.K.; Ntemi, P.V.; Chikukwa, M.T.R.; Makoni, P.A. Vesicular drug delivery for the treatment of topical disorders: Current and future perspectives. J. Pharm. Pharmacol., 2021, 73(11), 1427-1441.
[http://dx.doi.org/10.1093/jpp/rgab082] [PMID: 34132342]
[25]
Garg, U.; Jain, K. Dermal and transdermal drug delivery through vesicles and particles: Preparation and applications. Adv. Pharm. Bull., 2022, 12(1), 45.
[26]
Eroğlu, İ.; Aslan, M.; Yaman, Ü.; Gultekinoglu, M.; Çalamak, S.; Kart, D.; Ulubayram, K. Liposome-based combination therapy for acne treatment. J. Liposome Res., 2020, 30(3), 263-273.
[http://dx.doi.org/10.1080/08982104.2019.1630646] [PMID: 31185768]
[27]
Madan, S.; Nehate, C.; Barman, T.K.; Rathore, A.S.; Koul, V. Design, preparation, and evaluation of liposomal gel formulations for treatment of acne: In vitro and in vivo studies. Drug Dev. Ind. Pharm., 2019, 45(3), 395-404.
[http://dx.doi.org/10.1080/03639045.2018.1546310] [PMID: 30442066]
[28]
Cosco, D.; Paolino, D.; Muzzalupo, R.; Celia, C.; Citraro, R.; Caponio, D. Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomed. Microdevices, 2009, 11(5), 1115-1125.
[29]
Wang, Z.; Liu, L.; Xiang, S.; Jiang, C.; Wu, W.; Ruan, S.; Du, Q.; Chen, T.; Xue, Y.; Chen, H.; Weng, L.; Zhu, H.; Shen, Q.; Liu, Q. Formulation and characterization of a 3D-printed cryptotanshinone-loaded niosomal hydrogel for topical therapy of acne. AAPS PharmSciTech, 2020, 21(5), 159.
[http://dx.doi.org/10.1208/s12249-020-01677-1] [PMID: 32476076]
[30]
Mohammadi, S.; Pardakhty, A.; Khalili, M.; Fathi, R.; Rezaeizadeh, M.; Farajzadeh, S.; Mohebbi, A.; Aflatoonian, M. Niosomal benzoyl peroxide and clindamycin lotion versus niosomalclindamycin lotion in treatment of acne vulgaris: A randomizedclinical trial. Adv. Pharm. Bull., 2019, 9(4), 578-583.
[http://dx.doi.org/10.15171/apb.2019.066] [PMID: 31857961]
[31]
Suhail, N.; Alzahrani, A.K.; Basha, W.J.; Kizilbash, N.; Zaidi, A.; Ambreen, J.; Khachfe, H.M. Microemulsions: Unique properties, pharmacological applications, and targeted drug delivery. Front. Nanotechnol., 2021, 3, 754889.
[http://dx.doi.org/10.3389/fnano.2021.754889]
[32]
Alam, A.; Mustafa, G.; Agrawal, G.P.; Hashmi, S.; Khan, R.A.; Aba Alkhayl, F.F.; Ullah, Z.; Ali, M.S.; Elkirdasy, A.F.; Khan, S. A microemulsion-based gel of isotretinoin and erythromycin estolate for the management of acne. J. Drug Deliv. Sci. Technol., 2022, 71, 103277.
[http://dx.doi.org/10.1016/j.jddst.2022.103277]
[33]
Shao, B.; Sun, L.; Xu, N.; Gu, H.; Ji, H.; Wu, L. Development and evaluation of topical delivery of microemulsions containing adapalene (MEs-Ap) for acne. AAPS PharmSciTech, 2021, 22(3), 125.
[http://dx.doi.org/10.1208/s12249-021-01989-w] [PMID: 33825087]
[34]
Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[35]
Najafi-Taher, R. Jafarzadeh kohneloo, A.; Eslami Farsani, V.; Mehdizade Rayeni, N.; Moghimi, H.R.; Ehsani, A.; Amani, A. A topical gel of tea tree oil nanoemulsion containing adapalene versus adapalene marketed gel in patients with acne vulgaris: A randomized clinical trial. Arch. Dermatol. Res., 2022, 314(7), 673-679.
[http://dx.doi.org/10.1007/s00403-021-02267-2] [PMID: 34251536]
[36]
Sanmukhani, J. Clindamycin 1% nano-emulsion gel formulation for the treatment of acne vulgaris: Results of a randomized, active controlled, multicentre, phase IV clinical trial. J. Clin. Diagn. Res., 2014, 8(8), YC05-YC09.
[37]
Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res., 2020, 24(1), 1-12.
[http://dx.doi.org/10.1186/s40824-020-00190-7]
[38]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2020, 20(2), 101-124.
[39]
Suh, D.H.; Park, T.J.; Jeong, J.Y.; Kim, K.E.; Park, J.H.; Lee, S.J.; Kim, H.J.; Ryu, H.J. Photothermal therapy using gold nanoparticles for acne in Asian patients: A preliminary study. Dermatol. Ther., 2021, 34(3), e14918.
[http://dx.doi.org/10.1111/dth.14918] [PMID: 33631028]
[40]
Pertici, G. Introduction to bioresorbable polymers for biomedical applications.Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine; Woodhead publishing, 2017, pp. 3-29.
[http://dx.doi.org/10.1016/B978-0-08-100262-9.00001-X]
[41]
Fuchs, C.S.K.; Bay, C.; Adatto, M.; Lomholt, H.; Haedersdal, M. Acne treatment with light absorbing gold microparticles and optical pulses: An open‐label european multi‐centered study in moderate to moderately severe acne vulgaris patients. Lasers Surg. Med., 2019, 51(8), 686-693.
[http://dx.doi.org/10.1002/lsm.23099] [PMID: 31090089]
[42]
Rahimpour, Y.; Javadzadeh, Y.; Hamishehkar, H. Solid lipid microparticles for enhanced dermal delivery of tetracycline HCl. Colloids Surf. B Biointerfaces, 2016, 145, 14-20.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.034] [PMID: 27131093]
[43]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247]
[44]
Gökçe, B.B.; Boran, T.; Emlik Çalık, F.; Özhan, G.; Sanyal, R.; Güngör, S. Dermal delivery and follicular targeting of adapalene using PAMAM dendrimers. Drug Deliv. Transl. Res., 2021, 11(2), 626-646.
[http://dx.doi.org/10.1007/s13346-021-00933-6] [PMID: 33666878]
[45]
Bolskar, R.D. Fullerenes for drug delivery. In: Encyclopedia of Nanotechnology; Springer: Dordrecht, 2016; pp. 1267-1281.
[http://dx.doi.org/10.1007/978-94-017-9780-1_76]
[46]
Ghabdian, Y.; Taheri, A.; Jahanian-Najafabadi, A. Development of novel topical formulation from fullerene with antibacterial activity against Propionibacterium acnes. Fuller. Nanotub. Carbon Nanostruct., 2021, 29(2), 163-173.
[http://dx.doi.org/10.1080/1536383X.2020.1825388]
[47]
Debnath, S.K.; Srivastava, R. Drug delivery with carbon-based nanomaterials as versatile nanocarriers: Progress and prospects. Front. Nanotechnol., 2021, 3, 644564.
[http://dx.doi.org/10.3389/fnano.2021.644564]
[48]
Abd-Allah, H.; Abdel-Aziz, R.T.A.; Nasr, M. Chitosan nanoparticles making their way to clinical practice: A feasibility study on their topical use for acne treatment. Int. J. Biol. Macromol., 2020, 156, 262-270.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.040] [PMID: 32289418]
[49]
Methods and compositions for the treatment of acne. WO2019012536A1, 2020.
[50]
Skin freezing systems for treating acne and skin conditions. WO2017196548, 2017.
[51]
Delivery of nanoparticles. US11419937B2, 2019.
[52]
Roy, SB; Kothari, JS; Sheikh, S; Pancholi, JS; Patel, JD; Mittal, R Pharmaceutical compositions of anti-acne agents. WO2012053013A2, 2013.
[53]
Baumann, L. Methods and compositions for the use of silver to prevent and treat acne. WO2015184347A1, 2015.

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy