Mini-Review Article

缺氧诱导因子-1在膀胱癌中的作用

卷 24, 期 7, 2024

发表于: 24 August, 2023

页: [827 - 834] 页: 8

弟呕挨: 10.2174/1566524023666230720163448

open access plus

摘要

膀胱癌是世界范围内最常见的恶性肿瘤之一,严重危害人类健康。缺氧在BC的发展过程中起着至关重要的作用。缺氧诱导因子(Hypoxia-inducible factor, HIF)是低氧适应的关键转录因子,它调节多种基因的转录,包括炎症、血管生成和糖酵解代谢。近年来的研究表明HIF在BC多种生物学行为中的确切作用。更重要的是,一种新的靶向HIF-2的抗肿瘤药物已被用于治疗肾癌。然而,针对HIF-1在BC中的治疗尚未开发。在这篇综述中,我们讨论了HIF-1如何表达并影响BC的生长、转移和血管生成。同时,我们研究了几种HIF-1抑制剂,为靶向HIF-1提供了新的视角。

关键词: HIF-1,膀胱癌,葡萄糖代谢,血管生成,增殖,转移,耐药,治疗。

Next »
[1]
Wigner P, Grębowski R, Bijak M, Saluk-Bijak J, Szemraj J. The interplay between oxidative stress, inflammation and angiogenesis in bladder cancer development. Int J Mol Sci 2021; 22(9): 4483.
[http://dx.doi.org/10.3390/ijms22094483] [PMID: 33923108]
[2]
Li Y, Zhao L, Li XF. Hypoxia and the tumor microenvironment. Technol Cancer Res Treat 2021; 20: 15330338211036304.
[http://dx.doi.org/10.1177/15330338211036304] [PMID: 34350796]
[3]
Chen G, Wu K, Li H, Xia D, He T. Role of hypoxia in the tumor microenvironment and targeted therapy. Front Oncol 2022; 12: 961637.
[http://dx.doi.org/10.3389/fonc.2022.961637] [PMID: 36212414]
[4]
Liang S, Dong S, Liu W, et al. Accumulated ros activates hif-1α-induced glycolysis and exerts a protective effect on sensory hair cells against noise-induced damage. Front Mol Biosci 2022; 8: 806650.
[http://dx.doi.org/10.3389/fmolb.2021.806650] [PMID: 35096971]
[5]
Rashid M, Zadeh LR, Baradaran B, et al. Up-down regulation of HIF-1α in cancer progression. Gene 2021; 798: 145796.
[http://dx.doi.org/10.1016/j.gene.2021.145796] [PMID: 34175393]
[6]
Pezzuto A, Carico E. Role of hif-1 in cancer progression: Novel insights. a review. Curr Mol Med 2018; 18(6): 343-51.
[http://dx.doi.org/10.2174/1566524018666181109121849] [PMID: 30411685]
[7]
Xue X, Kang JB, Yang X, et al. An efficient strategy for digging protein-protein interactions for rational drug design - A case study with HIF-1α/VHL. Eur J Med Chem 2022; 227: 113871.
[http://dx.doi.org/10.1016/j.ejmech.2021.113871] [PMID: 34638033]
[8]
Li M, Li G, Yang X, Yin W, Lv G, Wang S. HIF in gastric cancer: Regulation and therapeutic target. Molecules 2022; 27(15): 4893.
[http://dx.doi.org/10.3390/molecules27154893] [PMID: 35956843]
[9]
Infantino V, Santarsiero A, Convertini P, Todisco S, Iacobazzi V. Cancer cell metabolism in hypoxia: Role of hif-1 as key regulator and therapeutic target. Int J Mol Sci 2021; 22(11): 5703.
[http://dx.doi.org/10.3390/ijms22115703] [PMID: 34071836]
[10]
Tang W, Long T, Li F, et al. Hif-1α may promote glycolysis in psoriasis vulgaris via upregulation of cd147 and glut1. J Cent South Univ 2021; 46(4): 333-4.
[http://dx.doi.org/10.11817/j.issn.1672-7347.2021.200010]
[11]
Chiu DKC, Tse APW, Xu IMJ, et al. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun 2017; 8(1): 517.
[http://dx.doi.org/10.1038/s41467-017-00530-7] [PMID: 28894087]
[12]
Wyss CB, Duffey N, Peyvandi S, et al. Gain of HIF1 activity and loss of mirna let-7d promote breast cancer metastasis to the brain via the pdgf/pdgfr axis. Cancer Res 2021; 81(3): 594-605.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3560] [PMID: 33526470]
[13]
Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer 2016; 138(5): 1058-66.
[http://dx.doi.org/10.1002/ijc.29519] [PMID: 25784597]
[14]
Halaseh SA, Halaseh S, Alali Y, Ashour ME, Alharayzah MJ. A review of the etiology and epidemiology of bladder cancer: All you need to know. Cureus 2022; 14(7): e27330.
[http://dx.doi.org/10.7759/cureus.27330] [PMID: 36042998]
[15]
Yafi FA, Aprikian AG, Chin JL, et al. Contemporary outcomes of 2287 patients with bladder cancer who were treated with radical cystectomy: A Canadian multicentre experience. BJU Int 2011; 108(4): 539-45.
[http://dx.doi.org/10.1111/j.1464-410X.2010.09912.x] [PMID: 21166753]
[16]
Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin 2020; 70(5): 404-23.
[http://dx.doi.org/10.3322/caac.21631] [PMID: 32767764]
[17]
Zhang Z, Li X, Ren S, Zhang W. CNN1 represses bladder cancer progression and metabolic reprogramming by modulating hif-1α signaling pathway. Front Oncol 2022; 12: 859707.
[http://dx.doi.org/10.3389/fonc.2022.859707] [PMID: 35903683]
[18]
Yu M, Ozaki T, Sun D, et al. HIF-1α-dependent miR-424 induction confers cisplatin resistance on bladder cancer cells through down-regulation of pro-apoptotic UNC5B and SIRT4. J Exp Clin Cancer Res 2020; 39(1): 108.
[http://dx.doi.org/10.1186/s13046-020-01613-y] [PMID: 32522234]
[19]
Judge A, Dodd MS. Metabolism. Essays Biochem 2020; 64(4): 607-47.
[http://dx.doi.org/10.1042/EBC20190041] [PMID: 32830223]
[20]
Zhou Y, Guo Y, Tam KY. Targeting glucose metabolism to develop anticancer treatments and therapeutic patents. Expert Opin Ther Pat 2022; 32(4): 441-53.
[http://dx.doi.org/10.1080/13543776.2022.2027912]
[21]
Vaupel P, Schmidberger H, Mayer A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 2019; 95(7): 912-9.
[http://dx.doi.org/10.1080/09553002.2019.1589653] [PMID: 30822194]
[22]
Zahra K, Dey T. Ashish, Mishra SP, Pandey U. Pyruvate kinase m2 and cancer: The role of pkm2 in promoting tumorigenesis. Front Oncol 2020; 10: 159.
[http://dx.doi.org/10.3389/fonc.2020.00159] [PMID: 32195169]
[23]
Zhang G, Zhang Y, Dong D, et al. MCT1 regulates aggressive and metabolic phenotypes in bladder cancer. J Cancer 2018; 9(14): 2492-501.
[http://dx.doi.org/10.7150/jca.25257] [PMID: 30026847]
[24]
Jou YC, Tsai YS, Lin CT, et al. Foxp3 enhances HIF-1α target gene expression in human bladder cancer through decreasing its ubiquitin-proteasomal degradation. Oncotarget 2016; 7(40): 65403-17.
[http://dx.doi.org/10.18632/oncotarget.11395] [PMID: 27557492]
[25]
Wang JZ, Zhu W, Han J, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun 2021; 41(7): 560-75.
[http://dx.doi.org/10.1002/cac2.12158] [PMID: 33991457]
[26]
Zhang H, Lu C, Fang M, et al. HIF-1α activates hypoxia-induced PFKFB4 expression in human bladder cancer cells. Biochem Biophys Res Commun 2016; 476(3): 146-52.
[http://dx.doi.org/10.1016/j.bbrc.2016.05.026] [PMID: 27181362]
[27]
Zhu J, Zheng G, Xu H, et al. Expression and prognostic significance of pyruvate dehydrogenase kinase 1 in bladder urothelial carcinoma. Virchows Arch 2020; 477: 637-49.
[http://dx.doi.org/10.1007/s00428-020-02782-z]
[28]
Xia Y, Wang X, Liu Y, et al. PKM2 is essential for bladder cancer growth and maintenance. Cancer Res 2022; 82(4): 571-85.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-0403] [PMID: 34903602]
[29]
Pouysségur J, Marchiq I, Parks SK, Durivault J, Ždralević M, Vucetic M. ‘Warburg effect’ controls tumor growth, bacterial, viral infections and immunity: Genetic deconstruction and therapeutic perspectives. Semin Cancer Biol 2022; 86(Pt 2): 334-46.
[http://dx.doi.org/10.1016/j.semcancer.2022.07.004] [PMID: 35820598]
[30]
Duan F, Mei C, Yang L, et al. Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells. Sci Rep 2020; 10(1): 7714.
[http://dx.doi.org/10.1038/s41598-020-64880-x] [PMID: 32382009]
[31]
Dematei A, Fernandes R, Soares R, et al. Angiogenesis in schistosoma haematobium-associated urinary bladder cancer. APMIS. Acta pathologica, microbiologica, et immunologica Scandinavica 2017; 125(12): 1056-62.
[http://dx.doi.org/10.1111/apm.12756]
[32]
Wang Y, Zhang L, Wei N, Sun Y, Pan W, Chen Y. Silencing LINC00482 inhibits tumor-associated inflammation and angiogenesis through down-regulation of MMP-15 via FOXA1 in bladder cancer. Aging 2020; 13(2): 2264-78.
[http://dx.doi.org/10.18632/aging.202247] [PMID: 33323547]
[33]
Yang F, Liu XQ, He JZ, et al. Occludin facilitates tumour angiogenesis in bladder cancer by regulating IL8/STAT3 through STAT4. J Cell Mol Med 2022; 26(8): 2363-76.
[http://dx.doi.org/10.1111/jcmm.17257] [PMID: 35224833]
[34]
Badr S, Salem A, Yuosif AH, Awadallah H, Awed N, Bakr A. Hypoxia inducible factor-1α and microvessel density as angiogenic factors in bilharzial and non-bilharzial bladder cancer. Clin Lab 2013; 59(7-8): 805-12.
[http://dx.doi.org/10.7754/Clin.Lab.2012.120605] [PMID: 24133909]
[35]
Kozakowska M, Dobrowolska-Glazar B, Okoń K, Józkowicz A, Dobrowolski Z, Dulak J. Preliminary analysis of the expression of selected proangiogenic and antioxidant genes and micrornas in patients with non-muscle-invasive bladder cancer. J Clin Med 2016; 5(3): 29.
[http://dx.doi.org/10.3390/jcm5030029] [PMID: 26927195]
[36]
Mortada WI, Awadalla A, Khater S, et al. Copper and zinc levels in plasma and cancerous tissues and their relation with expression of VEGF and HIF-1 in the pathogenesis of muscle invasive urothelial bladder cancer: A case-controlled clinical study. Environ Sci Pollut Res Int 2020; 27(13): 15835-41.
[http://dx.doi.org/10.1007/s11356-020-08113-8] [PMID: 32095963]
[37]
Wu SQ, He HQ, Kang Y, et al. MicroRNA-200c affects bladder cancer angiogenesis by regulating the Akt2/mTOR/HIF-1 axis. Transl Cancer Res 2019; 8(8): 2713-24.
[http://dx.doi.org/10.21037/tcr.2019.10.23] [PMID: 35117029]
[38]
Mortada WI, Awadalla A, Khater SM, Barakat NM, Husseiny SM, Shokeir AA. Preventive effect of pomegranate juice against chemically induced bladder cancer: An experimental study. Heliyon 2020; 6(10): e05192.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05192] [PMID: 33083625]
[39]
Chen MC, Hsu WL, Chang WL, Chou T-C. Antiangiogenic activity of phthalides-enriched angelica sinensis extract by suppressing wsb-1/pvhl/hif-1α/vegf signaling in bladder cancer. Sci Rep 2017; 7(1): 5376.
[http://dx.doi.org/10.1038/s41598-017-05512-9] [PMID: 28710377]
[40]
Chen MC, Hsu WL, Hwang PA, Chou T-C. Low molecular weight fucoidan inhibits tumor angiogenesis through downregulation of hif-1/vegf signaling under hypoxia. Mar Drugs 2015; 13(7): 4436-51.
[http://dx.doi.org/10.3390/md13074436] [PMID: 26193287]
[41]
Chen MC, Lee CF, Huang WH, Chou T-C. Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells. Biochem Pharmacol 2013; 85(9): 1278-87.
[http://dx.doi.org/10.1016/j.bcp.2013.02.009] [PMID: 23416116]
[42]
Fus ŁP, Pihowicz P, Koperski Ł, et al. Hif-1α expression is inversely associated with tumor stage, grade and microvessel density in urothelial bladder carcinoma. Pol J Pathol 2018; 69(4): 395-404.
[http://dx.doi.org/10.5114/pjp.2018.81699]
[43]
Pietzak EJ, Whiting K, Srinivasan P, et al. Inherited germline cancer susceptibility gene variants in individuals with non-muscle-invasive bladder cancer. Clin Cancer Res 2022; 28(19): 4267-77.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-1006] [PMID: 35833951]
[44]
Lu M, Ge Q, Wang G, et al. CIRBP is a novel oncogene in human bladder cancer inducing expression of HIF-1α. Cell Death Dis 2018; 9(10): 1046.
[http://dx.doi.org/10.1038/s41419-018-1109-5] [PMID: 30315244]
[45]
Xue M, Li X, Chen W. Hypoxia regulates the expression and localization of CCAAT/enhancer binding protein α by hypoxia inducible factor-1α in bladder transitional carcinoma cells. Mol Med Rep 2015; 12(2): 2121-7.
[http://dx.doi.org/10.3892/mmr.2015.3563] [PMID: 25824695]
[46]
Blick C, Ramachandran A, Wigfield S, et al. Hypoxia regulates FGFR3 expression via HIF-1α and miR-100 and contributes to cell survival in non-muscle invasive bladder cancer. Br J Cancer 2013; 109(1): 50-9.
[http://dx.doi.org/10.1038/bjc.2013.240] [PMID: 23778527]
[47]
Xue M, Li X, Li Z, Chen W. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol 2014; 35(7): 6901-12.
[http://dx.doi.org/10.1007/s13277-014-1925-x] [PMID: 24737584]
[48]
Blick C, Ramachandran A, McCormick R, et al. Identification of a hypoxia-regulated miRNA signature in bladder cancer and a role for miR-145 in hypoxia-dependent apoptosis. Br J Cancer 2015; 113(4): 634-44.
[http://dx.doi.org/10.1038/bjc.2015.203] [PMID: 26196183]
[49]
Fan X, Heijnen CJ, van der Kooij MA, Groenendaal F, van Bel F. The role and regulation of hypoxia-inducible factor-1α expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Res Brain Res Rev 2009; 62(1): 99-108.
[http://dx.doi.org/10.1016/j.brainresrev.2009.09.006] [PMID: 19786048]
[50]
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 2022; 15(1): 129.
[http://dx.doi.org/10.1186/s13045-022-01347-8] [PMID: 36076302]
[51]
Santarosa M, Maestro R. The autophagic route of e-cadherin and cell adhesion molecules in cancer progression. Cancers 2021; 13(24): 6328.
[http://dx.doi.org/10.3390/cancers13246328] [PMID: 34944948]
[52]
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019; 20(2): 69-84.
[http://dx.doi.org/10.1038/s41580-018-0080-4] [PMID: 30459476]
[53]
Zhu J, Huang Z, Zhang M, et al. HIF-1α promotes ZEB1 expression and EMT in a human bladder cancer lung metastasis animal model. Oncol Lett 2018; 15(3): 3482-9.
[http://dx.doi.org/10.3892/ol.2018.7764] [PMID: 29467870]
[54]
Lu N, Piao MH, Feng CS, Yuan Y. Isoflurane promotes epithelial-to-mesenchymal transition and metastasis of bladder cancer cells through HIF-1α-β-catenin/Notch1 pathways. Life Sci 2020; 258: 118154.
[http://dx.doi.org/10.1016/j.lfs.2020.118154] [PMID: 32735882]
[55]
Dong F, Chen L, Wang R, Yang W, Lu T, Zhang Y. 4-nitrophenol exposure in T24 human bladder cancer cells promotes proliferation, motilities, and epithelial-to-mesenchymal transition. Environ Mol Mutagen 2020; 61(3): 316-28.
[http://dx.doi.org/10.1002/em.22345] [PMID: 31654581]
[56]
Peixoto A, Fernandes E, Gaiteiro C, et al. Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein O-glycosylation extension. Oncotarget 2016; 7(39): 63138-57.
[http://dx.doi.org/10.18632/oncotarget.11257] [PMID: 27542232]
[57]
Zhang T, Fan J, Wu K, et al. Roles of HIF-1α in a novel optical orthotopic spontaneous metastatic bladder cancer animal model. Urol Oncol 2012; 30(6): 928-35.
[http://dx.doi.org/10.1016/j.urolonc.2012.01.003] [PMID: 22341926]
[58]
Hu X, Li G, Wu S. Advances in diagnosis and therapy for bladder cancer. Cancers 2022; 14(13): 3181.
[http://dx.doi.org/10.3390/cancers14133181] [PMID: 35804953]
[59]
Long G, Ma S, Shi R, Sun Y, Hu Z, Chen K. Circular rnas and drug resistance in genitourinary cancers: A literature review. Cancers 2022; 14(4): 866.
[http://dx.doi.org/10.3390/cancers14040866] [PMID: 35205613]
[60]
Zhao F, Vakhrusheva O, Markowitsch SD, et al. Artesunate impairs growth in cisplatin-resistant bladder cancer cells by cell cycle arrest, apoptosis and autophagy induction. Cells 2020; 9(12): 2643.
[http://dx.doi.org/10.3390/cells9122643] [PMID: 33316936]
[61]
Shi ZD, Hao L, Han XX, et al. Targeting HNRNPU to overcome cisplatin resistance in bladder cancer. Mol Cancer 2022; 21(1): 37.
[http://dx.doi.org/10.1186/s12943-022-01517-9] [PMID: 35130920]
[62]
Sun Y, Guan Z, Liang L, et al. HIF-1α/MDR1 pathway confers chemoresistance to cisplatin in bladder cancer. Oncol Rep 2016; 35(3): 1549-56.
[http://dx.doi.org/10.3892/or.2015.4536] [PMID: 26717965]
[63]
Mao X. Nanzhang, Xiao J, Wu H, Ding K. Hypoxia-induced autophagy enhances cisplatin resistance in human bladder cancer cells by targeting hypoxia-inducible factor-1α. J Immunol Res 2021; 2021: 8887437.
[http://dx.doi.org/10.1155/2021/8887437] [PMID: 33681390]
[64]
Yang X, Yin H, Zhang Y, et al. Hypoxia-induced autophagy promotes gemcitabine resistance in human bladder cancer cells through hypoxia-inducible factor 1α activation. Int J Oncol 2018; 53(1): 215-24.
[http://dx.doi.org/10.3892/ijo.2018.4376] [PMID: 29693166]
[65]
Roperto S, De Falco F, Perillo A, Catoi C, Roperto F. Mitophagy mediated by BNIP3 and BNIP3L/NIX in urothelial cells of the urinary bladder of cattle harbouring bovine papillomavirus infection. Vet Microbiol 2019; 236: 108396.
[http://dx.doi.org/10.1016/j.vetmic.2019.108396] [PMID: 31500722]
[66]
Huang YT, Cheng CC, Chiu TH, Lai PC. Therapeutic potential of thalidomide for gemcitabine-resistant bladder cancer. Int J Oncol 2015; 47(5): 1711-24.
[http://dx.doi.org/10.3892/ijo.2015.3155] [PMID: 26398114]
[67]
Ni Z, Sun P, Zheng J, et al. JNK signaling promotes bladder cancer immune escape by regulating mettl3-mediated m6a modification of pd-l1 mRNA. Cancer Res 2022; 82(9): 1789-802.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-1323] [PMID: 35502544]
[68]
Smith V, Mukherjee D, Lunj S, et al. The effect of hypoxia on PD-L1 expression in bladder cancer. BMC Cancer 2021; 21(1): 1271.
[http://dx.doi.org/10.1186/s12885-021-09009-7] [PMID: 34819027]
[69]
Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 2014; 74(3): 665-74.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0992] [PMID: 24336068]
[70]
Tan P, Wang M, Zhong A, et al. SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis. Oncogene 2021; 40(42): 6081-92.
[http://dx.doi.org/10.1038/s41388-021-01999-9] [PMID: 34471236]
[71]
Xia Y, Kang TW, Jung YD, Zhang C, Lian S. Sulforaphane inhibits nonmuscle invasive bladder cancer cells proliferation through suppression of hif-1α-mediated glycolysis in hypoxia. J Agric Food Chem 2019; 67(28): 7844-54.
[http://dx.doi.org/10.1021/acs.jafc.9b03027] [PMID: 31241937]
[72]
Zhan Y, Liu Y, Lin J, et al. Synthetic Tet-inducible artificial microRNAs targeting β-catenin or HIF-1α inhibit malignant phenotypes of bladder cancer cells T24 and 5637. Sci Rep 2015; 5(1): 16177.
[http://dx.doi.org/10.1038/srep16177] [PMID: 26541358]
[73]
Yuan Z, Guo G, Sun G, Li Q, Wang L, Qiao B. Magnesium isoglycyrrhizinate suppresses bladder cancer progression by modulating the miR-26b/Nox4 axis. Bioengineered 2022; 13(4): 7986-99.
[http://dx.doi.org/10.1080/21655979.2022.2031677] [PMID: 35293283]
[74]
Chen YC, Wang PY, Huang BM, Chen Y-J, Lee W-C, Chen Y-C. 16-Hydroxycleroda-3,13-dien-15,16-olide induces apoptosis in human bladder cancer cells through cell cycle arrest, mitochondria ros overproduction, and inactivation of egfr-related signalling pathways. Molecules 2020; 25(17): 3958.
[http://dx.doi.org/10.3390/molecules25173958] [PMID: 32872665]
[75]
Huang XX, Wang RX, Lin Q, et al. Inhibitory effects of 2-methoxyestradiol on cell growth and invasion in human bladder cancer T-24 cells. Pharmazie 2017; 72(2): 87-90.
[http://dx.doi.org/10.1691/ph.2017.6839] [PMID: 29441858]
[76]
Dong Y, Hao L, Fang K, et al. A network pharmacology perspective for deciphering potential mechanisms of action of solanum nigrum L. In Bladder Cancer. BMC Complement Med Therap 2021; 21: p. (1)45.
[http://dx.doi.org/10.1186/s12906-021-03215-3]
[77]
Korbecki J, Simińska D, Gąssowska-Dobrowolska M, et al. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through hif-1 and nf-κb activation: a review of the molecular mechanisms. Int J Mol Sci 2021; 22(19): 10701.
[http://dx.doi.org/10.3390/ijms221910701] [PMID: 34639040]

© 2024 Bentham Science Publishers | Privacy Policy