Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Towards the Integrative Theory of Alzheimer’s Disease: Linking Molecular Mechanisms of Neurotoxicity, Beta-amyloid Biomarkers, and the Diagnosis

Author(s): Yaroslav I. Molkov, Maria V. Zaretskaia and Dmitry V. Zaretsky*

Volume 20, Issue 6, 2023

Published on: 13 October, 2023

Page: [440 - 452] Pages: 13

DOI: 10.2174/1567205020666230821141745

open access plus

Abstract

Introduction: A major gap in amyloid-centric theories of Alzheimer’s disease (AD) is that even though amyloid fibrils per se are not toxic in vitro, the diagnosis of AD clearly correlates with the density of beta-amyloid (Aβ) deposits. Based on our proposed amyloid degradation toxicity hypothesis, we developed a mathematical model explaining this discrepancy. It suggests that cytotoxicity depends on the cellular uptake of soluble Aβ rather than on the presence of amyloid aggregates. The dynamics of soluble beta-amyloid in the cerebrospinal fluid (CSF) and the density of Aβ deposits is described using a system of differential equations. In the model, cytotoxic damage is proportional to the cellular uptake of Aβ, while the probability of an AD diagnosis is defined by the Aβ cytotoxicity accumulated over the duration of the disease. After uptake, Aβ is concentrated intralysosomally, promoting the formation of fibrillation seeds inside cells. These seeds cannot be digested and are either accumulated intracellularly or exocytosed. Aβ starts aggregating on the extracellular seeds and, therefore, decreases in concentration in the interstitial fluid. The dependence of both Aβ toxicity and aggregation on the same process-cellular uptake of Aβ-explains the correlation between AD diagnosis and the density of amyloid aggregates in the brain.

Methods: We tested the model using clinical data obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), which included records of beta-amyloid concentration in the cerebrospinal fluid (CSF-Aβ42) and the density of beta-amyloid deposits measured using positron emission tomography (PET). The model predicts the probability of AD diagnosis as a function of CSF-Aβ42 and PET and fits the experimental data at the 95% confidence level.

Results: Our study shows that existing clinical data allows for the inference of kinetic parameters describing beta-amyloid turnover and disease progression. Each combination of CSF-Aβ42 and PET values can be used to calculate the individual’s cellular uptake rate, the effective disease duration, and the accumulated toxicity. We show that natural limitations on these parameters explain the characteristic distribution of the clinical dataset for these two biomarkers in the population.

Conclusion: The resulting mathematical model interprets the positive correlation between the density of Aβ deposits and the probability of an AD diagnosis without assuming any cytotoxicity of the aggregated beta-amyloid. To the best of our knowledge, this model is the first to mechanistically explain the negative correlation between the concentration of Aβ42 in the CSF and the probability of an AD diagnosis. Finally, based on the amyloid degradation toxicity hypothesis and the insights provided by mathematical modeling, we propose new pathophysiology-relevant biomarkers to diagnose and predict AD.

Keywords: Alzheimer’s disease, beta-amyloid toxicity, amyloid depositions, cellular uptake, lysosome.

« Previous
[1]
Alzheimer A. About peculiar illnesses of later age. Z Gesamte Neurol Psychiatr 1911; 4(1): 356-85.
[http://dx.doi.org/10.1007/BF02866241]
[2]
Graeber MB, Mehraein P. Reanalysis of the first case of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 1999; 249(S3): S10-3.
[http://dx.doi.org/10.1007/PL00014167] [PMID: 10654094]
[3]
Glenner GG. Amyloid beta protein and the basis for Alzheimer’s disease. Prog Clin Biol Res 1989; 317: 857-68.
[PMID: 2690126]
[4]
Glenner GG, Wong CW. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885-90.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[5]
Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 2005; 280(17): 17294-300.
[http://dx.doi.org/10.1074/jbc.M500997200] [PMID: 15722360]
[6]
Cline EN, Bicca MA, Viola KL, Klein WL. The amyloid-β oligomer hypothesis: Beginning of the third decade. J Alzheimers Dis 2018; 64(s1): S567-610.
[http://dx.doi.org/10.3233/JAD-179941] [PMID: 29843241]
[7]
Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci 1998; 95(11): 6448-53.
[http://dx.doi.org/10.1073/pnas.95.11.6448]
[8]
Knafo S, Alonso-Nanclares L, Gonzalez-Soriano J, et al. Widespread changes in dendritic spines in a model of Alzheimer’s disease. Cereb Cortex 2009; 19(3): 586-92.
[http://dx.doi.org/10.1093/cercor/bhn111]
[9]
Tsai J, Grutzendler J, Duff K, Gan WB. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 2004; 7(11): 1181-3.
[http://dx.doi.org/10.1038/nn1335] [PMID: 15475950]
[10]
Bittner T, Fuhrmann M, Burgold S, et al. Multiple events lead to dendritic spine loss in triple transgenic Alzheimer’s disease mice. PLoS One 2010; 5(11): e15477.
[http://dx.doi.org/10.1371/journal.pone.0015477] [PMID: 21103384]
[11]
Mattsson N, Insel PS, Landau S, et al. Diagnostic accuracy of CSF Ab42 and florbetapir PET for Alzheimer’s disease. Ann Clin Transl Neurol 2014; 1(8): 534-43.
[http://dx.doi.org/10.1002/acn3.81]
[12]
Ong KT, Villemagne VL, Bahar-Fuchs A, et al. Aβ imaging with 18F-florbetaben in prodromal Alzheimer’s disease: A prospective outcome study. J Neurol Neurosurg Psychiatry 2015; 86(4): 431-6.
[http://dx.doi.org/10.1136/jnnp-2014-308094] [PMID: 24970906]
[13]
Weigand SD, Vemuri P, Wiste HJ, et al. Transforming cerebrospinal fluid Aβ42 measures into calculated Pittsburgh Compound B units of brain Aβ amyloid. Alzheimers Dement 2011; 7(2): 133-41.
[http://dx.doi.org/10.1016/j.jalz.2010.08.230]
[14]
Mattsson N, Insel PS, Donohue M, et al. Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer’s disease. Brain 2015; 138(Pt 3): 772-83.
[http://dx.doi.org/10.1093/brain/awu367]
[15]
Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ 42 in humans. Ann Neurol 2006; 59(3): 512-9.
[http://dx.doi.org/10.1002/ana.20730] [PMID: 16372280]
[16]
Sturchio A, Dwivedi AK, Young CB, et al. High cerebrospinal amyloid-β 42 is associated with normal cognition in individuals with brain amyloidosis. EClinicalMedicine 2021; 38: 100988.
[http://dx.doi.org/10.1016/j.eclinm.2021.100988] [PMID: 34505023]
[17]
Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 2010; 330(6012): 1774.
[http://dx.doi.org/10.1126/science.1197623]
[18]
Silverberg GD, Heit G, Huhn S, et al. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 2001; 57(10): 1763-6.
[http://dx.doi.org/10.1212/WNL.57.10.1763] [PMID: 11723260]
[19]
Fishman RA. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 2002; 58(12): 1866.
[http://dx.doi.org/10.1212/WNL.58.12.1866]
[20]
Zaretsky DV, Zaretskaia MV, Molkov YI. Patients with Alzheimer’s disease have an increased removal rate of soluble beta-amyloid-42. PLoS One 2022; 17(10): e0276933.
[http://dx.doi.org/10.1371/journal.pone.0276933] [PMID: 36315527]
[21]
Zaretsky DV, Zaretskaia MV. Mini-review: Amyloid degradation toxicity hypothesis of Alzheimer’s disease. Neurosci Lett 2021; 756: 135959.
[http://dx.doi.org/10.1016/j.neulet.2021.135959] [PMID: 34000347]
[22]
Zaretsky DV, Zaretskaia M. Degradation products of amyloid protein: Are they the culprits? Curr Alzheimer Res 2021; 17(10): 869-80.
[http://dx.doi.org/10.2174/1567205017666201203142103] [PMID: 33272185]
[23]
Zaretsky DV, Zaretskaia MV. Flow cytometry method to quantify the formation of beta-amyloid membrane ion channels. Biochim Biophys Acta Biomembr 2020; 1863(2): 183506.
[http://dx.doi.org/10.1016/j.bbamem.2020.183506] [PMID: 33171157]
[24]
Yang AJ, Chandswangbhuvana D, Margol L, Glabe CG. Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid A?1-42 pathogenesis. J Neurosci Res 1998; 52(6): 691-8.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19980615)52:6<691:AID-JNR8>3.0.CO;2-3] [PMID: 9669318]
[25]
Ji ZS, Miranda RD, Newhouse YM, Weisgraber KH, Huang Y, Mahley RW. Apolipoprotein E4 potentiates amyloid beta peptide-induced lysosomal leakage and apoptosis in neuronal cells. J Biol Chem 2002; 277(24): 21821-8.
[http://dx.doi.org/10.1074/jbc.M112109200] [PMID: 11912196]
[26]
Arispe N, Pollard HB, Rojas E. Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc Natl Acad Sci 1993; 90(22): 10573-7.
[http://dx.doi.org/10.1073/pnas.90.22.10573] [PMID: 7504270]
[27]
Lin MA, Kagan BL. Electrophysiologic properties of channels induced by Aβ25–35 in planar lipid bilayers. Peptides 2002; 23(7): 1215-28.
[http://dx.doi.org/10.1016/S0196-9781(02)00057-8] [PMID: 12128079]
[28]
Mirzabekov T, Lin MC, Yuan WL, et al. Channel formation in planar lipid bilayers by a neurotoxic fragment of the beta-amyloid peptide. Biochem Biophys Res Commun 1994; 202(2): 1142-8.
[http://dx.doi.org/10.1006/bbrc.1994.2047] [PMID: 7519420]
[29]
Zaretsky DV, Zaretskaia MV, Molkov YI. Membrane channel hypothesis of lysosomal permeabilization by beta-amyloid. Neurosci Lett 2021; 770: 136338.
[http://dx.doi.org/10.1016/j.neulet.2021.136338] [PMID: 34767924]
[30]
Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene 2004; 23(16): 2881-90.
[http://dx.doi.org/10.1038/sj.onc.1207512] [PMID: 15077151]
[31]
Kavčič N, Pegan K, Turk B. Lysosomes in programmed cell death pathways: From initiators to amplifiers. Biol Chem 2017; 398(3): 289-301.
[http://dx.doi.org/10.1515/hsz-2016-0252] [PMID: 28002019]
[32]
Turk B, Stoka V, Rozman-Pungercar J, et al. Apoptotic pathways: Involvement of lysosomal proteases. Biol Chem 2002; 383(7-8): 1035-44.
[http://dx.doi.org/10.1515/BC.2002.112] [PMID: 12437086]
[33]
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine cathepsins in tumor-associated immune cells. Front Immunol 2019; 10(2037): 2037.
[http://dx.doi.org/10.3389/fimmu.2019.02037] [PMID: 31555270]
[34]
Alzheimer’s Disease Neuroimaging Initiative (ADNI) Data Sharing and Publication Policy 2016. Available from: https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf
[35]
2020 Alzheimer’s disease facts and figures. Alzheimers Dement 2020; 16(3): 391-460.
[http://dx.doi.org/10.1002/alz.12068]
[36]
Fagan AM. What does it mean to be ‘amyloid-positive’? Brain 2015; 138(3): 514-6.
[http://dx.doi.org/10.1093/brain/awu387] [PMID: 25713403]
[37]
Andreasen N, Hesse C, Davidsson P, et al. Cerebrospinal fluid β-amyloid(1-42) in Alzheimer disease: Differences between early and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol 1999; 56(6): 673-80.
[http://dx.doi.org/10.1001/archneur.56.6.673] [PMID: 10369305]
[38]
Schubert D. Serpins inhibit the toxicity of amyloid peptides. Eur J Neurosci 1997; 9(4): 770-7.
[http://dx.doi.org/10.1111/j.1460-9568.1997.tb01425.x] [PMID: 9153583]
[39]
Budd Haeberlein SL, Aisen PS, Barkhof F, et al. Two randomized phase 3 studies of aducanumab in early alzheimer’s disease. J Prev Alzheimers Dis 2022; 9(2): 197-210.
[http://dx.doi.org/10.14283/jpad.2022.30] [PMID: 35542991]
[40]
Egan MF, Kost J, Tariot PN, et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s Disease. N Engl J Med 2018; 378(18): 1691-703.
[http://dx.doi.org/10.1056/NEJMoa1706441] [PMID: 29719179]
[41]
Wessels AM, Lines C, Stern RA, et al. Cognitive outcomes in trials of two BACE inhibitors in Alzheimer’s disease. Alzheimers Dement 2020; 16(11): 1483-92.
[http://dx.doi.org/10.1002/alz.12164] [PMID: 33049114]
[42]
Mueller SG, Weiner MW, Thal LJ, et al. The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin N Am 2005; 15(4): 869-77.
[http://dx.doi.org/10.1016/j.nic.2005.09.008]
[43]
Mueller SG, Weiner MW, Thal LJ, et al. Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 2005; 1(1): 55-66.
[http://dx.doi.org/10.1016/j.jalz.2005.06.003]
[44]
Arispe N, Pollard HB, Rojas E. β-amyloid Ca2+-channel hypothesis for neuronal death in Alzheimer Disease. Mol Cell Biochem 1994; 140(2): 119-25.
[http://dx.doi.org/10.1007/BF00926750] [PMID: 7898484]
[45]
Arispe N, Rojas E, Pollard HB. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: Blockade by tromethamine and aluminum. Proc Natl Acad Sci 1993; 90(2): 567-71.
[http://dx.doi.org/10.1073/pnas.90.2.567] [PMID: 8380642]
[46]
Pollard HB, Rojas E, Arispe N. A new hypothesis for the mechanism of amyloid toxicity, based on the calcium channel activity of amyloid beta protein (A beta P) in phospholipid bilayer membranes. Ann N Y Acad Sci 1993; 695(1): 165-8.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb23046.x] [PMID: 8239277]
[47]
Millucci L, Ghezzi L, Bernardini G, Santucci A. Conformations and biological activities of amyloid beta peptide 25-35. Curr Protein Pept Sci 2010; 11(1): 54-67.
[http://dx.doi.org/10.2174/138920310790274626] [PMID: 20201807]
[48]
Karkisaval AG, Rostagno A, Azimov R, et al. Ion channel formation by N-terminally truncated Aβ (4–42): Relevance for the pathogenesis of Alzheimer’s disease. Nanomedicine 2020; 29: 102235.
[http://dx.doi.org/10.1016/j.nano.2020.102235] [PMID: 32531337]
[49]
Jang H, Arce FT, Ramachandran S, et al. Truncated β-amyloid peptide channels provide an alternative mechanism for Alzheimer’s Disease and Down syndrome. Proc Natl Acad Sci 2010; 107(14): 6538-43.
[http://dx.doi.org/10.1073/pnas.0914251107] [PMID: 20308552]
[50]
Hirakura Y, Lin MC, Kagan BL. Alzheimer amyloid aβ1-42 channels: Effects of solvent, pH, and congo red. J Neurosci Res 1999; 57(4): 458-66.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19990815)57:4<458:AID-JNR5>3.0.CO;2-4] [PMID: 10440895]
[51]
Bevers EM, Williamson PL. Getting to the outer leaflet: Physiology of phosphatidylserine exposure at the plasma membrane. Physiol Rev 2016; 96(2): 605-45.
[http://dx.doi.org/10.1152/physrev.00020.2015] [PMID: 26936867]
[52]
Wesén E, Jeffries GDM, Matson Dzebo M, Esbjörner EK. Endocytic uptake of monomeric amyloid-βpeptides is clathrin- and dynamin-independent and results in selective accumulation of Aβ(1-42) compared to Aβ(1-40). Sci Rep 2021; 7(1): 2021.
[http://dx.doi.org/10.1038/s41598-017-02227-9]
[53]
Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer’s Disease. Free Radic Biol Med 2018; 114: 40-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.10.001]
[54]
Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study. J Neuropathol Exp Neurol 2005; 64(2): 113-22.
[http://dx.doi.org/10.1093/jnen/64.2.113] [PMID: 15751225]
[55]
Rhein V, Baysang G, Rao S, et al. Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 2009; 29(6-7): 1063-71.
[http://dx.doi.org/10.1007/s10571-009-9398-y] [PMID: 19350381]
[56]
Schmitt K, Grimm A, Kazmierczak A, Strosznajder JB, Götz J, Eckert A. Insights into mitochondrial dysfunction: Aging, amyloid-β, and tau-A deleterious trio. Antioxid Redox Signal 2012; 16(12): 1456-66.
[http://dx.doi.org/10.1089/ars.2011.4400] [PMID: 22117646]
[57]
Eckert A, Schmitt K, Götz J. Mitochondrial dysfunction - the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid-β toxicity. Alzheimers Res Ther 2011; 3(2): 15.
[http://dx.doi.org/10.1186/alzrt74]
[58]
Gupta A. Role of caspases, apoptosis and additional factors in pathology of Alzheimer’s disease. In: Gupta A, Ed. Human Caspases and Neuronal Apoptosis in Neurodegenerative Diseases Academic Press. Cambridge, Massachusetts 2022; pp. 69-151.
[http://dx.doi.org/10.1016/B978-0-12-820122-0.00001-7]
[59]
Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2012; 2(5): a006270.
[http://dx.doi.org/10.1101/cshperspect.a006270]
[60]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210]
[61]
Murphy MP, LeVine H 3rd. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 2010; 19(1): 311-23.
[http://dx.doi.org/10.3233/JAD-2010-1221]
[62]
Im D, Heo CE, Son MK, Park CR, Kim HI, Choi JM. Kinetic modulation of amyloid-β (1–42) aggregation and toxicity by structure-based rational design. J Am Chem Soc 2022; 144(4): 1603-11.
[http://dx.doi.org/10.1021/jacs.1c10173] [PMID: 35073692]
[63]
Cohen SIA, Linse S, Luheshi LM, et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci 2013; 110(24): 9758-63.
[http://dx.doi.org/10.1073/pnas.1218402110]
[64]
Patterson BW, Elbert DL, Mawuenyega KG, et al. Age and amyloid effects on human central nervous system amyloid-beta kinetics. Ann Neurol 2015; 78(3): 439-53.
[http://dx.doi.org/10.1002/ana.24454]
[65]
Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee JM. Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci 2009; 106(48): 20324-9.
[http://dx.doi.org/10.1073/pnas.0911281106] [PMID: 19910533]
[66]
Burdick D, Kosmoski J, Knauer MF, Glabe CG. Preferential adsorption, internalization and resistance to degradation of the major isoform of the Alzheimer’s amyloid peptide, Aβ1–42, in differentiated PC12 cells. Brain Res 1997; 746(1-2): 275-84.
[http://dx.doi.org/10.1016/S0006-8993(96)01262-0] [PMID: 9037507]
[67]
Bonam SR, Wang F, Muller S. Lysosomes as a therapeutic target. Nat Rev Drug Discov 2019; 18(12): 923-48.
[http://dx.doi.org/10.1038/s41573-019-0036-1] [PMID: 31477883]
[68]
Mathews PM, Levy E. Cystatin C in aging and in Alzheimer’s disease. Ageing Res Rev 2016; 32: 38-50.
[http://dx.doi.org/10.1016/j.arr.2016.06.003] [PMID: 27333827]
[69]
Bischof GN, Rodrigue KM, Kennedy KM, Devous MD Sr, Park DC. Amyloid deposition in younger adults is linked to episodic memory performance. Neurology 2016; 87(24): 2562-6.
[http://dx.doi.org/10.1212/WNL.0000000000003425]
[70]
Potter R, Patterson BW, Elbert DL, et al. Increased in vivo amyloid-β42 production, exchange, and loss in presenilin mutation carriers. Sci Transl Med 2013; 5(189): 189ra77.
[http://dx.doi.org/10.1126/scitranslmed.3005615]
[71]
Wallin H, Bjarnadottir M, Vogel LK, Wassélius J, Ekström U, Abrahamson M. Cystatins- extra- and intracellular cysteine protease inhibitors: High-level secretion and uptake of cystatin C in human neuroblastoma cells. Biochimie 2010; 92(11): 1625-34.
[http://dx.doi.org/10.1016/j.biochi.2010.08.011] [PMID: 20800088]
[72]
Wang T, Xu SF, Fan YG, Li LB, Guo C. Iron pathophysiology in Alzheimer’s Diseases. Adv Exp Med Biol 2019; 1173: 67-104.
[http://dx.doi.org/10.1007/978-981-13-9589-5_5] [PMID: 31456206]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy